1
|
Sood K, Mathur P, Rath S, Yadav P, Kaur N, Sharma P, Mimansa, Chauhan DS, Vaidya S, Srivastava R, De A, Shanavas A. Plasmonic semi shells derived from simultaneous in situ gold growth and anisotropic acid etching of ZIF-8 for photothermal ablation of metastatic breast tumor. Commun Chem 2024; 7:231. [PMID: 39384608 PMCID: PMC11464763 DOI: 10.1038/s42004-024-01317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Open nanoshells such as nanobowls or nanocups collectively described as 'semi shells' have unique plasmonic properties due to their lack of symmetry. So far, their fabrication was based on multistep and laborious methods such as solid state sputter coating or selective deposition/etching using sacrificial templates. In this work, we report a rapid one step colloidal synthetic protocol for PEGylated semi-shell (SS) fabrication by simultaneous facet specific anisotropic chemical etching of rhombic dodecahedral ZIF-8 and heterogenous nucleation & growth of gold. The SS possesses a strong localized surface plasmon resonance in the near-infrared region, which is retained after surface passivation with polyethylene glycol and subsequent cryopreservation for extended shelf-life. Freshly reconstituted PEGylated SS was found to be safe & non-toxic in healthy C57BL/6 mice post intravenous administration. The PEGylated SS displayed significant photothermal efficiency of ~37% with 808 nm laser irradiation. Preclinical assessment of intra-tumoral photothermal efficacy indicated complete remission of primary breast tumor mass with insignificant metastasis to vital organs in 4T1 FL2 tumor bearing CD1 nude mice. Further, PEGylated SS mediated photothermal therapy also yielded morbidity free survivael of 75% for up to 90 days, indicating their potential to significantly improve outcomes in advanced breast tumors.
Collapse
Affiliation(s)
- Kritika Sood
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Purvi Mathur
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Sulagna Rath
- Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Sector 22, Navi Mumbai, 410210, Maharashtra, India
| | - Pranjali Yadav
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Navneet Kaur
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Priyanka Sharma
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Mimansa
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Deepak Singh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
- Department of Microbiology and Immunology, Dalhousie University, Halifax, 6299, NS, Canada
| | - Sonalika Vaidya
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Abhijit De
- Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Sector 22, Navi Mumbai, 410210, Maharashtra, India.
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India.
| |
Collapse
|
2
|
Harman A, Toth R, Mobley Z, Sartin D, Karamanian A. MRI-guided transrectal prostate laser ablation for benign prostatic hypertrophy: a retrospective cohort study. LA RADIOLOGIA MEDICA 2024; 129:1412-1423. [PMID: 39154318 DOI: 10.1007/s11547-024-01855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/04/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE To investigate whether MRI-guided transrectal laser ablation is safe and effective for the treatment of lower urinary tract symptoms caused by BPH. MATERIALS AND METHODS This single-center retrospective cohort study evaluated men who underwent MRI-guided transrectal laser ablation for BPH between February 2017 and July 2021. Age, prostate-specific antigen, prostate volume, prior surgical BPH treatments if any, International Prostate Symptom Score (IPSS) and Sexual Health Inventory of Men (SHIM) were collected. The primary outcome measures assessed were change in IPSS and SHIM 6, 12 and 24 months after laser ablation and adverse events. RESULTS Fifty-two patients were included, having completed at least one follow-up survey. The mean patient age was 62.9 ± 5.7 years, and mean prostate volume was 80.2 ± 39.2 cc. Eighteen patients (34.6%) had received a prior BPH treatment. The IPSS scores dropped an average of 16.7 ± 7.0 (p < 0.001), 16.9 ± 7.5 (p < 0.001) and 17.1 ± 7.2 (p < 0.001) points from baseline at 6, 12 and 24 months, respectively. There was no statistically significant difference in IPSS score drop between patients who had received a prior BPH procedure and those who had not (p = 0.628). The SHIM scores showed a statistically insignificant increase at all time points. Nineteen patients (36.5%) reported a complication. There were 12 grade II complications (23%) and seven grade I complications (13.5%). There were no grade III or higher complications. CONCLUSION Transrectal MRI-guided focal laser ablation is safe and effective for the treatment of lower urinary tract symptoms caused by BPH, with a significant improvement in symptom severity after 2 years.
Collapse
Affiliation(s)
- Aaron Harman
- Halo Prostate Laser Center, 6624 Fannin St., Suite 2580, Houston, TX, 77030, USA.
| | | | - Zahra Mobley
- Halo Prostate Laser Center, 6624 Fannin St., Suite 2580, Houston, TX, 77030, USA
| | - Donnie Sartin
- Halo Prostate Laser Center, 6624 Fannin St., Suite 2580, Houston, TX, 77030, USA
| | - Ara Karamanian
- Halo Prostate Laser Center, 6624 Fannin St., Suite 2580, Houston, TX, 77030, USA
| |
Collapse
|
3
|
Lari S, Kohandel M, Kwon HJ. Model based deep learning method for focused ultrasound pathway scanning. Sci Rep 2024; 14:20042. [PMID: 39198623 PMCID: PMC11358149 DOI: 10.1038/s41598-024-70689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The primary purpose of high-intensity focused ultrasound (HIFU), a non-invasive medical therapy, is to precisely target and ablate tumors by focusing high-frequency ultrasound from an external power source. A series of ablations must be performed in order to treat a big volume of tumors, as a single ablation can only remove a small amount of tissue. To maximize therapeutic efficacy while minimizing adverse side effects such as skin burns, preoperative treatment planning is essential in determining the focal site and sonication duration for each ablation. Here, we introduce a machine learning-based approach for designing HIFU treatment plans, which makes use of a map of the material characteristics unique to a patient alongside an accurate thermal simulation. A numerical model was employed to solve the governing equations of HIFU process and to simulate the HIFU absorption mechanism, including ensuing heat transfer process and the temperature rise during the sonication period. To validate the accuracy of this numerical model, a series of tests was conducted using ex vivo bovine liver. The findings indicate that the developed models properly represent the considerable variances observed in tumor geometrical shapes and proficiently generate well-defined closed treated regions based on imaging data. The proposed strategy facilitated the formulation of high-quality treatment plans, with an average tissue over- or under-treatment rate of less than 0.06%. The efficacy of the numerical model in accurately predicting the heating process of HIFU, when combined with machine learning techniques, was validated through quantitative comparison with experimental data. The proposed approach in cooperation with HIFU simulation holds the potential to enhance presurgical HIFU plan.
