1
|
Perolina E, Meissner S, Raos B, Harland B, Thakur S, Svirskis D. Translating ultrasound-mediated drug delivery technologies for CNS applications. Adv Drug Deliv Rev 2024; 208:115274. [PMID: 38452815 DOI: 10.1016/j.addr.2024.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Ultrasound enhances drug delivery into the central nervous system (CNS) by opening barriers between the blood and CNS and by triggering release of drugs from carriers. A key challenge in translating setups from in vitro to in vivo settings is achieving equivalent acoustic energy delivery. Multiple devices have now been demonstrated to focus ultrasound to the brain, with concepts emerging to also target the spinal cord. Clinical trials to date have used ultrasound to facilitate the opening of the blood-brain barrier. While most have focused on feasibility and safety considerations, therapeutic benefits are beginning to emerge. To advance translation of these technologies for CNS applications, researchers should standardise exposure protocol and fine-tune ultrasound parameters. Computational modelling should be increasingly used as a core component to develop both in vitro and in vivo setups for delivering accurate and reproducible ultrasound to the CNS. This field holds promise for transformative advancements in the management and pharmacological treatment of complex and challenging CNS disorders.
Collapse
Affiliation(s)
- Ederlyn Perolina
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Svenja Meissner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Brad Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Bruce Harland
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Sachin Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
2
|
Wang G, Zhou Y, Yu C, Yang Q, Chen L, Ling S, Chen P, Xing J, Wu H, Zhao Q. Intravital photoacoustic brain stimulation with high-precision. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11520. [PMID: 38333219 PMCID: PMC10851606 DOI: 10.1117/1.jbo.29.s1.s11520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Significance Neural regulation at high precision vitally contributes to propelling fundamental understanding in the field of neuroscience and providing innovative clinical treatment options. Recently, photoacoustic brain stimulation has emerged as a cutting-edge method for precise neuromodulation and shows great potential for clinical application. Aim The goal of this perspective is to outline the advancements in photoacoustic brain stimulation in recent years. And, we also provide an outlook delineating several prospective paths through which this burgeoning approach may be substantively refined for augmented capability and wider implementations. Approach First, the mechanisms of photoacoustic generation as well as the potential mechanisms of photoacoustic brain stimulation are provided and discussed. Then, the state-of-the-art achievements corresponding to this technology are reviewed. Finally, future directions for photoacoustic technology in neuromodulation are provided. Results Intensive research endeavors have prompted substantial advancements in photoacoustic brain stimulation, illuminating the unique advantages of this modality for noninvasive and high-precision neuromodulation via a nongenetic way. It is envisaged that further technology optimization and randomized prospective clinical trials will enable a wide acceptance of photoacoustic brain stimulation in clinical practice. Conclusions The innovative practice of photoacoustic technology serves as a multifaceted neuromodulation approach, possessing noninvasive, high-accuracy, and nongenetic characteristics. It has a great potential that could considerably enhance not only the fundamental underpinnings of neuroscience research but also its practical implementations in a clinical setting.
