1
|
Santosh KC, GhoshRoy D, Nakarmi S. A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022. Healthcare (Basel) 2023; 11:2388. [PMID: 37685422 PMCID: PMC10486542 DOI: 10.3390/healthcare11172388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The emergence of the COVID-19 pandemic in Wuhan in 2019 led to the discovery of a novel coronavirus. The World Health Organization (WHO) designated it as a global pandemic on 11 March 2020 due to its rapid and widespread transmission. Its impact has had profound implications, particularly in the realm of public health. Extensive scientific endeavors have been directed towards devising effective treatment strategies and vaccines. Within the healthcare and medical imaging domain, the application of artificial intelligence (AI) has brought significant advantages. This study delves into peer-reviewed research articles spanning the years 2020 to 2022, focusing on AI-driven methodologies for the analysis and screening of COVID-19 through chest CT scan data. We assess the efficacy of deep learning algorithms in facilitating decision making processes. Our exploration encompasses various facets, including data collection, systematic contributions, emerging techniques, and encountered challenges. However, the comparison of outcomes between 2020 and 2022 proves intricate due to shifts in dataset magnitudes over time. The initiatives aimed at developing AI-powered tools for the detection, localization, and segmentation of COVID-19 cases are primarily centered on educational and training contexts. We deliberate on their merits and constraints, particularly in the context of necessitating cross-population train/test models. Our analysis encompassed a review of 231 research publications, bolstered by a meta-analysis employing search keywords (COVID-19 OR Coronavirus) AND chest CT AND (deep learning OR artificial intelligence OR medical imaging) on both the PubMed Central Repository and Web of Science platforms.
Collapse
Affiliation(s)
- KC Santosh
- 2AI: Applied Artificial Intelligence Research Lab, Vermillion, SD 57069, USA
| | - Debasmita GhoshRoy
- School of Automation, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | - Suprim Nakarmi
- Department of Computer Science, University of South Dakota, Vermillion, SD 57069, USA;
| |
Collapse
|
2
|
Detection of COVID-19 Case from Chest CT Images Using Deformable Deep Convolutional Neural Network. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:4301745. [PMID: 36844950 PMCID: PMC9949952 DOI: 10.1155/2023/4301745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
The infectious coronavirus disease (COVID-19) has become a great threat to global human health. Timely and rapid detection of COVID-19 cases is very crucial to control its spreading through isolation measures as well as for proper treatment. Though the real-time reverse transcription-polymerase chain reaction (RT-PCR) test is a widely used technique for COVID-19 infection, recent researches suggest chest computed tomography (CT)-based screening as an effective substitute in cases of time and availability limitations of RT-PCR. In consequence, deep learning-based COVID-19 detection from chest CT images is gaining momentum. Furthermore, visual analysis of data has enhanced the opportunities of maximizing the prediction performance in this big data and deep learning realm. In this article, we have proposed two separate deformable deep networks converting from the conventional convolutional neural network (CNN) and the state-of-the-art ResNet-50, to detect COVID-19 cases from chest CT images. The impact of the deformable concept has been observed through performance comparative analysis among the designed deformable and normal models, and it is found that the deformable models show better prediction results than their normal form. Furthermore, the proposed deformable ResNet-50 model shows better performance than the proposed deformable CNN model. The gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted regions' localization effort at the final convolutional layer and has been found excellent. Total 2481 chest CT images have been used to evaluate the performance of the proposed models with a train-valid-test data splitting ratio of 80 : 10 : 10 in random fashion. The proposed deformable ResNet-50 model achieved training accuracy of 99.5% and test accuracy of 97.6% with specificity of 98.5% and sensitivity of 96.5% which are satisfactory compared with related works. The comprehensive discussion demonstrates that the proposed deformable ResNet-50 model-based COVID-19 detection technique can be useful for clinical applications.
