1
|
Luo J, Xue N, Chen J. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface. BIOSENSORS 2022; 12:bios12121167. [PMID: 36551135 PMCID: PMC9775442 DOI: 10.3390/bios12121167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it.
Collapse
Affiliation(s)
- Jiahui Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xue
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Shen J, Xu Y, Xiao Z, Liu Y, Liu H, Wang F, Yan C, Wang L, Chen C, Wu Z, Liu Y, Mak PU, Vai MI, Pun SH, Lei TC, Zhang B. Double-Sided Sapphire Optrodes with Conductive Shielding Layers to Reduce Optogenetic Stimulation Artifacts. MICROMACHINES 2022; 13:1836. [PMID: 36363857 PMCID: PMC9695949 DOI: 10.3390/mi13111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Optrodes, which are single shaft neural probes integrated with microelectrodes and optical light sources, offer a remarkable opportunity to simultaneously record and modulate neural activities using light within an animal's brain; however, a common problem with optrodes is that stimulation artifacts can be observed in the neural recordings of microelectrodes when the light source on the optrode is activated. These stimulation artifacts are undesirable contaminants, and they cause interpretation complexity when analyzing the recorded neural activities. In this paper, we tried to mitigate the effects of the stimulation artifacts by developing a low-noise, double-sided optrode integrated with multiple Electromagnetic Shielding (EMS) layers. The LED and microelectrodes were constructed separately on the top epitaxial and bottom substrate layers, and EMS layers were used to separate the microelectrodes and LED to reduce signal cross-talks. Compared with conventional single-sided designs, in which the LED and microelectrodes are constructed on the same side, our results indicate that double-sided optrodes can significantly reduce the presence of stimulation artifacts. In addition, the presence of stimulation artifacts can further be reduced by decreasing the voltage difference and increasing the rise/fall time of the driving LED pulsed voltage. With all these strategies, the presence of stimulation artifacts was significantly reduced by ~76%. As well as stimulation suppression, the sapphire substrate also provided strong mechanical stiffness and support to the optrodes, as well as improved electronic stability, thus making the double-sided sapphire optrodes highly suitable for optogenetic neuroscience research on animal models.
Collapse
Affiliation(s)
- Junyu Shen
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanyan Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengwen Xiao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuebo Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Honghui Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Fengge Wang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chaokun Yan
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Liyang Wang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Changhao Chen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Zhisheng Wu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Peng Un Mak
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Mang I. Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Tim C. Lei
- Department of Electrical Engineering, University of Colorado, Denver, CO 80204, USA
| | - Baijun Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Riggins TE, Li W, Purcell EK. Atomic Force Microscope Characterization of the Bending Stiffness and Surface Topography of Silicon and Polymeric Electrodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2348-2352. [PMID: 36085626 DOI: 10.1109/embc48229.2022.9871216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implanted electrodes in the brain are increasingly used in research and clinical settings to understand and treat neurological conditions. However, a foreign body response typically occurs after implantation, and glial encapsulation of the device is a commonly observed. Multiple factors affect how gliosis surrounding the implantable electrodes evolves. Characterizing and measuring the surface features and mechanical properties of these devices may allow us to predict where gliosis will occur, and understanding how electrode design features may impact astrogliosis may give researchers a set of design guidelines to follow to maximize chronic performance. In this study, we used atomic force microscopy to measure surface roughness on parylene, polyimide, and silicon devices. Multiple features on microelectrode arrays were measured, including electrode sites, traces, and the bulk substrate. We found differences in surface roughness according to device material, but not device features. We also directly measured the bending stiffness of silicon devices, providing a more exact quantification of this property to corroborate calculated estimates.