Collapse
Affiliation(s)
- Guangxing Wang
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Yuying Zhou
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Chunhui Yu
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Qiong Yang
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Lin Chen
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Shuting Ling
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Pengyu Chen
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Jiwei Xing
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Huiling Wu
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Qingliang Zhao
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
3
|
Wang M, Xu T, Li D, Wu Y, Zhang B, Zhang S. Enhanced and spatially controllable neuronal activity induced by transcranial focused ultrasound stimulation combined with phase-change nanodroplets. ULTRASONICS SONOCHEMISTRY 2023; 101:106686. [PMID: 37956511 PMCID: PMC10661601 DOI: 10.1016/j.ultsonch.2023.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Non-invasive ultrasound neuromodulation (USNM) is a powerful tool to explore neural circuits and treat neurological disorders. Due to the heterogeneity of the skull and regional variations in modulation and treatment objectives, it is necessary to develop an efficient and spatially controllable neuromodulation approach. Recently, transcranial focused ultrasound (tFUS) combined with external biomicro/nanomaterials for brain stimulation has garnered significant attention. This study focused on tFUS combined with perfluoropentane (PFP) nanodroplets (NDs) to improve the efficacy and spatial controllability of USNM. The developed two-stage variable pulse tFUS sequence that include the acoustic droplet vaporization (ADV) pulse for vaporizing PFP NDs into microbubbles (MBs) and the USNM sequence for inducing mechanical oscillations of the formed MBs to enhance neuronal activity. Further, adjusting the acoustic pressure of the ADV pulse generated the controllable vaporization regions, thereby achieving spatially controllable neuromodulation. The results showed that the mean densities of c-fos+ cells expression in the group of PFP NDs with ADV (109 ± 19 cells/mm2) were significantly higher compared to the group without ADV (37.34 ± 8.24 cells/mm2). The acoustic pressure of the ADV pulse with 1.98 MPa and 2.81 MPa in vitro generated the vaporization regions of 0.146 ± 0.032 cm2 and 0.349 ± 0.056 cm2, respectively. Under the same stimulation conditions, a larger vaporization region was also obtained with higher acoustic pressure in vivo, inducing a broader region of neuronal activation. Therefore, this study will serve as a valuable reference for developing the efficient and spatially controllable tFUS neuromodulation strategy.
Collapse
Affiliation(s)
- Mengke Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianqi Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dapeng Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baochen Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Siyuan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
4
|
Hu YY, Yang G, Liang XS, Ding XS, Xu DE, Li Z, Ma QH, Chen R, Sun YY. Transcranial low-intensity ultrasound stimulation for treating central nervous system disorders: A promising therapeutic application. Front Neurol 2023; 14:1117188. [PMID: 36970512 PMCID: PMC10030814 DOI: 10.3389/fneur.2023.1117188] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
Transcranial ultrasound stimulation is a neurostimulation technique that has gradually attracted the attention of researchers, especially as a potential therapy for neurological disorders, because of its high spatial resolution, its good penetration depth, and its non-invasiveness. Ultrasound can be categorized as high-intensity and low-intensity based on the intensity of its acoustic wave. High-intensity ultrasound can be used for thermal ablation by taking advantage of its high-energy characteristics. Low-intensity ultrasound, which produces low energy, can be used as a means to regulate the nervous system. The present review describes the current status of research on low-intensity transcranial ultrasound stimulation (LITUS) in the treatment of neurological disorders, such as epilepsy, essential tremor, depression, Parkinson's disease (PD), and Alzheimer's disease (AD). This review summarizes preclinical and clinical studies using LITUS to treat the aforementioned neurological disorders and discusses their underlying mechanisms.
Collapse
Affiliation(s)
- Yun-Yun Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, China
| | - Xue-Song Liang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Second Clinical College, Dalian Medical University, Dalian, Liaoning, China
| | - Xuan-Si Ding
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - De-En Xu
- Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Zhe Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Sleep Medicine Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Quan-Hong Ma
| | - Rui Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Rui Chen
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Yan-Yun Sun
| |
Collapse
|
5
|
Singh A, Kusunose J, Phipps MA, Wang F, Chen LM, Caskey CF. Guiding and monitoring focused ultrasound mediated blood-brain barrier opening in rats using power Doppler imaging and passive acoustic mapping. Sci Rep 2022; 12:14758. [PMID: 36042266 PMCID: PMC9427847 DOI: 10.1038/s41598-022-18328-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
The blood-brain barrier (BBB) prevents harmful toxins from entering brain but can also inhibit therapeutic molecules designed to treat neurodegenerative diseases. Focused ultrasound (FUS) combined with microbubbles can enhance permeability of BBB and is often performed under MRI guidance. We present an all-ultrasound system capable of targeting desired regions to open BBB with millimeter-scale accuracy in two dimensions based on Doppler images. We registered imaging coordinates to FUS coordinates with target registration error of 0.6 ± 0.3 mm and used the system to target microbubbles flowing in cellulose tube in two in vitro scenarios (agarose-embedded and through a rat skull), while receiving echoes on imaging transducer. We created passive acoustic maps from received echoes and found error between intended location in imaging plane and location of pixel with maximum intensity after passive acoustic maps reconstruction to be within 2 mm in 5/6 cases. We validated ultrasound-guided procedure in three in vivo rat brains by delivering MRI contrast agent to cortical regions of rat brains after BBB opening. Landmark-based registration of vascular maps created with MRI and Doppler ultrasound revealed BBB opening inside the intended focus with targeting accuracy within 1.5 mm. Combined use of power Doppler imaging with passive acoustic mapping demonstrates an ultrasound-based solution to guide focused ultrasound with high precision in rodents.