Collapse
Affiliation(s)
- Salman Lari
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hyock Ju Kwon
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
4
|
Keum H, Cevik E, Kim J, Demirlenk YM, Atar D, Saini G, Sheth RA, Deipolyi AR, Oklu R. Tissue Ablation: Applications and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310856. [PMID: 38771628 PMCID: PMC11309902 DOI: 10.1002/adma.202310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.
Collapse
Affiliation(s)
- Hyeongseop Keum
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Enes Cevik
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Jinjoo Kim
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Yusuf M Demirlenk
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Dila Atar
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Gia Saini
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amy R Deipolyi
- Interventional Radiology, Department of Surgery, West Virginia University, Charleston Area Medical Center, Charleston, WV 25304, USA
| | - Rahmi Oklu
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
5
|
Singh A, Kumar N. Estimation of the injection criteria for magnetic hyperthermia therapy based on tumor morphology. Biomed Phys Eng Express 2024; 10:055017. [PMID: 39025085 DOI: 10.1088/2057-1976/ad64d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Intratumoral multi-injection strategy enhances the efficacy of magnetic nanoparticle hyperthermia therapy (MNPH). In this study, criteria for the selection of injections and their location depending on the tumor shape/geometry are developed. The developed strategy is based on the thermal dosimetry results of different invasive 3D tumor models during MNPH simulation. MNPH simulations are conducted on physical tumor tissue models encased within healthy tissue. The tumor shapes are geometrically divided into a central tumor region containing maximum tumor volume and a peripheral tumor portion protruding in any random direction. The concepts of core and invasive radius are used to geometrically divide the tumor volume. Primary & secondary injections are used to inject MNP fluid into these respective tumor regions based on the invasiveness of the tumor. The optimization strategy is devised based on the zone of influence of primary & secondary injection. Results indicate that the zone of influence of secondary injection lies between 0.7 and 0.8 times the radial distance between the center of the tumor core and branch node point (extreme far endpoint on the invasive tumor surface). Additionally, the multi-injection strategy is more effective when the protrusion volume exceeds10%of the total volume. The proposed algorithm is used to devise multi-injection strategies for arbitrarily shaped tumors and will assist in pre-planning magnetic nanoparticle hyperthermia therapy.
Collapse
Affiliation(s)
- Amritpal Singh
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neeraj Kumar
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
- Virginia Tech-TIET Center of Excellence in Emerging Materials, T I E T, Patiala, India
| |
Collapse
|
6
|
Mimansa, Zafar MA, Verma DK, Das R, Agrewala JN, Shanavas A. Shielding against breast tumor relapse with an autologous chemo-photo-immune active Nano-Micro-Sera based fibrin implant. NANOSCALE 2024; 16:14006-14019. [PMID: 38989622 DOI: 10.1039/d4nr01076k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Local recurrence post-surgery in early-stage triple-negative breast cancer is a major challenge. To control the regrowth of a residual tumor, we have developed an autologous therapeutic hybrid fibrin glue for intra-operative implantation. Using autologous serum proteins as stabilizers, we have optimized high drug-loaded lapatinib-NanoSera (Lap-NS; ∼66% L.C.) and imiquimod-MicroSera (IMQ-MS; ∼92% L.C). Additionally, plasmonic nanosera (PNS) with an ∼67% photothermal conversion efficiency under 980 nm laser irradiation was also developed. While localized monotherapy with either Lap-NS or PNS reduced the tumor regrowth rate, their combination with IMQ-MS amplified the effect of immunogenic cell death with a high level of tumor infiltration by immune cells at the surgical site. The localized combination immunotherapy with a Nano-MicroSera based hybrid fibrin implant showed superior tumor inhibition and survival with significant promise for clinical translation.
Collapse
Affiliation(s)
- Mimansa
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.
| | - Mohammad Adeel Zafar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Dinesh Kumar Verma
- All India Institute of Medical Sciences Bilaspur, Changar Palasiyan, Noa, Himachal Pradesh, 174001, India
| | - Reena Das
- Department of Haematology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Javed Naim Agrewala
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.
| |
Collapse
|
7
|
Wang H, Bo W, Feng X, Zhang J, Li G, Chen Y. Strategies and Recent Advances on Improving Efficient Antitumor of Lenvatinib Based on Nanoparticle Delivery System. Int J Nanomedicine 2024; 19:5581-5603. [PMID: 38882543 PMCID: PMC11177867 DOI: 10.2147/ijn.s460844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Lenvatinib (LVN) is a potentially effective multiple-targeted receptor tyrosine kinase inhibitor approved for treating hepatocellular carcinoma, metastatic renal cell carcinoma and thyroid cancer. Nonetheless, poor pharmacokinetic properties including poor water solubility and rapid metabolic, complex tumor microenvironment, and drug resistance have impeded its satisfactory therapeutic efficacy. This article comprehensively reviews the uses of nanotechnology in LVN to improve antitumor effects. With the characteristic of high modifiability and loading capacity of the nano-drug delivery system, an active targeting approach, controllable drug release, and biomimetic strategies have been devised to deliver LVN to target tumors in sequence, compensating for the lack of passive targeting. The existing applications and advances of LVN in improving therapeutic efficacy include improving longer-term efficiency, achieving higher efficiency, combination therapy, tracking and diagnosing application and reducing toxicity. Therefore, using multiple strategies combined with photothermal, photodynamic, and immunoregulatory therapies potentially overcomes multi-drug resistance, regulates unfavorable tumor microenvironment, and yields higher synergistic antitumor effects. In brief, the nano-LVN delivery system has brought light to the war against cancer while at the same time improving the antitumor effect. More intelligent and multifunctional nanoparticles should be investigated and further converted into clinical applications in the future.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Jinliang Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ge Li
- Department of Emergency, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
8
|
Sun G, Eisenbrey JR, Smolock AR, Lallas CD, Anton KF, Adamo RD, Shaw CM. Percutaneous Microwave Ablation versus Cryoablation for Small Renal Masses (≤4 cm): 12-Year Experience at a Single Center. J Vasc Interv Radiol 2024; 35:865-873. [PMID: 38360294 PMCID: PMC11495041 DOI: 10.1016/j.jvir.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSE To determine whether microwave ablation (MWA) has equivalent outcomes to those of cryoablation (CA) in terms of technical success, adverse events, local tumor recurrence, and survival in adult patients with solid enhancing renal masses ≤4 cm. MATERIALS AND METHODS A retrospective review was performed of 279 small renal masses (≤4 cm) in 257 patients (median age, 71 years; range, 40-92 years) treated with either CA (n = 191) or MWA (n = 88) between January 2008 and December 2020 at a single high-volume institution. Evaluations of adverse events, treatment effectiveness, and therapeutic outcomes were conducted for both MWA and CA. Disease-free, metastatic-free, and cancer-specific survival rates were tabulated. The estimated glomerular filtration rate was employed to examine treatment-related alterations in renal function. RESULTS No difference in patient age (P = .99) or sex (P = .06) was observed between the MWA and CA groups. Cryoablated lesions were larger (P < .01) and of greater complexity (P = .03). The technical success rate for MWA was 100%, whereas 1 of 191 cryoablated lesions required retreatment for residual tumor. There was no impact on renal function after CA (P = .76) or MWA (P = .49). Secondary analysis using propensity score matching demonstrated no significant differences in local recurrence rates (P = .39), adverse event rates (P = .20), cancer-free survival (P = .76), or overall survival (P = .19) when comparing matched cohorts of patients who underwent MWA and CA. CONCLUSIONS High technical success and local disease control were achieved for both MWA and CA. Cancer-specific survival was equivalent. Higher adverse event rates after CA may reflect the tendency to treat larger, more complex lesions with CA.
