1
|
Hosur S, Kashani Z, Karan SK, Priya S, Kiani M. MagSonic: Hybrid Magnetic-Ultrasonic Wireless Interrogation of Millimeter-Scale Biomedical Implants With Magnetoelectric Transducer. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:383-395. [PMID: 37976195 DOI: 10.1109/tbcas.2023.3334166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Wireless interrogation (power and data transfer) of biomedical implants, miniaturized to millimeter (mm) dimensions, is critical for their chronic operation. Achieving simultaneous wireless power and data transfer at deep sites reliably within safety limits for closed-loop sensing/actuation functions of mm-sized implants is challenging. To enable this operation, a hybrid magnetic-ultrasonic interrogation approach (called MagSonic) is realized through a single magnetoelectric (ME) transducer at the implant that can generate and receive both magnetic field and ultrasound. The fabricated mm-sized bar-shaped ME transducer (5.2×2×1.6 mm3) operates at acoustic wave resonance, functioning at sub-MHz frequencies. For the first time, we demonstrate wireless power reception through one modality (magnetic field or ultrasound) and simultaneous uplink data transmission using the other. At 40 mm depth, the MagSonic link could achieve 100 kbps uplink data rate (bit error rate ≤ 10-5) using 190 pJ/bit transmitted energy and 8 mW delivered power in tissue. The robustness of the MagSonic interrogation link against power carrier interference and misalignments is also demonstrated.
Collapse
|
2
|
Chang Y, Jang J, Cho J, Lee J, Son Y, Park S, Kim C. Seamless Capacitive Body Channel Wireless Power Transmission Toward Freely Moving Multiple Animals in an Animal Cage. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:714-725. [PMID: 35976817 DOI: 10.1109/tbcas.2022.3199455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unstable wireless power transmission toward multiple living animals in an animal cage is one of the significant barriers to performing long-term and real-time neural monitoring in preclinical research. Here, seamless capacitive body channel (SCB) wireless power transmission (WPT) along with power management integrated circuit (PMIC) is designed using a standard 65 nm CMOS process. The SCB WPT enables stable wireless power transmission toward multiple 35 mm×20 mm×2 mm sized receivers (RXs) attached to freely moving animals in a 600 mm×600 mm×120 mm sized animal cage. By utilizing fringe-field capacitance and a body channel for wireless power link between the cage and RXs, the maximum difference in all measured power efficiencies in diverse scenarios is only 6.66 % with a 20 mW load. Even with a 90 ° RX rotation against the cage, power efficiency marks 17.76 %. Furthermore, an in-vivo experiment conducted with three untethered rats demonstrates the capability of continuous long-term power delivery in practical situations.
Collapse
|
3
|
Shah J, Quinkert C, Collar B, Williams M, Biggs E, Irazoqui P. A Highly Miniaturized, Chronically Implanted ASIC for Electrical Nerve Stimulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:233-243. [PMID: 35201991 PMCID: PMC9195150 DOI: 10.1109/tbcas.2022.3153282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a wireless, fully implantable device for electrical stimulation of peripheral nerves consisting of a powering coil, a tuning network, a Zener diode, selectable stimulation parameters, and a stimulator IC, all encapsulated in biocompatible silicone. A wireless RF signal at 13.56 MHz powers the implant through the on-chip rectifier. The ASIC, designed in TSMC's 180 nm MS RF G process, occupies an area of less than 1.2 mm2. The IC enables externally selectable current-controlled stimulation through an on-chip read-only memory with a wide range of 32 stimulation parameters (90-750 µA amplitude, 100 µs or 1 ms pulse width, 15 or 50 Hz frequency). The IC generates the constant current waveform using an 8-bit binary weighted DAC and an H-Bridge. At the most power-hungry stimulation parameter, the average power consumption during a stimulus pulse is 2.6 mW with a power transfer efficiency of ∼5.2%. In addition to benchtop and acute testing, we chronically implanted two versions of the device (a design with leads and a leadless design) on two rats' sciatic nerves to verify the long-term efficacy of the IC and the full system. The leadless device had the following dimensions: height of 0.45 cm, major axis of 1.85 cm, and minor axis of 1.34 cm, with similar dimensions for the device with leads. Both devices were implanted and worked for experiments lasting from 21-90 days. To the best of our knowledge, the fabricated IC is the smallest constant-current stimulator that has been tested chronically.