Collapse
|
3
|
Chakraborty S, Mali K. SUFEMO: A superpixel based fuzzy image segmentation method for COVID-19 radiological image elucidation. Appl Soft Comput 2022; 129:109625. [PMID: 36124000 PMCID: PMC9474408 DOI: 10.1016/j.asoc.2022.109625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022]
Abstract
COVID-19 causes an ongoing worldwide pandemic situation. The non-discovery of specialized drugs and/or any other kind of medicines makes the situation worse. Early diagnosis of this disease will be certainly helpful to start the treatment early and also to bring down the dire spread of this highly infectious virus. This article describes the proposed novel unsupervised segmentation method to segment the radiological image samples of the chest area that are accumulated from the COVID-19 infected patients. The proposed approach is helpful for physicians, medical technologists, and other related experts in the quick and early diagnosis of COVID-19 infection. The proposed approach will be the SUFEMO (SUperpixel based Fuzzy Electromagnetism-like Optimization). This approach is developed depending on some well-known theories like the Electromagnetism-like optimization algorithm, the type-2 fuzzy logic, and the superpixels. The proposed approach brings down the processing burden that is required to deal with a considerably large amount of spatial information by assimilating the notion of the superpixel. In this work, the EMO approach is modified by utilizing the type 2 fuzzy framework. The EMO approach updates the cluster centers without using the cluster center updation equation. This approach is independent of the choice of the initial cluster centers. To decrease the related computational overhead of handling a lot of spatial data, a novel superpixel-based approach is proposed in which the noise-sensitiveness of the watershed-based superpixel formation approach is dealt with by computing the nearby minima from the gradient image. Also, to take advantage of the superpixels, the fuzzy objective function is modified. The proposed approach was evaluated using both qualitatively and quantitatively using 310 chest CT scan images that are gathered from various sources. Four standard cluster validity indices are taken into consideration to quantify the results. It is observed that the proposed approach gives better performance compared to some of the state-of-the-art approaches in terms of both qualitative and quantitative outcomes. On average, the proposed approach attains Davies-Bouldin index value of 1.812008792, Xie-Beni index value of 1.683281, Dunn index value 2.588595748, and β index value 3.142069236 for 5 clusters. Apart from this, the proposed approach is also found to be superior with regard to the rate of convergence. Rigorous experiments prove the effectiveness of the proposed approach and establish the real-life applicability of the proposed method for the initial filtering of the COVID-19 patients.
Collapse
Affiliation(s)
- Shouvik Chakraborty
- Department of Computer Science and Engineering, University of Kalyani, India
| | - Kalyani Mali
- Department of Computer Science and Engineering, University of Kalyani, India
| |
Collapse
|
4
|
M. V. MK, Atalla S, Almuraqab N, Moonesar IA. Detection of COVID-19 Using Deep Learning Techniques and Cost Effectiveness Evaluation: A Survey. Front Artif Intell 2022; 5:912022. [PMID: 35692941 PMCID: PMC9184735 DOI: 10.3389/frai.2022.912022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Graphical-design-based symptomatic techniques in pandemics perform a quintessential purpose in screening hit causes that comparatively render better outcomes amongst the principal radioscopy mechanisms in recognizing and diagnosing COVID-19 cases. The deep learning paradigm has been applied vastly to investigate radiographic images such as Chest X-Rays (CXR) and CT scan images. These radiographic images are rich in information such as patterns and clusters like structures, which are evident in conformance and detection of COVID-19 like pandemics. This paper aims to comprehensively study and analyze detection methodology based on Deep learning techniques for COVID-19 diagnosis. Deep learning technology is a good, practical, and affordable modality that can be deemed a reliable technique for adequately diagnosing the COVID-19 virus. Furthermore, the research determines the potential to enhance image character through artificial intelligence and distinguishes the most inexpensive and most trustworthy imaging method to anticipate dreadful viruses. This paper further discusses the cost-effectiveness of the surveyed methods for detecting COVID-19, in contrast with the other methods. Several finance-related aspects of COVID-19 detection effectiveness of different methods used for COVID-19 detection have been discussed. Overall, this study presents an overview of COVID-19 detection using deep learning methods and their cost-effectiveness and financial implications from the perspective of insurance claim settlement.