Collapse
Affiliation(s)
- George Sun
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amanda R Smolock
- Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Costas D Lallas
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kevin F Anton
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert D Adamo
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Colette M Shaw
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Turkmen Koc SN, Rezaei Benam S, Aral IP, Shahbazi R, Ulubayram K. Gold nanoparticles-mediated photothermal and photodynamic therapies for cancer. Int J Pharm 2024; 655:124057. [PMID: 38552752 DOI: 10.1016/j.ijpharm.2024.124057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Cancer remains one of the major causes of death globally, with one out of every six deaths attributed to the disease. The impact of cancer is felt on psychological, physical, and financial levels, affecting individuals, communities, and healthcare institutions. Conventional cancer treatments have many challenges and inadequacies. Nanomedicine, however, presents a promising solution by not only overcoming these problems but also offering the advantage of combined therapy for treatment-resistant cancers. Nanoparticles specifically engineered for use in nanomedicine can be efficiently targeted to cancer cells through a combination of active and passive techniques, leading to superior tumor-specific accumulation, enhanced drug availability, and reduced systemic toxicity. Among various nanoparticle formulations designed for cancer treatment, gold nanoparticles have gained prominence in the field of nanomedicine due to their photothermal, photodynamic, and immunologic effects without the need for photosensitizers or immunotherapeutic agents. To date, there is no comprehensive literature review that focuses on the photothermal, photodynamic, and immunologic effects of gold nanoparticles. In this review, significant attention has been devoted to examining the parameters pertaining to the structure of gold nanoparticles and laser characteristics, which play a crucial role in influencing the efficacy of photothermal therapy (PTT) and photodynamic therapy (PDT). Moreover, this article provides insights into the success of PTT and PDT mediated by gold nanoparticles in primary cancer treatment, as well as the immunological effects of PTT and PDT on metastasis and recurrence, providing a promising strategy for cancer therapy. In summary, gold nanoparticles, with their unique properties, have the potential for clinical application in various cancer therapies, including the treatment of primary cancer, recurrence and metastasis.
Collapse
Affiliation(s)
- Seyma Nur Turkmen Koc
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye
| | - Sanam Rezaei Benam
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Ipek Pınar Aral
- Department of Radiation Oncology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Reza Shahbazi
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA; Tumor Microenvironment & Metastasis, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, USA; Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, USA.
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
10
|
Satish V, Repaka R. The influence of microwave ablation parameters on the positioning of trocar in different cancerous tissues: a numerical study. Electromagn Biol Med 2024:1-10. [PMID: 38533761 DOI: 10.1080/15368378.2024.2333802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
The present study analyzed the microwave ablation of cancerous tumors located in six major cancer-prone organs and estimated the significance of input power and treatment time parameters in the apt positioning of the trocar into the tissue during microwave ablation. The present study has considered a three-dimensional two-compartment tumour-embedded tissue model. FEA based COMSOL Multiphysics software with inbuilt bioheat transfer, electromagnetic waves, heat transfer in solids and fluids, and laminar flow physics has been used to obtain the numerical results. Based on the mortality rates caused by cancer, the present study has considered six major organs affected by cancer, viz. lung, breast, stomach/gastric, liver, liver (with colon metastasis), and kidney for MWA analysis. The input power (100 W) and ablation times (4 minutes) with apt and inapt positioning of the trocar have been considered to compare the ablation volume of various cancerous tissues. The present study addresses one of the major problems clinicians face, i.e. the proper placement of the trocar due to poor imaging techniques and human error, resulting in incomplete tumor ablation and increased surgical procedures. The highest values of the ablation region have been observed for the liver, colon metastatic liver and breast cancerous tissues compared with other organs at the same operating conditions.
Collapse
Affiliation(s)
- Vellavalapalli Satish
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ramjee Repaka
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
11
|
Barba-Rosado LV, Carrascal-Hernández DC, Insuasty D, Grande-Tovar CD. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:186. [PMID: 38251150 PMCID: PMC10820493 DOI: 10.3390/nano14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.
Collapse
Affiliation(s)
- Lemy Vanessa Barba-Rosado
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| | - Domingo César Carrascal-Hernández
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| |
Collapse
|
12
|
Zheng B, Zhang P, Lv Q, Wu T, Liu Y, Tang J, Ma Y, Cheng L, Xu L, Wang Y, Xue Y, Liu J, Ren J. Development and preclinical evaluation of multifunctional hydrogel for precise thermal protection during thermal ablation. Bioact Mater 2024; 31:119-135. [PMID: 37637083 PMCID: PMC10448243 DOI: 10.1016/j.bioactmat.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Image-guided thermal ablation (TA), which is less invasive, has been widely applied for treating various kinds of tumors. However, TA still poses the potential risk of thermal damage to sensitive tissue nearby. Therefore, an adjunctive thermoprotective hydrodissection technique with constant injection of 5% glucose (5% Glu) has currently been adopted for clinical application, but this may be hazardous to humans. In this study, a multifunctional hyaluronic acid-based hydrogel (HA-Dc) was developed for hydrodissection. Compared with 5% Glu (the most clinically used solution) and the previously reported F127 hydrogel, the HA-Dc hydrogel was studied in vitro in a porcine liver model and in vivo in a rabbit model and showed good injectability and better tissue retention, stability, and thermoprotective properties throughout the TA procedure. Furthermore, in the preclinical evaluation in a Macaca fascicularis (M. fascicularis) model, HA-Dc showed excellent performance in terms of stricter neuroprotection compared with 5% Glu. In addition, the HA-Dc hydrogel with good biocompatibility and controllable degradation behavior in vivo could be a promising platform for thermal protection during clinical TA procedures.
