1
|
Dekleva BM, Collinger JL. Using transient, effector-specific neural responses to gate decoding for brain-computer interfaces. J Neural Eng 2025; 22:016036. [PMID: 39808922 DOI: 10.1088/1741-2552/adaa1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Objective.Real-world implementation of brain-computer interfaces (BCIs) for continuous control of devices should ideally rely on fully asynchronous decoding approaches. That is, the decoding algorithm should continuously update its output by estimating the user's intended actions from real-time neural activity, without the need for any temporal alignment to an external cue. This kind of open-ended temporal flexibility is necessary to achieve naturalistic and intuitive control. However, the relation between cortical activity and behavior is not stationary: neural responses that appear related to a certain aspect of behavior (e.g. grasp force) in one context will exhibit a relationship to something else in another context (e.g. reach speed). This presents a challenge for generalizable decoding, since the applicability of a decoder for a given parameter changes over time.Approach.We developed a method to simplify the problem of continuous decoding that uses transient, end effector-specific neural responses to identify periods of relevant effector engagement. Specifically, we use transient responses in the population response observed at the onset and offset of all hand-related actions to signal the applicability of hand-related feature decoders (e.g. digit movement or force). By using this transient-based gating approach, specific feature decoding models can be simpler (owing to local linearities) and are less sensitive to interference from cross-effector interference such as combined reaching and grasping actions.Main results.The transient-based decoding approach enabled high-quality online decoding of grasp force and individual finger control in multiple behavioral paradigms. The benefits of the gated approach are most evident in tasks that require both hand and arm control, for which standard continuous decoding approaches exhibit high output variability.Significance.The approach proposed here addresses the challenge of decoder generalization across contexts. By limiting decoding to identified periods of effector engagement, this approach can support reliable BCI control in real-world applications.Clinical Trial ID: NCT01894802.
Collapse
Affiliation(s)
- Brian M Dekleva
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
- Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States of America
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, United States of America
| |
Collapse
|
2
|
Pun TK, Khoshnevis M, Hosman T, Wilson GH, Kapitonava A, Kamdar F, Henderson JM, Simeral JD, Vargas-Irwin CE, Harrison MT, Hochberg LR. Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces. Commun Biol 2024; 7:1363. [PMID: 39433844 PMCID: PMC11494208 DOI: 10.1038/s42003-024-06784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
Intracortical brain-computer interfaces (iBCIs) enable people with tetraplegia to gain intuitive cursor control from movement intentions. To translate to practical use, iBCIs should provide reliable performance for extended periods of time. However, performance begins to degrade as the relationship between kinematic intention and recorded neural activity shifts compared to when the decoder was initially trained. In addition to developing decoders to better handle long-term instability, identifying when to recalibrate will also optimize performance. We propose a method, "MINDFUL", to measure instabilities in neural data for useful long-term iBCI, without needing labels of user intentions. Longitudinal data were analyzed from two BrainGate2 participants with tetraplegia as they used fixed decoders to control a computer cursor spanning 142 days and 28 days, respectively. We demonstrate a measure of instability that correlates with changes in closed-loop cursor performance solely based on the recorded neural activity (Pearson r = 0.93 and 0.72, respectively). This result suggests a strategy to infer online iBCI performance from neural data alone and to determine when recalibration should take place for practical long-term use.
Collapse
Affiliation(s)
- Tsam Kiu Pun
- Biomedical Engineering Graduate Program, School of Engineering, Brown University, Providence, RI, USA.