Collapse
Affiliation(s)
- Manoj Kumar M. V.
- Department of Information Science and Engineering, Nitte Meenakshi Institute of Technology, Bangalore, India
- *Correspondence: Manoj Kumar M. V.
| | - Shadi Atalla
- College of Engineering & Information Technology, University of Dubai, Dubai, United Arab Emirates
- Shadi Atalla
| | - Nasser Almuraqab
- Dubai Business School, University of Dubai, Dubai, United Arab Emirates
- Nasser Almuraqab
| | - Immanuel Azaad Moonesar
- Health Adminstration & Policy – Academic Affairs, Mohammed Bin Rashid School of Government (MBRSG), Dubai, United Arab Emirates
- Immanuel Azaad Moonesar
| |
Collapse
|
5
|
Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A, Alsaadi FE. Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey. SN COMPUTER SCIENCE 2022; 3:286. [PMID: 35578678 PMCID: PMC9096341 DOI: 10.1007/s42979-022-01184-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
The year 2020 experienced an unprecedented pandemic called COVID-19, which impacted the whole world. The absence of treatment has motivated research in all fields to deal with it. In Computer Science, contributions mainly include the development of methods for the diagnosis, detection, and prediction of COVID-19 cases. Data science and Machine Learning (ML) are the most widely used techniques in this area. This paper presents an overview of more than 160 ML-based approaches developed to combat COVID-19. They come from various sources like Elsevier, Springer, ArXiv, MedRxiv, and IEEE Xplore. They are analyzed and classified into two categories: Supervised Learning-based approaches and Deep Learning-based ones. In each category, the employed ML algorithm is specified and a number of used parameters is given. The parameters set for each of the algorithms are gathered in different tables. They include the type of the addressed problem (detection, diagnosis, or detection), the type of the analyzed data (Text data, X-ray images, CT images, Time series, Clinical data,...) and the evaluated metrics (accuracy, precision, sensitivity, specificity, F1-Score, and AUC). The study discusses the collected information and provides a number of statistics drawing a picture about the state of the art. Results show that Deep Learning is used in 79% of cases where 65% of them are based on the Convolutional Neural Network (CNN) and 17% use Specialized CNN. On his side, supervised learning is found in only 16% of the reviewed approaches and only Random Forest, Support Vector Machine (SVM) and Regression algorithms are employed.
Collapse
Affiliation(s)
- Yassine Meraihi
- LIST Laboratory, University of M’Hamed Bougara Boumerdes, Avenue of Independence, 35000 Boumerdes, Algeria
| | - Asma Benmessaoud Gabis
- Ecole nationale Supérieure d’Informatique, Laboratoire des Méthodes de Conception des Systèmes, BP 68 M, 16309 Oued-Smar, Alger Algeria
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006 Australia
- Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| | - Amar Ramdane-Cherif
- LISV Laboratory, University of Versailles St-Quentin-en-Yvelines, 10-12 Avenue of Europe, 78140 Velizy, France
| | - Fawaz E. Alsaadi
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Karthik R, Menaka R, Hariharan M, Won D. CT-based severity assessment for COVID-19 using weakly supervised non-local CNN. Appl Soft Comput 2022; 121:108765. [PMID: 35370523 PMCID: PMC8962065 DOI: 10.1016/j.asoc.2022.108765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
Evaluating patient criticality is the foremost step in administering appropriate COVID-19 treatment protocols. Learning an Artificial Intelligence (AI) model from clinical data for automatic risk-stratification enables accelerated response to patients displaying critical indicators. Chest CT manifestations including ground-glass opacities and consolidations are a reliable indicator for prognostic studies and show variability with patient condition. To this end, we propose a novel attention framework to estimate COVID-19 severity as a regression score from a weakly annotated CT scan dataset. It takes a non-locality approach that correlates features across different parts and spatial scales of the 3D scan. An explicit guidance mechanism from limited infection labeling drives attention refinement and feature modulation. The resulting encoded representation is further enriched through cross-channel attention. The attention model also infuses global contextual awareness into the deep voxel features by querying the base CT scan to mine relevant features. Consequently, it learns to effectively localize its focus region and chisel out the infection precisely. Experimental validation on the MosMed dataset shows that the proposed architecture has significant potential in augmenting existing methods as it achieved a 0.84 R-squared score and 0.133 mean absolute difference.