Collapse
Affiliation(s)
- Bowen Zheng
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Qijun Lv
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Tao Wu
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Yanping Ma
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Lili Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Langtao Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Yizhen Wang
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Jie Ren
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| |
Collapse
|
13
|
Gupta S, Nagtode N, Chandra V, Gomase K. From Diagnosis to Treatment: Exploring the Latest Management Trends in Cervical Intraepithelial Neoplasia. Cureus 2023; 15:e50291. [PMID: 38205499 PMCID: PMC10776490 DOI: 10.7759/cureus.50291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
Cervical intraepithelial neoplasia (CIN) stands as a precancerous condition with the potential to progress to invasive cervical cancer. This comprehensive review explores the intricacies of CIN management, beginning with its definition, classification, and etiology. It emphasizes the significance of early detection and outlines the latest trends in diagnosis, including Pap smears, human papillomavirus (HPV) testing, and colposcopy. Grading and staging, pivotal in treatment selection, are elucidated. Current management approaches, encompassing watchful waiting, surgical interventions, emerging minimally invasive techniques, and immunotherapy, are detailed. The factors influencing treatment decisions, informed consent, and patient education are discussed. Potential complications following treatment, the importance of long-term follow-up, and the role of HPV vaccination in prevention are underscored. Finally, the review looks to the future, discussing advances in detection, novel treatments, and the promise of precision medicine. In conclusion, early detection and management remain the cornerstone of CIN care, offering hope for a future where cervical cancer is a preventable and treatable condition.
Collapse
Affiliation(s)
- Saloni Gupta
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nikhilesh Nagtode
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vaibhav Chandra
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kavita Gomase
- Obstetrics and Gynecology, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
14
|
De Vita E, Lo Presti D, Massaroni C, Iadicicco A, Schena E, Campopiano S. A review on radiofrequency, laser, and microwave ablations and their thermal monitoring through fiber Bragg gratings. iScience 2023; 26:108260. [PMID: 38026224 PMCID: PMC10660479 DOI: 10.1016/j.isci.2023.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Thermal ablation of tumors aims to apply extreme temperatures inside the target tissue to achieve substantial tumor destruction in a minimally invasive manner. Several techniques are comprised, classified according to the type of energy source. However, the lack of treatment selectivity still needs to be addressed, potentially causing two risks: i) incomplete tumor destruction and recurrence, or conversely, ii) damage of the surrounding healthy tissue. Therefore, the research herein reviewed seeks to develop sensing systems based on fiber Bragg gratings (FBGs) for thermal monitoring inside the lesion during radiofrequency, laser, and microwave ablation. This review shows that, mainly thanks to multiplexing and minimal invasiveness, FBGs provide an optimal sensing solution. Their temperature measurements are the feedback to control the ablation process and allow to investigate different treatments, compare their outcomes, and quantify the impact of factors such as proximity to thermal probe and blood vessels, perfusion, and tissue type.
Collapse
Affiliation(s)
- Elena De Vita
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Agostino Iadicicco
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Stefania Campopiano
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| |
Collapse
|
15
|
Paolucci I, Bulatović M, Weber S, Tinguely P. Thermal ablation with configurable shapes: a comprehensive, automated model for bespoke tumor treatment. Eur Radiol Exp 2023; 7:67. [PMID: 37932631 PMCID: PMC10628015 DOI: 10.1186/s41747-023-00381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Malignant tumors routinely present with irregular shapes and complex configurations. The lack of customization to individual tumor shapes and standardization of procedures limits the success and application of thermal ablation. METHODS We introduced an automated treatment model consisting of (i) trajectory and ablation profile planning, (ii) ablation probe insertion, (iii) dynamic energy delivery (including robotically driven control of the energy source power and location over time, according to a treatment plan bespoke to the tumor shape), and (iv) quantitative ablation margin verification. We used a microwave ablation system and a liver phantom (acrylamide polymer with a thermochromic ink) to mimic coagulation and measure the ablation volume. We estimated the ablation width as a function of power and velocity following a probabilistic model. Four representative shapes of liver tumors < 5 cm were selected from two publicly available databases. The ablated specimens were cut along the ablation probe axis and photographed. The shape of the ablated volume was extracted using a color-based segmentation method. RESULTS The uncertainty (standard deviation) of the ablation width increased with increasing power by ± 0.03 mm (95% credible interval [0.02, 0.043]) per watt increase in power and by ± 0.85 mm (95% credible interval [0, 2.5]) per mm/s increase in velocity. Continuous ablation along a straight-line trajectory resulted in elongated rotationally symmetric ablation shapes. Simultaneous regulation of the power and/or translation velocity allowed to modulate the ablation width at specific locations. CONCLUSIONS This study offers the proof-of-principle of the dynamic energy delivery system using ablation shapes from clinical cases of malignant liver tumors. RELEVANCE STATEMENT The proposed automated treatment model could favor the customization and standardization of thermal ablation for complex tumor shapes. KEY POINTS • Current thermal ablation systems are limited to ellipsoidal or spherical shapes. • Dynamic energy delivery produces elongated rotationally symmetric ablation shapes with varying widths. • For complex tumor shapes, multiple customized ablation shapes could be combined.