Collapse
|
4
|
Soltani N, ElAnsary M, Xu J, Filho JS, Genov R. Safety-Optimized Inductive Powering of Implantable Medical Devices: Tutorial and Comprehensive Design Guide. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1354-1367. [PMID: 34748500 DOI: 10.1109/tbcas.2021.3125618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A tutorial and comprehensive guide are presented for the design of planar spiral inductors with maximum energy delivery in biomedical implants. Rather than maximizing power transfer efficiency (PTE), the ratio of the received power to the square of the magnetic flux density is maximized in this technique. This ensures that the highest power is delivered for a given level of safe electromagnetic radiation, as measured by the specific absorption rate (SAR) in the tissue. By using quasi-static field approximations, the maximum deliverable power under SAR constraints is embedded in a lumped-element model of a 2-coil inductive link, from which planar coil geometries are derived. To compare the proposed methodology with the conventional approach that maximizes PTE, the results of both techniques are compared for three examples of state-of-the-art designs. It is demonstrated that the presented technique increases the maximum deliverable power while operating at a given level of non-ionizing radiation by factors of 8×, 410×, and 560× as compared to the three existing designs, and maintaining moderate link efficiencies of 12%, 23%, and 12%, respectively.
Collapse
|
5
|
Mirbozorgi SA, Jia Y, Zhang P, Ghovanloo M. Toward a High-Throughput Wireless Smart Arena for Behavioral Experiments on Small Animals. IEEE Trans Biomed Eng 2019; 67:2359-2369. [PMID: 31870973 DOI: 10.1109/tbme.2019.2961297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This work presents a high-throughput and scalable wirelessly-powered smart arena for behavioral experiments made of multiple EnerCage Homecage (HC) systems, operating in parallel in a way that they can fit in standard racks that are commonly used in animal facilities. The proposed system, which is referred to as the multi-EnerCage-HC (mEHC), increases the volume of data that can be collected from more animal subjects, while lowering the cost and duration of experiments as well as stress-induced bias by minimizing the involvement of human operators. Thus improving the quality, reproducibility, and statistical power of experiment outcomes, while saving precious lab space. The system is equipped with an auto-tuning mechanism to compensate for the resonance frequency shifts caused by the dynamic nature of the mutual inductance between adjacent homecages. A functional prototype of the mEHC system has been implemented with 7 units and analyzed for theoretical design considerations that would minimize the effects of interference and resonance frequency bifurcation. Experiment results demonstrate robust wireless power and data transmissions capabilities of this system within the noisy lab environment.
Collapse
|
6
|
Jia Y, Mirbozorgi SA, Zhang P, Inan OT, Li W, Ghovanloo M. A Dual-Band Wireless Power Transmission System for Evaluating mm-Sized Implants. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:595-607. [PMID: 31071052 PMCID: PMC6728165 DOI: 10.1109/tbcas.2019.2915649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Distributed neural interfaces made of many mm-sized implantable medical devices (IMDs) are poised to play a key role in future brain-computer interfaces because of less damage to the surrounding tissue. Evaluating them wirelessly at preclinical stage (e.g., in a rodent model), however, is a major challenge due to weak coupling and significant losses, resulting in limited power delivery to the IMD within a nominal experimental arena, like a homecage, without surpassing the specific absorption rate limit. To address this problem, we present a dual-band EnerCage system with two multi-coil inductive links, which first deliver power at 13.56 MHz from the EnerCage (46 × 24 × 20 cm3) to a headstage (18 × 18 × 15 mm3, 4.8 g) that is carried by the animal via a 4-coil inductive link. Then, a 60 MHz 3-coil inductive link from the headstage powers up the small IMD (2.5 × 2.5 × 1.5 mm3, 15 mg), which in this case is a free floating, wirelessly powered, implantable optical stimulator (FF-WIOS). The power transfer efficiency and power delivered to the load (PDL) from EnerCage to the headstage at 7 cm height were 14.9%-22.7% and 122 mW; and from headstage to FF-WIOS at 5 mm depth were 18% and 2.7 mW, respectively. Bidirectional data connectivity between EnerCage-headstage was established via bluetooth low energy. Between headstage and FF-WIOS, on-off keying and load-shift-keying were used for downlink and uplink data, respectively. Moreover, a closed-loop power controller stabilized PDL to both the headstage and the FF-WIOS against misalignments.