Collapse
Affiliation(s)
- Aparna Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Jiro Kusunose
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - M Anthony Phipps
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Feng Wang
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Li Min Chen
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Charles F Caskey
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.
| |
Collapse
|
6
|
Dahis D, Farti N, Romano T, Artzi N, Azhari H. Ultrasonic Thermal Monitoring of the Brain Using Golay-Coded Excitations-Feasibility Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:672-680. [PMID: 34851824 DOI: 10.1109/tuffc.2021.3132094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermal monitoring during focused ultrasound (FUS) transcranial procedures is mandatory and commonly performed by MRI. Transcranial ultrasonic thermal monitoring is an attractive alternative. Furthermore, using the therapeutic FUS transducer itself for this task is highly desirable. Nonetheless, such application is challenged by massive skull-induced signal attenuation and aberrations. This study examined the feasibility of implementing the Golay-coded excitations (CoE) for temperature monitoring in bovine brain samples in the range of 35 °C-43 °C (hyperthermia). Feasibility was assessed using computer simulations, water-based phantoms, and ex vivo bovine brain white-matter samples. The samples were gradually heated to about 45 °C and sonicated during cool down with a 1-MHz therapeutic FUS implementing Golay CoE. Initially, a calibration curve correlating the normalized time-of-flight (TOF) changes and the temperature was generated. Next, a bovine bone was positioned between the FUS and the brain samples, and the scanning process was repeated for different fresh samples. The calibration curve was then used as a mean for estimating the temperature, which was compared to thermocouple measurements. The simulations demonstrated a substantial improvement in signal-to-noise ratio (SNR) and suggested that the implementation of 4-bit sequences is advantageous. The experimental measurements with bone demonstrated good temperature estimation with an average absolute error for the water phantoms and brains of 1.46 °C ± 1.22 °C and 1.23 °C ± 0.99 °C, respectively. In conclusion, a novel noninvasive method utilizing the Golay CoE for ultrasonic thermal monitoring using a therapeutic FUS transducer is introduced. This method can lead to the development of an acoustic tool for brain thermal monitoring.
Collapse
|
7
|
Tipsawat P, Ilham SJ, Yang JI, Kashani Z, Kiani M, Trolier-McKinstry S. 32 Element Piezoelectric Micromachined Ultrasound Transducer (PMUT) Phased Array for Neuromodulation. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 2:184-193. [PMID: 36938316 PMCID: PMC10021572 DOI: 10.1109/ojuffc.2022.3196823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interest in utilizing ultrasound (US) transducers for non-invasive neuromodulation treatment, including for low intensity transcranial focused ultrasound stimulation (tFUS), has grown rapidly. The most widely demonstrated US transducers for tFUS are either bulk piezoelectric transducers or capacitive micromachine transducers (CMUT) which require high voltage excitation to operate. In order to advance the development of the US transducers towards small, portable devices for safe tFUS at large scale, a low voltage array of US transducers with beam focusing and steering capability is of interest. This work presents the design methodology, fabrication, and characterization of 32-element phased array piezoelectric micromachined ultrasound transducers (PMUT) using 1.5 μm thick Pb(Zr0.52 Ti0.48)O3 films doped with 2 mol% Nb. The electrode/piezoelectric/electrode stack was deposited on a silicon on insulator (SOI) wafer with a 2 μm silicon device layer that serves as the passive elastic layer for bending-mode vibration. The fabricated 32-element PMUT has a central frequency at 1.4 MHz. Ultrasound beam focusing and steering (through beamforming) was demonstrated where the array was driven with 14.6 V square unipolar pulses. The PMUT generated a maximum peak-to-peak focused acoustic pressure output of 0.44 MPa at a focal distance of 20 mm with a 9.2 mm and 1 mm axial and lateral resolution, respectively. The maximum pressure is equivalent to a spatial-peak pulse-average intensity of 1.29 W/cm2, which is suitable for tFUS application.