Collapse
Affiliation(s)
- R Karthik
- Centre for Cyber Physical Systems & School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| | - R Menaka
- Centre for Cyber Physical Systems & School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| | - M Hariharan
- Cisco Systems India Pvt Ltd, Bangalore, India
| | - Daehan Won
- System Sciences and Industrial Engineering, Binghamton University, NY, USA
| |
Collapse
|
7
|
The COVID-19 epidemic analysis and diagnosis using deep learning: A systematic literature review and future directions. Comput Biol Med 2021; 141:105141. [PMID: 34929464 PMCID: PMC8668784 DOI: 10.1016/j.compbiomed.2021.105141] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
Abstract
Since December 2019, the COVID-19 outbreak has resulted in countless deaths and has harmed all facets of human existence. COVID-19 has been designated an epidemic by the World Health Organization (WHO), which has placed a tremendous burden on nearly all countries, especially those with weak health systems. However, Deep Learning (DL) has been applied in several applications and many types of detection applications in the medical field, including thyroid diagnosis, lung nodule recognition, fetal localization, and detection of diabetic retinopathy. Furthermore, various clinical imaging sources, like Magnetic Resonance Imaging (MRI), X-ray, and Computed Tomography (CT), make DL a perfect technique to tackle the epidemic of COVID-19. Inspired by this fact, a considerable amount of research has been done. A Systematic Literature Review (SLR) has been used in this study to discover, assess, and integrate findings from relevant studies. DL techniques used in COVID-19 have also been categorized into seven main distinct categories as Long Short Term Memory Networks (LSTM), Self-Organizing Maps (SOMs), Conventional Neural Networks (CNNs), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs), Autoencoders, and hybrid approaches. Then, the state-of-the-art studies connected to DL techniques and applications for health problems with COVID-19 have been highlighted. Moreover, many issues and problems associated with DL implementation for COVID-19 have been addressed, which are anticipated to stimulate more investigations to control the prevalence and disaster control in the future. According to the findings, most papers are assessed using characteristics such as accuracy, delay, robustness, and scalability. Meanwhile, other features are underutilized, such as security and convergence time. Python is also the most commonly used language in papers, accounting for 75% of the time. According to the investigation, 37.83% of applications have identified chest CT/chest X-ray images for patients.
Collapse
|
8
|
Kumar RL, Khan F, Din S, Band SS, Mosavi A, Ibeke E. Recurrent Neural Network and Reinforcement Learning Model for COVID-19 Prediction. Front Public Health 2021; 9:744100. [PMID: 34671588 PMCID: PMC8521000 DOI: 10.3389/fpubh.2021.744100] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 01/11/2023] Open
Abstract
Detection and prediction of the novel Coronavirus present new challenges for the medical research community due to its widespread across the globe. Methods driven by Artificial Intelligence can help predict specific parameters, hazards, and outcomes of such a pandemic. Recently, deep learning-based approaches have proven a novel opportunity to determine various difficulties in prediction. In this work, two learning algorithms, namely deep learning and reinforcement learning, were developed to forecast COVID-19. This article constructs a model using Recurrent Neural Networks (RNN), particularly the Modified Long Short-Term Memory (MLSTM) model, to forecast the count of newly affected individuals, losses, and cures in the following few days. This study also suggests deep learning reinforcement to optimize COVID-19's predictive outcome based on symptoms. Real-world data was utilized to analyze the success of the suggested system. The findings show that the established approach promises prognosticating outcomes concerning the current COVID-19 pandemic and outperformed the Long Short-Term Memory (LSTM) model and the Machine Learning model, Logistic Regresion (LR) in terms of error rate.