Collapse
Affiliation(s)
- Iwan Paolucci
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
| | - Milica Bulatović
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Stefan Weber
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Pascale Tinguely
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
16
|
Khanmohammadi S, Noroozi A, Yekaninejad MS, Rezaei N. Cryoablation for the Palliation of Painful Bone Metastasis: A Systematic Review. Cardiovasc Intervent Radiol 2023; 46:1469-1482. [PMID: 36631660 DOI: 10.1007/s00270-022-03356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cryoablation is a minimally invasive procedure to treat painful bone metastases in patients with cancer. We designed a systematic review to understand the safety and effects of cryoablation on the pain and quality of life (QoL) of cancer patients. METHOD We searched PubMed, ISI, Cochrane library, and Scopus databases using the keywords "Cryoablation," "Pain," and "Bone metastasis." Inclusion criteria were: (1) Original studies published until September 8, 2022; (2) studies on patients over 18 years and affected by bone metastasis; (3) bone metastasis treated with stand-alone cryoablation; (4) studies reporting patients' pain before and at least one time-point following cryoablation; and (5) English-language studies. RESULTS We screened 696 articles. Fifteen studies on 376 patients were included. Time points for pain assessment ranged from 1 day to 6 months. Spine was the most frequent treated location. All studies reported a significant pain reduction between 1 day and 6 months after the cryoablation procedure. The highest mean difference between pre- and post-procedure scores was 5.8 (VAS scale) after 4 weeks. The overall rate of minor and major complications was 12.74%. Cryoablation improved the QoL of cancer patients and decreased the need for analgesics. CONCLUSION Cryoablation is a safe and useful procedure for palliating painful bone metastasis and increasing the QoL of cancer patients. Future studies should adopt a standardized pain reporting scale to allow for meta-analysis.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Qarib St., Keshavarz Blvd., Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Qarib St., Keshavarz Blvd., Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Fujibayashi T, Koizumi N, Nishiyama Y, Watanabe Y, Zhou J, Matsuyama M, Yamada M, Tsumura R, Yoshinaka K, Matsumoto N, Tsukihara H, Numata K. Study on method of organ section retention and tracking through deep learning in automated diagnostic and therapeutic robotics. Int J Comput Assist Radiol Surg 2023; 18:2101-2109. [PMID: 37249747 DOI: 10.1007/s11548-023-02955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE In high-intensity focused ultrasound (HIFU) treatment of the kidney and liver, tracking the organs is essential because respiratory motions make continuous cauterization of the affected area difficult and may cause damage to other parts of the body. In this study, we propose a tracking system for rotational scanning, and propose and evaluate a method for estimating the angles of organs in ultrasound images. METHODS We proposed AEMA, AEMAD, and AEMAD++ as methods for estimating the angles of organs in ultrasound images, using RUDS and a phantom to acquire 90-degree images of a kidney from the long-axis image to the short-axis image as a data set. Six datasets were used, with five for preliminary preparation and one for testing, while the initial position was shifted by 2 mm in the contralateral axis direction. The test data set was evaluated by estimating the angle using each method. RESULTS The accuracy and processing speed of angle estimation for AEMA, AEMAD, and AEMAD++ were 23.8% and 0.33 FPS for AEMAD, 32.0% and 0.56 FPS for AEMAD, and 29.5% and 3.20 FPS for AEMAD++, with tolerance of ± 2.5 degrees. AEMAD++ offered the best speed and accuracy. CONCLUSION In the phantom experiment, AEMAD++ showed the effectiveness of tracking the long-axis image of the kidney in rotational scanning. In the future, we will add either the area of surrounding organs or the internal structure of the kidney as a new feature to validate the results.
Collapse
Affiliation(s)
- Takumi Fujibayashi
- The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan
| | - Norihiro Koizumi
- The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan.
| | - Yu Nishiyama
- The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan
| | - Yusuke Watanabe
- The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan
| | - Jiayi Zhou
- The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan
| | - Momoko Matsuyama
- The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan
| | - Miyu Yamada
- The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan
| | - Ryosuke Tsumura
- National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Japan
| | - Kiyoshi Yoshinaka
- National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Japan
| | - Naoki Matsumoto
- Nihon University, 1-6 Kandasurugadai, Chiyoda-Ku, Tokyo, Japan
| | | | - Kazushi Numata
- Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
18
|
Falk KL, Laeseke PF, Kisting MA, Zlevor AM, Knott EA, Smolock AR, Bradley C, Vlaisavljevich E, Lee FT, Ziemlewicz TJ. Clinical translation of abdominal histotripsy: a review of preclinical studies in large animal models. Int J Hyperthermia 2023; 40:2272065. [PMID: 37875279 PMCID: PMC10629829 DOI: 10.1080/02656736.2023.2272065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Histotripsy is an emerging noninvasive, non-thermal, and non-ionizing focused ultrasound (US) therapy that can be used to destroy targeted tissue. Histotripsy has evolved from early laboratory prototypes to clinical systems which have been comprehensively evaluated in the preclinical environment to ensure safe translation to human use. This review summarizes the observations and results from preclinical histotripsy studies in the liver, kidney, and pancreas. Key findings from these studies include the ability to make a clinically relevant treatment zone in each organ with maintained collagenous architecture, potentially allowing treatments in areas not currently amenable to thermal ablation. Treatments across organ capsules have proven safe, including in anticoagulated models which may expand patients eligible for treatment or eliminate the risk associated with taking patients off anti-coagulation. Treatment zones are well-defined with imaging and rapidly resorb, which may allow improved evaluation of treatment zones for residual or recurrent tumor. Understanding the effects of histotripsy in animal models will help inform physicians adopting histotripsy for human clinical use.
Collapse
Affiliation(s)
- Katrina L Falk
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Paul F Laeseke
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Meridith A Kisting
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Annie M Zlevor
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily A Knott
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Amanda R Smolock
- Department of Radiology, Division of Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Charles Bradley
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Fred T Lee
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Urology, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
19
|
Das SS, Mahapatra SK. Effect of collision, size, and oscillation of RBCs on blood heat transfer in a bifurcated vessel. Comput Methods Biomech Biomed Engin 2023; 26:1620-1634. [PMID: 36214764 DOI: 10.1080/10255842.2022.2130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
This study attempts to analyze the effect of red blood cells (RBCs) on blood heat transfer in a three-dimensional bifurcated vessel when treated with hyperthermia procedure. A two-phase granular model is used in this paper to study the various underlying factors that affect the flow dynamics of RBCs in a blood vessel. Separate cases are analyzed to study the effect of RBC size, RBC-RBC, and RBC-wall collision and oscillation on heat transfer in a three-dimensional bifurcated vessel under pulsatile flow condition. Blood temperature and transient Nusselt number are used as heat transfer representative parameters. A good agreement with the experimental results from the existing literature is observed when the numerical model used in this study is compared for accuracy. From this study, it has been found that an increase in the size of RBCs of a blood disorder patient can decrease the temperature of blood compared to a normal patient when subjected to hyperthermia treatment. A change in the nature of collision between RBCs does not affect the heat transfer of blood under pulsatile flow condition in a bifurcated vessel. Also, an increase in granular temperature or oscillation of RBCs slightly increases the blood temperature when exposed to thermal treatment.