Collapse
|
4
|
Cooper RL, Thomas MA, McLetchie DN. Impedance Measures for Detecting Electrical Responses during Acute Injury and Exposure of Compounds to Roots of Plants. Methods Protoc 2022; 5:mps5040056. [PMID: 35893582 PMCID: PMC9351684 DOI: 10.3390/mps5040056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Electrical activity is widely used for assessing a plant's response to an injury or environmental stimulus. Commonly, a differential electrode recording between silver wire leads with the reference wire connected to the soil, or a part of the plant, is used. One method uses KCl-filled glass electrodes placed into the plant, similar to recording membrane/cell potentials in animal tissues. This method is more susceptible to artifacts of equipment noise and photoelectric effects than an impedance measure. An impedance measure using stainless steel wires is not as susceptible to electrically induced noises. Impedance measurements are able to detect injury in plants as well as exposure of the roots to environmental compounds (glutamate). The impedance measures were performed in 5 different plants (tomato, eggplant, pepper, liverwort, and Coleus scutellarioides), and responses to mechanical movement of the plant, as well as injury, were recorded. Monitoring electrical activity in a plant that arises in a distant plant was also demonstrated using the impedance method. The purpose of this report is to illustrate the ease in using impedance measures for monitoring electrical signals from individual plants or aggregates of plants for potentially scaling for high throughput and monitoring controlled culturing and outdoor field environments.
Collapse
|
5
|
Guo B, Fan Y, Wang M, Cheng Y, Ji B, Chen Y, Wang G. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications. Int J Mol Sci 2021; 22:ijms222111528. [PMID: 34768957 PMCID: PMC8584107 DOI: 10.3390/ijms222111528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
With the rapid increase in the use of optogenetics to investigate nervous systems, there is high demand for neural interfaces that can simultaneously perform optical stimulation and electrophysiological recording. However, high-magnitude stimulation artifacts have prevented experiments from being conducted at a desirably high temporal resolution. Here, a flexible polyimide-based neural probe with polyethylene glycol (PEG) packaged optical fiber and Pt-Black/PEDOT-GO (graphene oxide doped poly(3,4-ethylene-dioxythiophene)) modified microelectrodes was developed to reduce the stimulation artifacts that are induced by photoelectrochemical (PEC) and photovoltaic (PV) effects. The advantages of this design include quick and accurate implantation and high-resolution recording capacities. Firstly, electrochemical performance of the modified microelectrodes is significantly improved due to the large specific surface area of the GO layer. Secondly, good mechanical and electrochemical stability of the modified microelectrodes is obtained by using Pt-Black as bonding layer. Lastly, bench noise recordings revealed that PEC noise amplitude of the modified neural probes could be reduced to less than 50 µV and no PV noise was detected when compared to silicon-based neural probes. The results indicate that this device is a promising optogenetic tool for studying local neural circuits.
Collapse
Affiliation(s)
- Bangbang Guo
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ye Fan
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Minghao Wang
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence: (M.W.); (G.W.)
| | - Yuhua Cheng
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Bowen Ji
- The Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710060, China;
| | - Ying Chen
- The Institute of Flexible Electronics Technology of THU, Jiaxing 314000, China;
| | - Gaofeng Wang
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence: (M.W.); (G.W.)
| |
Collapse
|
6
|
Shen J, Xu Y, Xiao Z, Liu Y, Liu H, Wang F, Yao W, Yan Z, Zhang M, Wu Z, Liu Y, Pun SH, Lei TC, Vai MI, Mak PU, Chen C, Zhang B. Influence of the Surface Material and Illumination upon the Performance of a Microelectrode/Electrolyte Interface in Optogenetics. MICROMACHINES 2021; 12:1061. [PMID: 34577704 PMCID: PMC8471589 DOI: 10.3390/mi12091061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Integrated optrodes for optogenetics have been becoming a significant tool in neuroscience through the combination of offering accurate stimulation to target cells and recording biological signals simultaneously. This makes it not just be widely used in neuroscience researches, but also have a great potential to be employed in future treatments in clinical neurological diseases. To optimize the integrated optrodes, this paper aimed to investigate the influence of surface material and illumination upon the performance of the microelectrode/electrolyte interface and build a corresponding evaluation system. In this work, an integrated planar optrode with a blue LED and microelectrodes was designed and fabricated. The charge transfer mechanism on the interface was theoretically modeled and experimentally verified. An evaluation system for assessing microelectrodes was also built up. Using this system, the proposed model of various biocompatible surface materials on microelectrodes was further investigated under different illumination conditions. The influence of illumination on the microelectrode/electrolyte interface was the cause of optical artifacts, which interfere the biological signal recording. It was found that surface materials had a great effect on the charge transfer capacity, electrical stability and recoverability, photostability, and especially optical artifacts. The metal with better charge transfer capacity and electrical stability is highly possible to have a better performance on the optical artifacts, regardless of its electrical recoverability and photostability under the illumination conditions of optogenetics. Among the five metals used in our investigation, iridium served as the best surface material for the proposed integrated optrodes. Thus, optimizing the surface material for optrodes could reduce optical interference, enhance the quality of the neural signal recording for optogenetics, and thus help to advance the research in neuroscience.