Collapse
Affiliation(s)
- R. Lakshmana Kumar
- Department of Computer Applications, Hindusthan College of Engineering and Technology, Coimbatore, India
| | - Firoz Khan
- Dubai Men's College, Higher Colleges of Technology, Dubai, United Arab Emirates
| | - Sadia Din
- Department of Information and Communication Engineering, Yeung University, Gyeongsan, South Korea
| | - Shahab S. Band
- Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, Douliu, Taiwan
| | - Amir Mosavi
- Faculty of Civil Engineering, Technische Universität Dresden, Dresden, Germany
- John von Neumann Faculty of Informatics, Obuda University, Budapest, Hungary
| | - Ebuka Ibeke
- School of Creative and Cultural Business, Robert Gordon University, Aberdeen, United Kingdom
| |
Collapse
|
9
|
Abstract
Advancements in deep learning and availability of medical imaging data have led to the use of CNN-based architectures in disease diagnostic assisted systems. In spite of the abundant use of reverse transcription-polymerase chain reaction-based tests in COVID-19 diagnosis, CT images offer an applicable supplement with their high sensitivity rates. Here, we study the classification of COVID-19 pneumonia and non-COVID-19 pneumonia in chest CT scans using efficient deep learning methods to be readily implemented by any hospital. We report our deep network framework design that encompasses Convolutional Neural Networks and bidirectional Long Short Term Memory architectures. Our study achieved high specificity (COVID-19 pneumonia: 98.3%, non-COVID-19 pneumonia: 96.2% Healthy: 89.3%) and high sensitivity (COVID-19 pneumonia: 84.0%, non-COVID-19 pneumonia: 93.9% Healthy: 94.9%) in classifying COVID-19 pneumonia, non-COVID-19 pneumonia and healthy patients. Next, we provide visual explanations for the Convolutional Neural Network predictions with gradient-weighted class activation mapping (Grad-CAM). The results provided a model explainability by showing that Ground Glass Opacities, indicators of COVID-19 pneumonia disease, were captured by our convolutional neural network. Finally, we have implemented our approach in three hospitals proving its compatibility and efficiency.
Collapse
|
10
|
Zhou C, Song J, Zhou S, Zhang Z, Xing J. COVID-19 Detection Based on Image Regrouping and Resnet-SVM Using Chest X-Ray Images. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:81902-81912. [PMID: 34812395 PMCID: PMC8545189 DOI: 10.1109/access.2021.3086229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 06/01/2023]
Abstract
As the COVID-19 spread worldwide, countries around the world are actively taking measures to fight against the epidemic. To prevent the spread of it, a high sensitivity and efficient method for COVID-19 detection is necessary. By analyzing the COVID-19 chest X-ray images, a combination method of image regrouping and ResNet-SVM was proposed in this study. The lung region was segmented from the original chest X-ray images and divided into small pieces, and then the small pieces of lung region were regrouped into a regular image randomly. Furthermore the regrouped images were fed into the deep residual encoder block for feature extraction. Finally the extracted features were as input into support vector machine for recognition. The visual attention was introduced in the novel method, which paid more attention to the features of COVID-19 without the interference of shapes, rib and other related noises. The experimental results showed that the proposed method achieved 93% accuracy without large number of training data, outperformed the existing COVID-19 detection models.