Collapse
|
7
|
Lee B, Jia Y, Mirbozorgi SA, Connolly M, Tong X, Zeng Z, Mahmoudi B, Ghovanloo M. An Inductively-Powered Wireless Neural Recording and Stimulation System for Freely-Behaving Animals. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:413-424. [PMID: 30624226 PMCID: PMC6510586 DOI: 10.1109/tbcas.2019.2891303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An inductively-powered wireless integrated neural recording and stimulation (WINeRS-8) system-on-a-chip (SoC) that is compatible with the EnerCage-HC2 for wireless/battery-less operation has been presented for neuroscience experiments on freely behaving animals. WINeRS-8 includes a 32-ch recording analog front end, a 4-ch current-controlled stimulator, and a 434 MHz on - off keying data link to an external software- defined radio wideband receiver (Rx). The headstage also has a bluetooth low energy link for controlling the SoC. WINeRS-8/EnerCage-HC2 systems form a bidirectional wireless and battery-less neural interface within a standard homecage, which can support longitudinal experiments in an enriched environment. Both systems were verified in vivo on rat animal model, and the recorded signals were compared with hardwired and battery-powered recording results. Realtime stimulation and recording verified the system's potential for bidirectional neural interfacing within the homecage, while continuously delivering 35 mW to the hybrid WINeRS-8 headstage over an unlimited period.
Collapse
Affiliation(s)
- Byunghun Lee
- School of Electrical Engineering, Incheon National University, South Korea ()
| | - Yaoyao Jia
- GT- Bionics lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA ()
| | - S. Abdollah Mirbozorgi
- GT- Bionics lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA ()
| | - Mark Connolly
- Department of Physiology, Emory University, Atlanta, GA 30329, USA
| | - Xingyuan Tong
- School of Electronics Engineering, Xi’an University of Posts and Telecommunications, Xi’an, 710121, China
| | | | - Babak Mahmoudi
- Department of Physiology, Emory University, Atlanta, GA 30329, USA
| | - Maysam Ghovanloo
- GT- Bionics lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA ()
| |
Collapse
|
8
|
Ibrahim A, Meng M, Kiani M. A Comprehensive Comparative Study on Inductive and Ultrasonic Wireless Power Transmission to Biomedical Implants. IEEE SENSORS JOURNAL 2018; 18:3813-3826. [PMID: 30344453 PMCID: PMC6192045 DOI: 10.1109/jsen.2018.2812420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This paper presents a comprehensive comparison between inductive coupling and ultrasound for wireless power transmission (WPT) to biomedical implants. Several sets of inductive and ultrasonic links for different powering distances (d 12) and receiver dimensions have been optimized, and their key parameters, including power transmission efficiency (PTE) and power delivered to the load (PDL) within safety constraints, have been compared to find out which method is optimal for any given condition. Two design procedures have been presented for maximizing the PTE of inductive and ultrasonic links by finding the optimal geometry for the transmitter (Tx) and receiver (Rx) coils and ultrasonic transducers as well as the optimal operation frequency (fp ). Our simulation and measurement results showed that the ultrasonic link transcends the inductive link in PTE and somewhat in PDL for a small Rx of 1.1 mm3 (diameter of 1.2 mm), particularly when the Rx was deeply implanted inside the tissue (d 12 ≥ 10 mm). However, for a larger 20 mm3 Rx (diameter of 5 mm), the inductive link achieved higher PTE and PDL, particularly at