Collapse
Grants
- 62061160368 & 0022/2020/AFJ This research was funded by the joint funding of the Nature Science Foundation of China (NSFC) & the Macao Science and Technology Development Fund (FDCT) of China
- 2019B010132003, 2019B010132001 Science & Technology Plan of Guangdong Province, China
- 2016YFB0400105, 2017YFB0403001 the National Key Research and Development Program
- 20167612042080001 the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University, China
- 088/2016/A2, 0144/2019/A3, 0022/2020/AFJ, SKL-AMSV (FDCT-funded), SKL-AMSV-ADDITIONAL FUND, SKL-AMSV(UM)-2020-2022 the Science and Technology Development Fund, Macau SAR
- MYRG2018-00146-AMSV, MYRG2019-00056-AMSV the University of Macau
- 2020YFB1313502 the National Key R&D Program of China
Collapse
Affiliation(s)
- Junyu Shen
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Yanyan Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhengwen Xiao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Yuebo Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Honghui Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Fengge Wang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Wanqing Yao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhaokun Yan
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Minjie Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhisheng Wu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
| | - Tim C. Lei
- Department of Electrical Engineering, University of Colorado Denver, Denver, CO 80204, USA;
| | - Mang I Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China;
| | - Peng Un Mak
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China;
| | - Changhao Chen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
| | - Baijun Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Wang L, Ge C, Wang M, Ji B, Guo Z, Wang X, Yang B, Li C, Liu J. An artefact-resist optrode with internal shielding structure for low-noise neural modulation. J Neural Eng 2020; 17:046024. [PMID: 32640443 DOI: 10.1088/1741-2552/aba41f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The combination of optical manipulation of neural activities with electrophysiology recording is a promising technology for discovering mechanisms of brain disorders and mapping brain networks. However, fiber-based optrode is limited by the large size of light source and the winding of optical fiber, which hinders animal's natural movement. Meanwhile, the laser diode (LD)-based optrode restricted to the stimulation-locked artefacts will contaminate neural signal acquired from recording channels. APPROACH Here, a reformative low-noise optrode with internal grounded shielding layer is proposed to mitigate the stimulus-locked artefacts generated during LDactivation for the application of optogenetics. MAIN RESULTS The artefact mitigation capacity of grounded shielding was verified via simulation and experiments with transient amplitude of artefacts declined from over 5 mV to approximately 200 µV in-vitro. Meanwhile, the stimulation parameters were used based on previous studies by which neurons were activated without over heating the tissue as characterized by in-vitro studies (the output optical intensity is 823 ± 38 mW mm-2). Furthermore, the microelectrodes were modified with Poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT: PSS) to increase the signal recording quality of the optrode. Finally, in-vivo optogenetics experiments were carried in the hippocampus of one mouse and the results showed our low-noise optrode was qualified to achieve high-quality neural recording (signal-to-noise ratio about 13) and specific neuron stimulation simultaneously. SIGNIFICANCE These results suggest the low-noise optrodes exhibit the ability of manipulating and recording neural dynamics and they are excellent candidates for neuroscience research.