- School of Engineering, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Mona Khoshnevis
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - Tommy Hosman
- School of Engineering, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
| | - Guy H Wilson
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Anastasia Kapitonava
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Foram Kamdar
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
| | - John D Simeral
- School of Engineering, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
| | - Carlos E Vargas-Irwin
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Matthew T Harrison
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - Leigh R Hochberg
- School of Engineering, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Pun TK, Khoshnevis M, Hosman T, Wilson GH, Kapitonava A, Kamdar F, Henderson JM, Simeral JD, Vargas-Irwin CE, Harrison MT, Hochberg LR. Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582733. [PMID: 38496552 PMCID: PMC10942277 DOI: 10.1101/2024.02.29.582733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Intracortical brain-computer interfaces (iBCIs) enable people with tetraplegia to gain intuitive cursor control from movement intentions. To translate to practical use, iBCIs should provide reliable performance for extended periods of time. However, performance begins to degrade as the relationship between kinematic intention and recorded neural activity shifts compared to when the decoder was initially trained. In addition to developing decoders to better handle long-term instability, identifying when to recalibrate will also optimize performance. We propose a method to measure instability in neural data without needing to label user intentions. Longitudinal data were analyzed from two BrainGate2 participants with tetraplegia as they used fixed decoders to control a computer cursor spanning 142 days and 28 days, respectively. We demonstrate a measure of instability that correlates with changes in closed-loop cursor performance solely based on the recorded neural activity (Pearson r = 0.93 and 0.72, respectively). This result suggests a strategy to infer online iBCI performance from neural data alone and to determine when recalibration should take place for practical long-term use.
Collapse
|
4
|
Premchand B, Toe KK, Wang C, Libedinsky C, Ang KK, So RQ. Information sparseness in cortical microelectrode channels while decoding movement direction using an artificial neural network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3534-3537. [PMID: 36085749 DOI: 10.1109/embc48229.2022.9870896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implanted microelectrode arrays can directly pick up electrode signals from the primary motor cortex (M1) during movement, and brain-machine interfaces (BMIs) can decode these signals to predict the directions of contemporaneous movements. However, it is not well known how much each individual input is responsible for the overall performance of a BMI decoder. In this paper, we seek to quantify how much each channel contributes to an artificial neural network (ANN)-based decoder, by measuring how much the removal of each individual channel degrades the accuracy of the output. If information on movement direction was equally distributed among channels, then the removal of one would have a minimal effect on decoder accuracy. On the other hand, if that information was distributed sparsely, then the removal of specific information-rich channels would significantly lower decoder accuracy. We found that for most channels, their removal did not significantly affect decoder performance. However, for a subset of channels (16 out of 61), removing them significantly reduced the decoder accuracy. This suggests that information is not uniformly distributed among the recording channels. We propose examining these channels further to optimize BMIs more effectively, as well as understand how M1 functions at the neuronal level.
Collapse
|
5
|
She X, Berger TW, Song D. A Double-Layer Multi-Resolution Classification Model for Decoding Spatiotemporal Patterns of Spikes With Small Sample Size. Neural Comput 2021; 34:219-254. [PMID: 34758485 DOI: 10.1162/neco_a_01459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022]
Abstract
We build a double-layer, multiple temporal-resolution classification model for decoding single-trial spatiotemporal patterns of spikes. The model takes spiking activities as input signals and binary behavioral or cognitive variables as output signals and represents the input-output mapping with a double-layer ensemble classifier. In the first layer, to solve the underdetermined problem caused by the small sample size and the very high dimensionality of input signals, B-spline functional expansion and L1-regularized logistic classifiers are used to reduce dimensionality and yield sparse model estimations. A wide range of temporal resolutions of neural features is included by using a large number of classifiers with different numbers of B-spline knots. Each classifier serves as a base learner to classify spatiotemporal patterns into the probability of the output label with a single temporal resolution. A bootstrap aggregating strategy is used to reduce the estimation variances of these classifiers. In the second layer, another L1-regularized logistic classifier takes outputs of first-layer classifiers as inputs to generate the final output predictions. This classifier serves as a meta-learner that fuses multiple temporal resolutions to classify spatiotemporal patterns of spikes into binary output labels. We test this decoding model with both synthetic and experimental data recorded from rats and human subjects performing memory-dependent behavioral tasks. Results show that this method can effectively avoid overfitting and yield accurate prediction of output labels with small sample size. The double-layer, multi-resolution classifier consistently outperforms the best single-layer, single-resolution classifier by extracting and utilizing multi-resolution spatiotemporal features of spike patterns in the classification.
Collapse
Affiliation(s)
- Xiwei She
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Theodore W Berger
- Department of Biomedical Engineering and Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Dong Song
- Department of Biomedical Engineering and Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| |
Collapse
|