Collapse
Affiliation(s)
- Pannawit Tipsawat
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA
| | - Sheikh Jawad Ilham
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Jung In Yang
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA
| | - Zeinab Kashani
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Mehdi Kiani
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Susan Trolier-McKinstry
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
8
|
Ilham SJ, Kashani Z, Kiani M. Design and Optimization of Ultrasound Phased Arrays for Large-Scale Ultrasound Neuromodulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1454-1466. [PMID: 34874867 PMCID: PMC8904087 DOI: 10.1109/tbcas.2021.3133133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-intensity transcranial focused ultrasound stimulation (tFUS), as a noninvasive neuromodulation modality, has shown to be effective in animals and even humans with improved millimeter-scale spatial resolution compared to its noninvasive counterparts. But conventional tFUS systems are built with bulky single-element ultrasound (US) transducers that must be mechanically moved to change the stimulation target. To achieve large-scale ultrasound neuromodulation (USN) within a given tissue volume, a US transducer array should electronically be driven in a beamforming fashion (known as US phased array) to steer focused ultrasound beams towards different neural targets. This paper presents the theory and design methodology of US phased arrays for USN at a large scale. For a given tissue volume and sonication frequency (f), the optimal geometry of a US phased array is found with an iterative design procedure that maximizes a figure of merit (FoM) and minimizes side/grating lobes (avoiding off-target stimulation). The proposed FoM provides a balance between the power efficiency and spatial resolution of a US array in USN. A design example of a US phased array has been presented for USN in a rat's brain with an optimized linear US array. In measurements, the fabricated US phased array with 16 elements (16.7×7.7×2 mm3), driven by 150 V (peak-peak) pulses at f = 833.3 kHz, could generate a focused US beam with a lateral resolution of 1.6 mm and pressure output of 1.15 MPa at a focal distance of 12 mm. The capability of the US phased array in beam steering and focusing from -60o to 60o angles was also verified in measurements.
Collapse
|
9
|
Gougheri HS, Dangi A, Kothapalli SR, Kiani M. A Comprehensive Study of Ultrasound Transducer Characteristics in Microscopic Ultrasound Neuromodulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:835-847. [PMID: 31199268 PMCID: PMC6883411 DOI: 10.1109/tbcas.2019.2922027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In order to improve the spatial resolution of transcranial focused ultrasound stimulation (tFUS), we have recently proposed microscopic ultrasound stimulation (μUS). In μUS, either an electronically phased array of ultrasound transducers or several millimeter-sized focused transducers are placed on the brain surface or sub-millimeter-sized transducers are implanted inside the brain tissue to steer and deliver a focused ultrasound pressure directly to the neural target. A key element in both tFUS and μUS is the ultrasound transducer that converts electrical power to acoustic pressure. The literature lacks a comprehensive study (in a quantitative manner) of the transducer characteristics, such as dimension, focusing, acoustic matching, backing material, and sonication frequency (fp), in the μUS. This paper studies the impact of these design parameters on the acoustic beam profile of millimeter-sized transducers with the emphasis on the stimulation spatial resolution and energy efficiency, which is defined as the μUS figure-of-merit (FoM). For this purpose, disc-shaped focused and unfocused piezoelectric (PZT-5A) transducers with different dimension (diameter, thickness), backing material (PCB, air) and acoustic matching in the frequency range of 2.2-9.56 MHz were fabricated. Our experimental studies with both water and sheep brain phantom medium demonstrate that acoustically matched focused transducers with high quality factor are desirable for μUS, as they provide fine spatial resolution and high acoustic intensities with low input electrical power levels (i.e., high FoM).
Collapse
|