1
|
Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL. Spatially specific, closed-loop infrared thalamocortical deep brain stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560859. [PMID: 37904955 PMCID: PMC10614743 DOI: 10.1101/2023.10.04.560859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically-mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to mid-infrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Georgia L Lawlor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Christina B Bagnati
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
2
|
Structure and Optical Properties of Co-Sputtered Amorphous Silicon Tin Alloy Films for NIR-II Region Sensor. MATERIALS 2019; 12:ma12244076. [PMID: 31817654 PMCID: PMC6947631 DOI: 10.3390/ma12244076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Near-infrared brain imaging technology has great potential as a non-invasive, real-time inspection technique. Silicon-tin (SiSn) alloy films could be a promising material for near-infrared brain detectors. This study mainly reports on the structure of amorphous silicon tin alloy thin films by Raman spectroscopy to investigate the influence of doped-Sn on an a-Si network. The variations in TO peak caused by the increase in Sn concentration indicate a decrease in the short-range order of the a-Si network. A model has been proposed to successfully explain the non-linear variation in Raman parameters of ITA/ITO and ILA+LO/ITO. The variations of Raman parameters of the films with a higher deposition temperature indicate the presence of SiSn nanocrystals, though the SiSn nanocrystals present no Raman peaks in Raman spectra. XRD and TEM analysis further illustrate the existence of nanocrystals. The ratio of photo/dark conductivity and optical bandgap results demonstrate that the films can be selected as a sensitive layer material for NIR-II region sensors.
Collapse
|
3
|
Meynaghizadeh-Zargar R, Salehpour F, Hamblin MR, Mahmoudi J, Sadigh-Eteghad S. Potential Application of Upconverting Nanoparticles for Brain Photobiomodulation. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:596-605. [PMID: 31335302 DOI: 10.1089/photob.2019.4659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Brain photobiomodulation (PBM) describes the use of visible to near-infrared light for modulation or stimulation of the central nervous system in both healthy individuals and diseased conditions. Although the transcranial approach to delivering light to the head is the most common technique to stimulate the brain, delivery of light to deeper structures in the brain is still a challenge. The science of nanoparticle engineering in combination with biophotonic excitation could provide a way to overcome this problem. Upconversion is an anti-Stokes process that is capable of transforming low energy photons that penetrate tissue well to higher energy photons with a greater biological effect, but poor tissue penetration. Wavelengths in the third optical window are optimal for light penetration into brain tissue, followed by windows II, IV, and I. The combination of trivalent lanthanide ions within a crystalline host provides a nanostructure that exhibits the upconversion phenomenon. Upconverting nanoparticles (UCNPs) have been successfully used in various medical fields. Their ability to cross the brain-blood barrier and their low toxicity make them a good candidate for application in brain disorders. It is possible that delivery of UCNPs to the brainstem or deeper parts of the cerebral tissue, followed by irradiation using light wavelengths with good tissue penetration properties, could allow more efficient PBM of the brain.
Collapse
Affiliation(s)
| | - Farzad Salehpour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,ProNeuroLIGHT LLC, Phoenix, Arizona
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Kuo JR, Lin SS, Liu J, Chen SH, Chio CC, Wang JJ, Liu JM. Deep brain light stimulation effects on glutamate and dopamine concentration. BIOMEDICAL OPTICS EXPRESS 2015; 6:23-31. [PMID: 25657871 PMCID: PMC4317125 DOI: 10.1364/boe.6.000023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Compared to deep brain electrical stimulation, which has been applied to treating pathological brain diseases, little work has been done on the effect of deep brain light stimulation. A fiber-coupled laser stimulator at 840 nm wavelength and 130 Hz pulse repetition rate is developed in this work for deep brain light stimulation in a rat model. Concentration changes in glutamate and dopamine in the striatum are observed using a microdialysis probe when the subthalamic nucleus (STN) is stimulated at various optical power levels. Experimental results show that light stimulation causes the concentration of glutamate to decrease while that of dopamine is increased. This suggests that deep brain light stimulation of the STN is a promising therapeutic strategy for dopamine-related diseases such as Parkinson's disease. The stimulator developed for this work is useful for deep brain light stimulation in biomedical research.
Collapse
Affiliation(s)
- Jinn-Rung Kuo
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan,
Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan,
Taiwan
| | - Shih-Shian Lin
- Neurophotonics Laboratory, College of Photonics, National Chiao Tung University, Tainan,
Taiwan
| | - Janelle Liu
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA,
USA
| | - Shih-How Chen
- Neurophotonics Laboratory, College of Photonics, National Chiao Tung University, Tainan,
Taiwan
| | - Chung-Chin Chio
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan,
Taiwan
| | - Jhi-Joung Wang
- Medical Research, Chi-Mei Medical Center, Tainan,
Taiwan
| | - Jia-Ming Liu
- Neurophotonics Laboratory, College of Photonics, National Chiao Tung University, Tainan,
Taiwan
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA,
USA
| |
Collapse
|
5
|
Abstract
Low-level light therapy (LLLT) using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases in cerebral blood flow and cognitive functions induced by LLLT have also been observed in humans. Importantly, LLLT given at energy densities that exert beneficial effects does not induce adverse effects. This highlights the value of LLLT as a novel paradigm to treat visual, neurological, and psychological conditions, and supports that neuronal energy metabolism could constitute a major target for neurotherapeutics of the eye and brain.
Collapse
Affiliation(s)
- Julio C Rojas
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - F Gonzalez-Lima
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX
| |
Collapse
|
6
|
Desjardins AE, van der Voort M, Roggeveen S, Lucassen G, Bierhoff W, Hendriks BHW, Brynolf M, Holmström B. Needle stylet with integrated optical fibers for spectroscopic contrast during peripheral nerve blocks. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:077004. [PMID: 21806284 DOI: 10.1117/1.3598852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effectiveness of peripheral nerve blocks is highly dependent on the accuracy at which the needle tip is navigated to the target injection site. Even when electrical stimulation is utilized in combination with ultrasound guidance, determining the proximity of the needle tip to the target region close to the nerve can be challenging. Optical reflectance spectroscopy could provide additional information about tissues that is complementary to these navigation methods. We demonstrate a novel needle stylet for acquiring spectra from tissue at the tip of a commercial 20-gauge needle. The stylet has integrated optical fibers that deliver broadband light to tissue and receive scattered light. Two spectrometers resolve the light that is received from tissue across the wavelength range of 500-1600 nm. In our pilot study, measurements are acquired from a postmortem dissection of the brachial plexus of a swine. Clear differences are observed between spectra acquired from nerves and those acquired from adjacent tissue structures. We conclude that spectra acquired with the stylet have the potential to increase the accuracy with which peripheral nerve blocks are performed.
Collapse
|