shorter distances (d 12 < 30 mm). The optimal loading condition is shown to be quite different in inductive and ultrasonic links. Despite higher performance for small Rx and large d 12, the ultrasonic link is more sensitive to Rx misalignments and orientations. This led us to propose a new design procedure based on the worst-case misalignment scenario. The simulation results have been validated by measurements. The inductive and ultrasonic links, operating at 30 MHz and 1.1 MHz, achieved measured PTEs of 0.05% and 0.65% for the 1.1 mm3 Rx located 30 mm inside tissue and oil environments with optimal load resistances of 295 Ω and 3.8 kΩ, respectively.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Electrical Engineering Department at the Pennsylvania State University, University Park, PA 16802, USA
| | - Miao Meng
- Electrical Engineering Department at the Pennsylvania State University, University Park, PA 16802, USA
| | - Mehdi Kiani
- Electrical Engineering Department at the Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Lee B, Koripalli MK, Jia Y, Acosta J, Sendi MSE, Choi Y, Ghovanloo M. An Implantable Peripheral Nerve Recording and Stimulation System for Experiments on Freely Moving Animal Subjects. Sci Rep 2018; 8:6115. [PMID: 29666407 PMCID: PMC5904113 DOI: 10.1038/s41598-018-24465-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/26/2018] [Indexed: 01/24/2023] Open
Abstract
A new study with rat sciatic nerve model for peripheral nerve interfacing is presented using a fully-implanted inductively-powered recording and stimulation system in a wirelessly-powered standard homecage that allows animal subjects move freely within the homecage. The Wireless Implantable Neural Recording and Stimulation (WINeRS) system offers 32-channel peripheral nerve recording and 4-channel current-controlled stimulation capabilities in a 3 × 1.5 × 0.5 cm3 package. A bi-directional data link is established by on-off keying pulse-position modulation (OOK-PPM) in near field for narrow-band downlink and 433 MHz OOK for wideband uplink. An external wideband receiver is designed by adopting a commercial software defined radio (SDR) for a robust wideband data acquisition on a PC. The WINeRS-8 prototypes in two forms of battery-powered headstage and wirelessly-powered implant are validated in vivo, and compared with a commercial system. In the animal study, evoked compound action potentials were recorded to verify the stimulation and recording capabilities of the WINeRS-8 system with 32-ch penetrating and 4-ch cuff electrodes on the sciatic nerve of awake freely-behaving rats. Compared to the conventional battery-powered system, WINeRS can be used in closed-loop recording and stimulation experiments over extended periods without adding the burden of carrying batteries on the animal subject or interrupting the experiment.
Collapse
Affiliation(s)
- Byunghun Lee
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA.,Incheon National University, Department of Electrical Engineering, Incheon, 22012, South Korea
| | - Mukhesh K Koripalli
- University of Texas, Rio Grande Valley, Department of Electrical Engineering, Edinburg, 78539, USA
| | - Yaoyao Jia
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA
| | - Joshua Acosta
- University of Texas, Rio Grande Valley, Department of Electrical Engineering, Edinburg, 78539, USA
| | - M S E Sendi
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA
| | - Yoonsu Choi
- University of Texas, Rio Grande Valley, Department of Electrical Engineering, Edinburg, 78539, USA
| | - Maysam Ghovanloo
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA.