Collapse
Affiliation(s)
- Longchun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Key Laboratory for Thin Film and Micro fabrication of the Ministry of Education, Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Brosch M, Deckert M, Rathi S, Takagaki K, Weidner T, Ohl FW, Schmidt B, Lippert MT. An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale. J Neural Eng 2020; 17:046014. [PMID: 32705997 DOI: 10.1088/1741-2552/aba1a4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A number of tissue penetrating opto-electrodes to simultaneously record and optogenetically influence brain activity have been developed. For experiments at the surface of the brain, such as electrocorticogram (ECoG) recordings and surface optogenetics, fewer devices have been described and no device has found widespread adoption for neuroscientific experiments. One issue slowing adoption is the complexity and fragility of existing devices, typically based on transparent electrode materials like graphene and indium-tin oxide (ITO). We focused here on improving existing processes based on metal traces and polyimide (PI), which produce more robust and cost-effective devices, to develop a multi-electrode array for optophysiology. APPROACH The most widely used substrate material for surface electrodes, PI, has seen little use for optophysiologicalμECoG/ECoG arrays. This is due to its lack of transparency at optogenetically relevant short wavelengths. Here we use very thin layers of PI in combination with chrome-gold-platinum electrodes to achieve the necessary substrate transparency and high mechanical flexibility in a device that still rejects light artifacts well. MAIN RESULTS The manufactured surface arrays have a thickness of only 6.5 µm, resulting in 80% transparency for blue light. We demonstrate immunity against opto-electric artifacts, long term stability and biocompatibility as well as suitability for optical voltage imaging. The biocompatible arrays are capable of recording stable ECoGs over months without any measurable degradation and can be used to map the tonotopic organization of the curved rodent auditory cortex. SIGNIFICANCE Our novel probes combine proven materials and processing steps to create optically near-transparent electrode arrays with superior longevity. In contrast to previous opto-electrodes, our probes are simple to manufacture, robust, offer long-term stability, and are a practical engineering solution for optophysiological experiments not requiring transparency of the electrode sites themselves.
Collapse
Affiliation(s)
- Marcel Brosch
- Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim K, Vöröslakos M, Seymour JP, Wise KD, Buzsáki G, Yoon E. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat Commun 2020; 11:2063. [PMID: 32345971 PMCID: PMC7188816 DOI: 10.1038/s41467-020-15769-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
The combination of in vivo extracellular recording and genetic-engineering-assisted optical stimulation is a powerful tool for the study of neuronal circuits. Precise analysis of complex neural circuits requires high-density integration of multiple cellular-size light sources and recording electrodes. However, high-density integration inevitably introduces stimulation artifact. We present minimal-stimulation-artifact (miniSTAR) μLED optoelectrodes that enable effective elimination of stimulation artifact. A multi-metal-layer structure with a shielding layer effectively suppresses capacitive coupling of stimulation signals. A heavily boron-doped silicon substrate silences the photovoltaic effect induced from LED illumination. With transient stimulation pulse shaping, we reduced stimulation artifact on miniSTAR μLED optoelectrodes to below 50 μVpp, much smaller than a typical spike detection threshold, at optical stimulation of >50 mW mm-2 irradiance. We demonstrated high-temporal resolution (<1 ms) opto-electrophysiology without any artifact-induced signal quality degradation during in vivo experiments. MiniSTAR μLED optoelectrodes will facilitate functional mapping of local circuits and discoveries in the brain.