Collapse
Affiliation(s)
- Changjian Zhou
- Key Laboratory of Agricultural Microbiology of Heilongjiang ProvinceNortheast Agricultural UniversityHarbin150030China
- Department of Modern Educational TechnologyNortheast Agricultural UniversityHarbin150030China
| | - Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang ProvinceNortheast Agricultural UniversityHarbin150030China
| | - Sihan Zhou
- College of Electrical and InformationNortheast Agricultural UniversityHarbin150030China
| | - Zhiyao Zhang
- College of Electrical and InformationNortheast Agricultural UniversityHarbin150030China
| | - Jinge Xing
- Department of Modern Educational TechnologyNortheast Agricultural UniversityHarbin150030China
| |
Collapse
|
11
|
Rasheed J, Jamil A, Hameed AA, Al-Turjman F, Rasheed A. COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review. Interdiscip Sci 2021; 13:153-175. [PMID: 33886097 PMCID: PMC8060789 DOI: 10.1007/s12539-021-00431-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
The recent COVID-19 pandemic, which broke at the end of the year 2019 in Wuhan, China, has infected more than 98.52 million people by today (January 23, 2021) with over 2.11 million deaths across the globe. To combat the growing pandemic on urgent basis, there is need to design effective solutions using new techniques that could exploit recent technology, such as machine learning, deep learning, big data, artificial intelligence, Internet of Things, for identification and tracking of COVID-19 cases in near real time. These technologies have offered inexpensive and rapid solution for proper screening, analyzing, prediction and tracking of COVID-19 positive cases. In this paper, a detailed review of the role of AI as a decisive tool for prognosis, analyze, and tracking the COVID-19 cases is performed. We searched various databases including Google Scholar, IEEE Library, Scopus and Web of Science using a combination of different keywords consisting of COVID-19 and AI. We have identified various applications, where AI can help healthcare practitioners in the process of identification and monitoring of COVID-19 cases. A compact summary of the corona virus cases are first highlighted, followed by the application of AI. Finally, we conclude the paper by highlighting new research directions and discuss the research challenges. Even though scientists and researchers have gathered and exchanged sufficient knowledge over last couple of months, but this structured review also examined technological perspectives while encompassing the medical aspect to help the healthcare practitioners, policymakers, decision makers, policymakers, AI scientists and virologists to quell this infectious COVID-19 pandemic outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Aydin University, Istanbul, 34295, Turkey.
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Fadi Al-Turjman
- Artificial Intelligence Engineering Department, Research Center for AI and IoT, Near East University, Nicosia, Mersin 10, Turkey
| | - Ahmad Rasheed
- Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey
| |
Collapse
|
12
|
Chakraborty S, Mali K. A morphology-based radiological image segmentation approach for efficient screening of COVID-19. Biomed Signal Process Control 2021; 69:102800. [PMID: 34031636 PMCID: PMC8133384 DOI: 10.1016/j.bspc.2021.102800] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 12/22/2022]
Abstract
Computer-aided radiological image interpretation systems can be helpful to reshape the overall workflow of the COVID-19 diagnosis process. This article describes an unsupervised CT scan image segmentation approach. This approach begins by performing a morphological reconstruction operation that is useful to remove the effect of the external disturbances on the infected regions and to locate different regions of interest precisely. The optimal size of the structuring element is selected using the Edge Content-based contrast matrix approach. After performing the opening by using the morphological reconstruction operation, further noise is eliminated using the closing-based morphological reconstruction operation. The original pixel space is restored and the obtained image is divided into some non-overlapping smaller blocks and the mean intensity value for each block is computed that is used as the local threshold value for the binarization purpose. It is preferable to manually determine the range of the infected region. If a region is greater than the upper bound then that region will be considered as an exceptional region and processed separately. Three standard metrics MSE, PSNR, and SSIM are used to quantify the outcomes. Both quantitative and qualitative comparisons prove the efficiency and real-life adaptability of this approach. The proposed approach is evaluated with the help of 400 different images and on average, the proposed approach achieves MSE 307.1888625, PSNR 23.7246505, and SSIM 0.831718459. Moreover, the comparative study shows that the proposed approach outperforms some of the standard methods and obtained results are encouraging to support the battle against the COVID-19.