| |
Collapse
|
10
|
Wang Z, Mirbozorgi SA, Ghovanloo M. An automated behavior analysis system for freely moving rodents using depth image. Med Biol Eng Comput 2018; 56:1807-1821. [PMID: 29560548 DOI: 10.1007/s11517-018-1816-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/08/2018] [Indexed: 11/26/2022]
Abstract
A rodent behavior analysis system is presented, capable of automated tracking, pose estimation, and recognition of nine behaviors in freely moving animals. The system tracks three key points on the rodent body (nose, center of body, and base of tail) to estimate its pose and head rotation angle in real time. A support vector machine (SVM)-based model, including label optimization steps, is trained to classify on a frame-by-frame basis: resting, walking, bending, grooming, sniffing, rearing supported, rearing unsupported, micro-movements, and "other" behaviors. Compared to conventional red-green-blue (RGB) camera-based methods, the proposed system operates on 3D depth images provided by the Kinect infrared (IR) camera, enabling stable performance regardless of lighting conditions and animal color contrast with the background. This is particularly beneficial for monitoring nocturnal animals' behavior. 3D features are designed to be extracted directly from the depth stream and combined with contour-based 2D features to further improve recognition accuracies. The system is validated on three freely behaving rats for 168 min in total. The behavior recognition model achieved a cross-validation accuracy of 86.8% on the rat used for training and accuracies of 82.1 and 83% on the other two "testing" rats. The automated head angle estimation aided by behavior recognition resulted in 0.76 correlation with human expert annotation. Graphical abstract Top view of a rat freely behaving in a standard homecage, captured by Kinect-v2 sensors. The depth image is used for constructing a 3D topography of the animal for pose estimation, behavior recognition, and head angle calculation. Results of the processed data are displayed on the user interface in various forms.
Collapse
Affiliation(s)
- Zheyuan Wang
- GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| | - S Abdollah Mirbozorgi
- GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| | - Maysam Ghovanloo
- GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA.
| |
Collapse
|
11
|
Canales D, Tinkler M, Madsen TE, Mirbozorgi SA, Rainnie D, Ghovanloo M. A wirelessly-powered homecage with animal behavior analysis and closed-loop power control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:6323-6326. [PMID: 28269695 DOI: 10.1109/embc.2016.7592174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper presents a new EnerCage-homecage system, EnerCage-HC2, for longitudinal electrophysiology data acquisition experiments on small freely moving animal subjects, such as rodents. EnerCage-HC2 is equipped with multi-coil wireless power transmission (WPT), closed-loop power control, bidirectional data communication via Bluetooth Low Energy (BLE), and Microsoft Kinect® based animal behavior tracking and analysis. The EnerCage-HC2 achieves a homogeneous power transfer efficiency (PTE) of 14% on average, with ~42 mW power delivered to the load (PDL) at a nominal height of 7 cm by the closed-loop power control mechanism. The Microsoft Kinect® behavioral analysis algorithm can not only track the animal position in real-time but also classify 5 different types of rodent behaviors: standstill, walking, grooming, rearing, and rotating. A proof-of-concept in vivo experiment was conducted on two awake freely behaving rats while successfully operating a one-channel stimulator and generating an ethogram.
Collapse
|
12
|
Powell MP, Britz WR, Harper JS, Borton DA. An engineered home environment for untethered data telemetry from nonhuman primates. J Neurosci Methods 2017. [PMID: 28648720 DOI: 10.1016/j.jneumeth.2017.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Wireless neural recording technologies now provide untethered access to large populations of neurons in the nonhuman primate brain. Such technologies enable long-term, continuous interrogation of neural circuits and importantly open the door for chronic neurorehabilitation platforms. For example, by providing continuous consistent closed loop feedback from a brain machine interface, the nervous system can leverage plasticity to integrate more effectively into the system than would be possible in short experimental sessions. However, to fully realize this opportunity necessitates the development of experimental environments that do not hinder wireless data transmission. Traditional nonhuman primate metal cage construction, while durable and standardized around the world, prevents data transmission at the frequencies necessary for high-bandwidth data transfer. NEW METHOD To overcome this limitation, we have engineered and constructed a radio-frequency transparent home environment for nonhuman primates using primarily non-conductive materials. RESULTS Computational modeling and empirical testing were performed to demonstrate the behavior of transmitted signals passing through the enclosure. In addition, neural data were successfully recorded from a freely behaving nonhuman primate inside the housing system. COMPARISON WITH EXISTING METHODS Our design outperforms standard metallic home cages by allowing radiation to transmit beyond its boundaries, without significant interference, while simultaneously maintaining the mechanical and operational integrity of existing commercial home cages. CONCLUSIONS Continuous access to neural signals in combination with other bio-potential and kinematic sensors will empower new insights into unrestrained behavior, aid the development of advanced neural prostheses, and enable neurorehabilitation strategies to be employed outside traditional environments.