Collapse
Affiliation(s)
- Kanghwan Kim
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mihály Vöröslakos
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, 10016, USA
| | - John P Seymour
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kensall D Wise
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, 10016, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
10
|
Kozai TDY. The History and Horizons of Microscale Neural Interfaces. MICROMACHINES 2018; 9:E445. [PMID: 30424378 PMCID: PMC6187275 DOI: 10.3390/mi9090445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022]
Abstract
Microscale neural technologies interface with the nervous system to record and stimulate brain tissue with high spatial and temporal resolution. These devices are being developed to understand the mechanisms that govern brain function, plasticity and cognitive learning, treat neurological diseases, or monitor and restore functions over the lifetime of the patient. Despite decades of use in basic research over days to months, and the growing prevalence of neuromodulation therapies, in many cases the lack of knowledge regarding the fundamental mechanisms driving activation has dramatically limited our ability to interpret data or fine-tune design parameters to improve long-term performance. While advances in materials, microfabrication techniques, packaging, and understanding of the nervous system has enabled tremendous innovation in the field of neural engineering, many challenges and opportunities remain at the frontiers of the neural interface in terms of both neurobiology and engineering. In this short-communication, we explore critical needs in the neural engineering field to overcome these challenges. Disentangling the complexities involved in the chronic neural interface problem requires simultaneous proficiency in multiple scientific and engineering disciplines. The critical component of advancing neural interface knowledge is to prepare the next wave of investigators who have simultaneous multi-disciplinary proficiencies with a diverse set of perspectives necessary to solve the chronic neural interface challenge.
Collapse
Affiliation(s)
- Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15212, USA.
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA 15260, USA.
| |
Collapse
|
11
|
Kampasi K, English DF, Seymour J, Stark E, McKenzie S, Vöröslakos M, Buzsáki G, Wise KD, Yoon E. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. MICROSYSTEMS & NANOENGINEERING 2018; 4:10. [PMID: 30766759 PMCID: PMC6220186 DOI: 10.1038/s41378-018-0009-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 05/08/2023]
Abstract
Optogenetics allows for optical manipulation of neuronal activity and has been increasingly combined with intra- and extra-cellular electrophysiological recordings. Genetically-identified classes of neurons are optically manipulated, though the versatility of optogenetics would be increased if independent control of distinct neural populations could be achieved on a sufficient spatial and temporal resolution. We report a scalable multi-site optoelectrode design that allows simultaneous optogenetic control of two spatially intermingled neuronal populations in vivo. We describe the design, fabrication, and assembly of low-noise, multi-site/multi-color optoelectrodes. Each shank of the four-shank assembly is monolithically integrated with 8 recording sites and a dual-color waveguide mixer with a 7 × 30 μm cross-section, coupled to 405 nm and 635 nm injection laser diodes (ILDs) via gradient-index (GRIN) lenses to meet optical and thermal design requirements. To better understand noise on the recording channels generated during diode-based activation, we developed a lumped-circuit modeling approach for EMI coupling mechanisms and used it to limit artifacts to amplitudes under 100 μV upto an optical output power of 450 μW. We implanted the packaged devices into the CA1 pyramidal layer of awake mice, expressing Channelrhodopsin-2 in pyramidal cells and ChrimsonR in paravalbumin-expressing interneurons, and achieved optical excitation of each cell type using sub-mW illumination. We highlight the potential use of this technology for functional dissection of neural circuits.
Collapse
Affiliation(s)
- Komal Kampasi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Center for Micro and Nanotechnology, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Daniel F. English
- NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016 USA
| | - John Seymour
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| | - Eran Stark
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Sam McKenzie
- NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016 USA
| | - Mihály Vöröslakos
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| | - György Buzsáki
- NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016 USA
| | - Kensall D. Wise
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| | - Euisik Yoon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| |
Collapse
|
12
|
Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc Natl Acad Sci U S A 2017; 114:10554-10559. [PMID: 28923928 DOI: 10.1073/pnas.1703886114] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanically flexible active multielectrode arrays (MEA) have been developed for local signal amplification and high spatial resolution. However, their opaqueness limited optical observation and light stimulation during use. Here, we show a transparent, ultraflexible, and active MEA, which consists of transparent organic electrochemical transistors (OECTs) and transparent Au grid wirings. The transparent OECT is made of Au grid electrodes and has shown comparable performance with OECTs with nontransparent electrodes/wirings. The transparent active MEA realizes the spatial mapping of electrocorticogram electrical signals from an optogenetic rat with 1-mm spacing and shows lower light artifacts than noise level. Our active MEA would open up the possibility of precise investigation of a neural network system with direct light stimulation.