Collapse
|
20
|
Alemaryeen A, Noghanian S. A Survey of the Thermal Analysis of Implanted Antennas for Wireless Biomedical Devices. MICROMACHINES 2023; 14:1894. [PMID: 37893331 PMCID: PMC10609145 DOI: 10.3390/mi14101894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Wireless implantable biomedical devices (IBDs) are emerging technologies used to enhance patient treatment and monitoring. The performance of wireless IBDs mainly relies on their antennas. Concerns have emerged regarding the potential of wireless IBDs to unintentionally cause tissue heating, leading to potential harm to surrounding tissue. The previous literature examined temperature estimations and specific absorption rates (SAR) related to IBDs, mainly within the context of thermal therapy applications. Often, these studies consider system parameters such as frequency, input power, and treatment duration without isolating their individual impacts. This paper provides an extensive literature review, focusing on key antenna design parameters affecting heat distribution in IBDs. These parameters encompass antenna design, treatment settings, testing conditions, and thermal modeling. The research highlights that input power has the most significant impact on localized temperature, with operating frequency ranked as the second most influential factor. While emphasizing the importance of understanding tissue heating and optimizing antennas for improved power transfer, these studies also illuminate existing knowledge gaps. Excessive tissue heat can lead to harmful effects such as vaporization, carbonization, and irreversible tissue changes. To ensure patient safety and reduce expenses linked to clinical trials, employing simulation-driven approaches for IBD antenna design and optimization is essential.
Collapse
Affiliation(s)
- Ala Alemaryeen
- Department of Computer Engineering and Communication, Tafila Technical University, Tafila 66110, Jordan
| | | |
Collapse
|
21
|
Wang XQ, Brown JM, Lorimer S, Jones KB, Groundland JS. Thermal necrosis in orthopedic bone tumors: experimental research. Ann Med Surg (Lond) 2023; 85:4372-4377. [PMID: 37663713 PMCID: PMC10473360 DOI: 10.1097/ms9.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The extent of surgical resection in orthopedic oncology differs according to tumor biology. While malignant bone tumors are operatively managed with wide resection, benign bone tumors and metastatic carcinomas are often treated through intralesional excision and adjuvant modalities, including the elimination of residual neoplastic cells through thermal necrosis. This study investigates in vitro temperature thresholds for thermal necrosis in common orthopedic bone tumors. Methodology Eleven cell lines, including metastatic carcinomas to bone (A549, A498, FU-UR-1, PC3, MDA-MB-231, TT, MCF7, and K1), giant cell tumor of bone, osteosarcoma (HG-63), and control non-neoplastic cells (HEK293) were cultured. Cells were exposed to thermal stress at varying times and temperatures and evaluated for survival and viability with crystal violet and MTT assays. Results Both the MTT and crystal violet assay demonstrated statistically superior rates of viability and survival for A549 (lung carcinoma), FU-UR-1 (renal carcinoma), K1 (thyroid carcinoma), and MG-63 (osteosarcoma) cell lines compared to control (HEK293 cells) at 60°C. Additionally, the MTT assay demonstrated superior viability for PC3 (prostate carcinoma), MCF7 (breast carcinoma), and A498 (renal carcinoma) compared to control. All cell lines demonstrated significantly decreased survival and viability in temperatures more than 90°C. Conclusion This study demonstrated in vitro thresholds for thermal necrosis for cell lines of common orthopedic tumors of bone. The A549 (lung carcinoma), K1 (thyroid carcinoma), and FU-UR-1 (renal carcinoma) cell lines demonstrated greater resistance to heat stress compared to non-neoplastic control cells. Temperatures in excess of 90°C are necessary to reliably reduce cell survival and viability to less than 10%.
Collapse
Affiliation(s)
- Xue Qi Wang
- Department of Interdisciplinary Oncology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey M. Brown
- Department of Orthopedics, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shannon Lorimer
- Department of Orthopedics, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Kevin B. Jones
- Department of Orthopedics, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - John S. Groundland
- Department of Orthopedics, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| |
Collapse
|
22
|
Quang TT, Yang J, Mikhail AS, Wood BJ, Ramanujam N, Mueller JL. Locoregional Thermal and Chemical Tumor Ablation: Review of Clinical Applications and Potential Opportunities for Use in Low- and Middle-Income Countries. JCO Glob Oncol 2023; 9:e2300155. [PMID: 37625104 PMCID: PMC10581629 DOI: 10.1200/go.23.00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 07/01/2023] [Indexed: 08/27/2023] Open
Abstract
This review highlights opportunities to develop accessible ablative therapies to reduce the cancer burden in LMICs.
Collapse
Affiliation(s)
- Tri T. Quang
- Department of Bioengineering, University of Maryland, College Park, MD
| | - Jeffrey Yang
- Department of Bioengineering, University of Maryland, College Park, MD
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Andrew S. Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Bradford J. Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC
- Duke Global Health Institute, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Jenna L. Mueller
- Department of Bioengineering, University of Maryland, College Park, MD
- Department of OB-GYN and Reproductive Science, University of Maryland School of Medicine, Baltimore, MD
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
23
|
Irianto T, Gaipl US, Rückert M. Immune modulation during anti-cancer radio(immuno)therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:239-277. [PMID: 38225105 DOI: 10.1016/bs.ircmb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cancer can affect all human organs and tissues and ranks as a prominent cause of death as well as an obstruction to increasing life expectancy. A notable breakthrough in oncology has been the inclusion of the immune system in fighting cancer, potentially prolonging life and providing long-term benefits. The concept of "immunotherapy" has been discussed from the 19th and early 20th centuries by Wilhelm Busch, William B. Coley and Paul Ehrlich. This involves distinct approaches, including vaccines, non-specific cytokines and adoptive cell therapies. However, despite the advances made in recent years, questions on how to select the best therapeutic options or how to select the best combinations to improve clinical outcomes are still relevant for scientists and clinicians. More than half of cancer patients receive radiotherapy (RT) as part of their treatment. With the advances in RT and immunotherapy approaches, it is reasonable to consider how to enhance immunotherapy with radiation and vice versa, and to investigate whether combinations of these therapies would be beneficial. In this chapter, we will discuss how the immune system responds to cancer cells and different cancer therapies with a focus on combination of RT and immunotherapy (radioimmunotherapy, RIT).