Collapse
Affiliation(s)
- Marc P Powell
- School of Engineering at Brown University, Providence, RI 02912, USA
| | | | - James S Harper
- Division of Biology and Medicine at Brown University, Providence, RI 02912, USA
| | - David A Borton
- School of Engineering at Brown University, Providence, RI 02912, USA; Brown Institute for Brain Sciences (BIBS) at Brown University, Providence, RI 02912, USA; Center for Neurorestoration and Neurotechnology at the Providence Veterans Affairs Medical Center, Providence, RI 02908, USA.
| |
Collapse
|
13
|
Jia Y, Mirbozorgi SA, Wang Z, Hsu CC, Madsen TE, Rainnie D, Ghovanloo M. Position and Orientation Insensitive Wireless Power Transmission for EnerCage-Homecage System. IEEE Trans Biomed Eng 2017; 64:2439-2449. [PMID: 28410095 DOI: 10.1109/tbme.2017.2691720] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed a new headstage architecture as part of a smart experimental arena, known as the EnerCage-HC2 system, which automatically delivers stimulation and collects behavioral data over extended periods with minimal small animal subject handling or personnel intervention in a standard rodent homecage. Equipped with a four-coil inductive link, the EnerCage-HC2 system wirelessly powers the receiver (Rx) headstage, irrespective of the subject's location or head orientation, eliminating the need for tethering or carrying bulky batteries. On the transmitter (Tx) side, a driver coil, five high-quality (Q) factor segmented resonators at different heights and orientations, and a closed-loop Tx power controller create a homogeneous electromagnetic (EM) field within the homecage 3-D space, and compensate for drops in power transfer efficiency (PTE) due to Rx misalignments. The headstage is equipped with four small slanted resonators, each covering a range of head orientations with respect to the Tx resonators, which direct the EM field toward the load coil at the bottom of the headstage. Moreover, data links based on Wi-Fi, UART, and Bluetooth low energy are utilized to enables remote communication and control of the Rx. The PTE varies within 23.6%-33.3% and 6.7%-10.1% at headstage heights of 8 and 20 cm, respectively, while continuously delivering >40 mW to the Rx electronics even at 90° rotation. As a proof of EnerCage-HC2 functionality in vivo, a previously documented on-demand electrical stimulation of the globus pallidus, eliciting consistent head rotation, is demonstrated in three freely behaving rats.
Collapse
|
14
|
Mei H, Thackston KA, Bercich RA, Jefferys JG, Irazoqui PP. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments. IEEE Trans Biomed Eng 2017; 64:775-785. [DOI: 10.1109/tbme.2016.2576469] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Mirbozorgi SA, Jia Y, Canales D, Ghovanloo M. A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:979-989. [PMID: 27654976 PMCID: PMC5258855 DOI: 10.1109/tbcas.2016.2577705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency [Formula: see text], they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window [Formula: see text] by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ∼7 cm height, plus stability against angular mis-alignments of up to 80°.