Collapse
|
13
|
Laxpati NG, Mahmoudi B, Gutekunst CA, Newman JP, Zeller-Townson R, Gross RE. Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter. FRONTIERS IN NEUROENGINEERING 2014; 7:40. [PMID: 25404915 PMCID: PMC4217045 DOI: 10.3389/fneng.2014.00040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/08/2014] [Indexed: 12/02/2022]
Abstract
Optogenetic channels have greatly expanded neuroscience’s experimental capabilities, enabling precise genetic targeting and manipulation of neuron subpopulations in awake and behaving animals. However, many barriers to entry remain for this technology – including low-cost and effective hardware for combined optical stimulation and electrophysiologic recording. To address this, we adapted the open-source NeuroRighter multichannel electrophysiology platform for use in awake and behaving rodents in both open and closed-loop stimulation experiments. Here, we present these cost-effective adaptations, including commercially available LED light sources; custom-made optical ferrules; 3D printed ferrule hardware and software to calibrate and standardize output intensity; and modifications to commercially available electrode arrays enabling stimulation proximally and distally to the recording target. We then demonstrate the capabilities and versatility of these adaptations in several open and closed-loop experiments, demonstrate spectrographic methods of analyzing the results, as well as discuss artifacts of stimulation.
Collapse
Affiliation(s)
- Nealen G Laxpati
- Translational Neuroengineering Group, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine Atlanta, GA, USA ; Department of Neurosurgery, Emory University School of Medicine Atlanta, GA, USA
| | - Babak Mahmoudi
- Translational Neuroengineering Group, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine Atlanta, GA, USA ; Department of Neurosurgery, Emory University School of Medicine Atlanta, GA, USA
| | - Claire-Anne Gutekunst
- Translational Neuroengineering Group, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine Atlanta, GA, USA ; Department of Neurosurgery, Emory University School of Medicine Atlanta, GA, USA
| | - Jonathan P Newman
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Riley Zeller-Townson
- Laboratory for Neuroengineering, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine Atlanta, GA, USA
| | - Robert E Gross
- Translational Neuroengineering Group, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine Atlanta, GA, USA ; Department of Neurosurgery, Emory University School of Medicine Atlanta, GA, USA ; Department of Neurology, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
14
|
Richner TJ, Thongpang S, Brodnick SK, Schendel AA, Falk RW, Krugner-Higby LA, Pashaie R, Williams JC. Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity. J Neural Eng 2014; 11:016010. [PMID: 24445482 DOI: 10.1088/1741-2560/11/1/016010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Spatial localization of neural activity from within the brain with electrocorticography (ECoG) and electroencephalography remains a challenge in clinical and research settings, and while microfabricated ECoG (micro-ECoG) array technology continues to improve, complementary methods to simultaneously modulate cortical activity while recording are needed. APPROACH We developed a neural interface utilizing optogenetics, cranial windowing, and micro-ECoG arrays fabricated on a transparent polymer. This approach enabled us to directly modulate neural activity at known locations around micro-ECoG arrays in mice expressing Channelrhodopsin-2. We applied photostimuli varying in time, space and frequency to the cortical surface, and we targeted multiple depths within the cortex using an optical fiber while recording micro-ECoG signals. MAIN RESULTS Negative potentials of up to 1.5 mV were evoked by photostimuli applied to the entire cortical window, while focally applied photostimuli evoked spatially localized micro-ECoG potentials. Two simultaneously applied focal stimuli could be separated, depending on the distance between them. Photostimuli applied within the cortex with an optical fiber evoked more complex micro-ECoG potentials with multiple positive and negative peaks whose relative amplitudes depended on the depth of the fiber. SIGNIFICANCE Optogenetic ECoG has potential applications in the study of epilepsy, cortical dynamics, and neuroprostheses.
Collapse
Affiliation(s)
- Thomas J Richner
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|