Collapse
Affiliation(s)
- Teresa Irianto
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
24
|
Namakshenas P, Di Matteo FM, Bianchi L, Faiella E, Stigliano S, Quero G, Saccomandi P. Optimization of laser dosimetry based on patient-specific anatomical models for the ablation of pancreatic ductal adenocarcinoma tumor. Sci Rep 2023; 13:11053. [PMID: 37422486 PMCID: PMC10329695 DOI: 10.1038/s41598-023-37859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
Laser-induced thermotherapy has shown promising potential for the treatment of unresectable primary pancreatic ductal adenocarcinoma tumors. Nevertheless, heterogeneous tumor environment and complex thermal interaction phenomena that are established under hyperthermic conditions can lead to under/over estimation of laser thermotherapy efficacy. Using numerical modeling, this paper presents an optimized laser setting for Nd:YAG laser delivered by a bare optical fiber (300 µm in diameter) at 1064 nm working in continuous mode within a power range of 2-10 W. For the thermal analysis, patient-specific 3D models were used, consisting of tumors in different portions of the pancreas. The optimized laser power and time for ablating the tumor completely and producing thermal toxic effects on the possible residual tumor cells beyond the tumor margins were found to be 5 W for 550 s, 7 W for 550 s, and 8 W for 550 s for the pancreatic tail, body, and head tumors, respectively. Based on the results, during the laser irradiation at the optimized doses, thermal injury was not evident either in the 15 mm lateral distances from the optical fiber or in the nearby healthy organs. The present computational-based predictions are also in line with the previous ex vivo and in vivo studies, hence, they can assist in the estimation of the therapeutic outcome of laser ablation for pancreatic neoplasms prior to clinical trials.
Collapse
Affiliation(s)
- Pouya Namakshenas
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | | | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | - Eliodoro Faiella
- Radiology Unit, Fondazione Policlinico Universitario Campus Biomedico, Rome, Italy
| | - Serena Stigliano
- Operative Endoscopy Department, Fondazione Policlinico Universitario Campus Biomedico, Rome, Italy
| | - Giuseppe Quero
- Pancreatic Surgery Unit, Gemelli Pancreatic Advanced Research Center (CRMPG), Fondazione Policlinico Universitario Agostino Gemelli IRCCS di Roma, Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, 00168, Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy.
| |
Collapse
|
25
|
González-Rodríguez L, Pérez-Davila S, López-Álvarez M, Chiussi S, Serra J, González P. Review article laser-induced hyperthermia on graphene oxide composites. J Nanobiotechnology 2023; 21:196. [PMID: 37340410 DOI: 10.1186/s12951-023-01956-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Hyperthermia-based therapies have shown great potential for clinical applications such as for the antitumor and antipathogenic activities. Within all strategies, the so-called photothermal therapy proposes to induce the hyperthermia by the remote laser radiation on a photothermal conversion agent, in contact with the target tissue. METHODS This paper reviews the most relevant in vitro and in vivo studies focused on NIR laser-induced hyperthermia due to photoexcitation of graphene oxide (GO) and reduced graphene oxide (rGO). Relevant parameters such as the amount of GO/rGO, the influence of the laser wavelength and power density are considered. Moreover, the required temperature and exposure time for each antitumor/antipathogenic case are collected and unified in a thermal dose parameter: the CEM43. RESULTS The calculated CEM43 thermal doses revealed a great variability for the same type of tumor/strain. In order to detect potential tendencies, the values were classified into four ranges, varying from CEM43 < 60 min to CEM43 ≥ 1 year. Thus, a preference for moderate thermal doses of CEM43 < 1 year was detected in antitumor activity, with temperatures ≤ 50 °C and exposure time ≤ 15 min. In case of the antipathogenic studies, the most used thermal dose was higher, CEM43 ≥ 1 year, with ablative hyperthermia (> 60ºC). CONCLUSIONS The ability of GO/rGO as effective photothermal conversion agents to promote a controlled hyperthermia is proven. The variability found for the CEM43 thermal doses on the reviewed studies reveals the potentiality to evaluate, for each application, the use of lower temperatures, by modulating time and/or repetitions in the doses.
Collapse
Affiliation(s)
- Laura González-Rodríguez
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain.
| | - Sara Pérez-Davila
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain
| | - Miriam López-Álvarez
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain
| | - Stefano Chiussi
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain
| | - Julia Serra
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain
| | - Pío González
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain
| |
Collapse
|
26
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
27
|
Kim TW. Targeting ER Stress with Saikosaponin A to Overcome Resistance under Radiation in Gastric Cancer Cells. Int J Mol Sci 2023; 24:ijms24065661. [PMID: 36982736 PMCID: PMC10052548 DOI: 10.3390/ijms24065661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Saikosaponin A is a triterpene saponin and a potentially bioactive compound derived from Bupleurum falcatum L. However, the molecular mechanisms and effects of saikosaponin A in gastric cancer remain unknown. In the present study, I evaluated the effects of saikosaponin A on cell death and endoplasmic reticulum stress via calcium and reactive oxygen species release. Targeting reactive oxygen species with diphenyleneiodonium and N-acetylcysteine inhibited cell death and protein kinase RNA-like ER kinase signaling pathway by down-regulating Nox4 and inducing glucose-regulated protein 78 exosomes. Furthermore, saikosaponin A caused a synergistic inhibitory effect of the epithelial mesenchymal transition phenomenon, indicating the reversible phenotype modulation by epithelial cells under radiation exposure in radiation-resistant gastric cancer cells. These results suggest that saikosaponin A-mediated calcium and reactive oxygen species-induced endoplasmic reticulum stress overcome radio-resistance and induce cell death under radiation in gastric cancer cells. Therefore, saikosaponin A in combination with radiation may be a potential strategy for gastric cancer therapy.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Gyeongbuk, Republic of Korea
| |
Collapse
|
28
|
Jiracheewanun S, Cortie MB, Pissuwan D. Thermal Effect during Laser-Induced Plasmonic Heating of Polyelectrolyte-Coated Gold Nanorods in Well Plates. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:845. [PMID: 36903723 PMCID: PMC10005119 DOI: 10.3390/nano13050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
We examined the generation and transfer of heat when laser irradiation is applied to water containing a suspension of gold nanorods coated with different polyelectrolytes. The ubiquitous well plate was used as the geometry for these studies. The predictions of a finite element model were compared to experimental measurements. It is found that relatively high fluences must be applied in order to generate biologically relevant changes in temperature. This is due to the significant lateral heat transfer from the sides of the well, which strongly limits the temperature that can be achieved. A 650 mW continuous-wave (CW) laser, with a wavelength that is similar to the longitudinal plasmon resonance peak of the gold nanorods, can deliver heat with an overall efficiency of up to 3%. This is double the efficiency achievable without the nanorods. An increase in temperature of up to 15 °C can be achieved, which is suitable for the induction of cell death by hyperthermia. The nature of the polymer coating on the surface of the gold nanorods is found to have a small effect.