Collapse
Affiliation(s)
- Shouvik Chakraborty
- Department of Computer Science and Engineering, University of Kalyani, India
| | - Kalyani Mali
- Department of Computer Science and Engineering, University of Kalyani, India
| |
Collapse
|
13
|
Chakraborty S, Mali K. SuFMoFPA: A superpixel and meta-heuristic based fuzzy image segmentation approach to explicate COVID-19 radiological images. EXPERT SYSTEMS WITH APPLICATIONS 2021; 167:114142. [PMID: 34924697 PMCID: PMC8664408 DOI: 10.1016/j.eswa.2020.114142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 05/21/2023]
Abstract
Coronavirus disease 2019 or COVID-19 is one of the biggest challenges which are being faced by mankind. Researchers are continuously trying to discover a vaccine or medicine for this highly infectious disease but, proper success is not achieved to date. Many countries are suffering from this disease and trying to find some solution that can prevent the dramatic spread of this virus. Although the mortality rate is not very high, the highly infectious nature of this virus makes it a global threat. RT-PCR test is the only means to confirm the presence of this virus to date. Only precautionary measures like early screening, frequent hand wash, social distancing use of masks, and other protective equipment can prevent us from this virus. Some researches show that the radiological images can be quite helpful for the early screening purpose because some features of the radiological images indicate the presence of the COVID-19 virus and therefore, it can serve as an effective screening tool. Automated analysis of these radiological images can help the physicians and other domain experts to study and screen the suspected patients easily and reliably within the stipulated amount of time. This method may not replace the traditional RT-PCR method for detection but, it can be helpful to filter the suspected patients from the rest of the community that can effectively reduce the spread in the of this virus. A novel method is proposed in this work to segment the radiological images for the better explication of the COVID-19 radiological images. The proposed method will be known as SuFMoFPA (Superpixel based Fuzzy Modified Flower Pollination Algorithm). The type 2 fuzzy clustering system is blended with this proposed approach to get the better-segmented outcome. Obtained results are quite promising and outperforming some of the standard approaches which are encouraging for the practical uses of the proposed approach to screening the COVID-19 patients.
Collapse
Affiliation(s)
- Shouvik Chakraborty
- Department of Computer Science and Engineering, University of Kalyani, India
| | - Kalyani Mali
- Department of Computer Science and Engineering, University of Kalyani, India
| |
Collapse
|
14
|
Wan Y, Zhou H, Zhang X. An Interpretation Architecture for Deep Learning Models with the Application of COVID-19 Diagnosis. ENTROPY (BASEL, SWITZERLAND) 2021; 23:204. [PMID: 33562309 PMCID: PMC7916048 DOI: 10.3390/e23020204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) has become one of the threats to the world. Computed tomography (CT) is an informative tool for the diagnosis of COVID-19 patients. Many deep learning approaches on CT images have been proposed and brought promising performance. However, due to the high complexity and non-transparency of deep models, the explanation of the diagnosis process is challenging, making it hard to evaluate whether such approaches are reliable. In this paper, we propose a visual interpretation architecture for the explanation of the deep learning models and apply the architecture in COVID-19 diagnosis. Our architecture designs a comprehensive interpretation about the deep model from different perspectives, including the training trends, diagnostic performance, learned features, feature extractors, the hidden layers, the support regions for diagnostic decision, and etc. With the interpretation architecture, researchers can make a comparison and explanation about the classification performance, gain insight into what the deep model learned from images, and obtain the supports for diagnostic decisions. Our deep model achieves the diagnostic result of 94.75%, 93.22%, 96.69%, 97.27%, and 91.88% in the criteria of accuracy, sensitivity, specificity, positive predictive value, and negative predictive value, which are 8.30%, 4.32%, 13.33%, 10.25%, and 6.19% higher than that of the compared traditional methods. The visualized features in 2-D and 3-D spaces provide the reasons for the superiority of our deep model. Our interpretation architecture would allow researchers to understand more about how and why deep models work, and can be used as interpretation solutions for any deep learning models based on convolutional neural network. It can also help deep learning methods to take a step forward in the clinical COVID-19 diagnosis field.
Collapse
Affiliation(s)
- Yuchai Wan
- Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer Science, Beijing Technology and Business University, Beijing 100048, China; (H.Z.); (X.Z.)
| | | | | |
Collapse
|
15
|
Anwar T, Zakir S. Deep learning based diagnosis of COVID-19 using chest CT-scan images. 2020 IEEE 23RD INTERNATIONAL MULTITOPIC CONFERENCE (INMIC) 2020. [DOI: 10.1109/inmic50486.2020.9318212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|