Collapse
|
16
|
Gougheri HS, Kiani M. Optimal frequency for powering millimeter-sized biomedical implants inside an inductively-powered homecage. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:4804-4807. [PMID: 28269345 DOI: 10.1109/embc.2016.7591802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents the optimal design and operation frequency (f) of an inductively-powered homecage for powering biomedical devices with millimeter (mm) dimensions, implanted inside the body of freely-behaving small animal subjects, for longitudinal behavioral neuroscience and electrophysiology experiments. In order to improve the power transmission efficiency (PTE) for powering mm-sized implants, the geometry of the multi-coil inductive links in the form of 3- and 4-coil links as well as fp need to be co-optimized. A simplified equation for the PTE of 3-coil inductive links for powering mm-sized implants has been derived, based on which the optimal geometries and fp of a 3-coil link have been found using a commercial field solver (HFSS). In simulations, the optimized 3-coil inductive link achieved a significant PTE of 2.56% at the optimal fp of 40 MHz for powering a 1 mm3 implant coil at the nominal height of 7 cm, thanks to the link and fp optimization as well as an intermediate coil in the receiver side with 18 mm diameter.
Collapse
|
17
|
Soltani N, Aliroteh MS, Salam MT, Perez Velazquez JL, Genov R. Low-Radiation Cellular Inductive Powering of Rodent Wireless Brain Interfaces: Methodology and Design Guide. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:920-932. [PMID: 26960227 DOI: 10.1109/tbcas.2015.2502840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper presents a general methodology of inductive power delivery in wireless chronic rodent electrophysiology applications. The focus is on such systems design considerations under the following key constraints: maximum power delivery under the allowable specific absorption rate (SAR), low cost and spatial scalability. The methodology includes inductive coil design considerations within a low-frequency ferrite-core-free power transfer link which includes a scalable coil-array power transmitter floor and a single-coil implanted or worn power receiver. A specific design example is presented that includes the concept of low-SAR cellular single-transmitter-coil powering through dynamic tracking of a magnet-less receiver spatial location. The transmitter coil instantaneous supply current is monitored using a small number of low-cost electronic components. A drop in its value indicates the proximity of the receiver due to the reflected impedance of the latter. Only the transmitter coil nearest to the receiver is activated. Operating at the low frequency of 1.5 MHz, the inductive powering floor delivers a maximum of 15.9 W below the IEEE C95 SAR limit, which is over three times greater than that in other recently reported designs. The power transfer efficiency of 39% and 13% at the nominal and maximum distances of 8 cm and 11 cm, respectively, is maintained.
Collapse
|
18
|
Lee B, Yeon P, Ghovanloo M. A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS (1982) 2016; 63:5091-5100. [PMID: 27493445 PMCID: PMC4968703 DOI: 10.1109/tie.2016.2550009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at (RL = 1 kΩ, d23 = 3 cm), and from 23% to 28.2% at (RL = 100 Ω, d23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).
Collapse
Affiliation(s)
- Byunghun Lee
- GT-Bionics lab, School of Electrical and Computer Engineering at the Georgia Institute of Technology, Atlanta, GA 30308, USA
| | - Pyungwoo Yeon
- GT-Bionics lab, School of Electrical and Computer Engineering at the Georgia Institute of Technology, Atlanta, GA 30308, USA
| | - Maysam Ghovanloo
- GT-Bionics lab, School of Electrical and Computer Engineering at the Georgia Institute of Technology, Atlanta, GA 30308, USA
| |
Collapse
|
19
|
Lee SB, Lee B, Kiani M, Mahmoudi B, Gross R, Ghovanloo M. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End. IEEE SENSORS JOURNAL 2016; 16:475-484. [PMID: 27069422 PMCID: PMC4826074 DOI: 10.1109/jsen.2015.2483747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP).
Collapse
Affiliation(s)
- Seung Bae Lee
- GT-Bionics lab, School of Electrical and Computer Engineering at the Georgia Institute of Technology, Atlanta, GA 30308, USA
| | - Byunghun Lee
- GT-Bionics lab, School of Electrical and Computer Engineering at the Georgia Institute of Technology, Atlanta, GA 30308, USA
| | - Mehdi Kiani
- GT-Bionics lab, School of Electrical and Computer Engineering at the Georgia Institute of Technology, Atlanta, GA 30308, USA
| | | | | | - Maysam Ghovanloo
- GT-Bionics lab, School of Electrical and Computer Engineering at the Georgia Institute of Technology, Atlanta, GA 30308, USA
| |
Collapse
|