Collapse
Affiliation(s)
- Sujin Jiracheewanun
- Department of Mechanical Technology Education, Faculty of Industrial Education and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10400, Thailand
| | - Michael B. Cortie
- School of Mechanical, Materials, Mechatronics and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
| | - Dakrong Pissuwan
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
29
|
Chiang J, Sparks H, Rink JS, Meloni MF, Hao F, Sung KH, Lee EW. Dynamic Contrast-Enhanced MR Imaging Evaluation of Perfusional Changes and Ablation Zone Size after Combination Embolization and Ablation Therapy. J Vasc Interv Radiol 2023; 34:253-260. [PMID: 36368517 DOI: 10.1016/j.jvir.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/29/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The objectives of this study were to assess the utility of dynamic contrast-enhanced magnetic resonance (MR) imaging in quantifying parenchymal perfusional changes after embolization and to characterize the association between pharmacokinetic (PK) parameters and final microwave ablation volume. MATERIALS AND METHODS PK parameters from dynamic contrast-enhanced MR imaging were used to quantify perfusional changes in the liver after transarterial embolization of the right or left lobe in a swine liver model (n = 5). Each animal subject subsequently underwent microwave ablation (60 W for 5 minutes) of the embolized and nonembolized liver lobes. Changes in PK parameters from dynamic contrast-enhanced MR imaging were correlated with their respective final microwave ablation volumes in each liver lobe. RESULTS Microwave ablation volumes of embolized liver lobes were significantly larger than those of nonembolized liver lobes (28.0 mL ± 6.2 vs 15.1 mL ± 5.2, P < .001). PK perfusion parameters were significantly lower in embolized liver lobes than in nonembolized liver lobes (Ktrans = 0.69 min-1 ± 0.15 vs 1.52 min-1 ± 0.37, P < .001; kep = 0.69 min-1 ± 0.19 vs 1.54 min-1 ± 0.42, P < .001). There was a moderate but significant correlation between normalized kep and ablation volume, with each unit increase in normalized kep corresponding to a 9.8-mL decrease in ablation volume (P = .035). CONCLUSIONS PK-derived parameters from dynamic contrast-enhanced MR imaging can be used to quantify perfusional changes after transarterial embolization and are directly inversely correlated with final ablation volume.
Collapse
Affiliation(s)
- Jason Chiang
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, California.
| | - Hiro Sparks
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Johann S Rink
- Department of Clinical Radiology and Nuclear Medicine, University Hospital Mannheim, Mannheim, Germany
| | - M Franca Meloni
- Casa di Cura Igea Milano, Inteventional Radiology, Department of Radiology, Casa di Cura Igea, Milan, Italy
| | - Frank Hao
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Kyung H Sung
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Edward W Lee
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| |
Collapse
|
30
|
Burden B, Rodriguez-Alvarez JS, Levi N, Gayzik FS. Application of survival analysis to model proliferation likelihood of Escherichia coli biofilm following laser-induced hyperthermia treatment. Front Bioeng Biotechnol 2023; 11:1001017. [PMID: 36761303 PMCID: PMC9903214 DOI: 10.3389/fbioe.2023.1001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Eighty percent of bacterial infections associated with living tissue and medical devices are linked to drug-resistant biofilms, leading to lengthy and costly recoveries. Laser-induced hyperthermia can disrupt cell proliferation within biofilms and increase susceptibility to antibiotics. However, there can be bacterial survival differences dependent upon laser irradiation times, and prolonged time at elevated temperature can damage healthy tissue. The objective of this study was to use survival analysis to model the impact of temperature increases on reducing viable biofilm bacteria. In vitro biofilms of Escherichia coli were grown on silicone discs or silicone doped with photothermal poly(3,4-ethylenedioxythiophene) hydrate (PEDOT) nanotubes, and subjected to laser-induced hyperthermia, using a 3 W continuous wave laser at 800 nm for varying times. The number of colony forming units per milliliter (CFU/mL) and maximum temperature were measured after each trial. Survival analysis was employed to estimate bacterial cell proliferation post-treatment to provide a quantitative framework for future studies evaluating photothermal inactivation of bacterial biofilms. The results demonstrate the first application of survival analysis for predicting the likelihood of bacterial cell proliferation based on temperature.
Collapse
Affiliation(s)
- Bradley Burden
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - F. Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States,*Correspondence: F. Scott Gayzik,
| |
Collapse
|
31
|
Temperature Dependence of Thermal Properties of Ex Vivo Porcine Heart and Lung in Hyperthermia and Ablative Temperature Ranges. Ann Biomed Eng 2023; 51:1181-1198. [PMID: 36656452 PMCID: PMC10172290 DOI: 10.1007/s10439-022-03122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/25/2022] [Indexed: 01/20/2023]
Abstract
This work proposes the characterization of the temperature dependence of the thermal properties of heart and lung tissues from room temperature up to > 90 °C. The thermal diffusivity (α), thermal conductivity (k), and volumetric heat capacity (Cv) of ex vivo porcine hearts and deflated lungs were measured with a dual-needle sensor technique. α and k associated with heart tissue remained almost constant until ~ 70 and ~ 80 °C, accordingly. Above ~ 80 °C, a more substantial variation in these thermal properties was registered: at 94 °C, α and k respectively experienced a 2.3- and 1.5- fold increase compared to their nominal values, showing average values of 0.346 mm2/s and 0.828 W/(m·K), accordingly. Conversely, Cv was almost constant until 55 °C and decreased afterward (e.g., Cv = 2.42 MJ/(m3·K) at 94 °C). Concerning the lung tissue, both its α and k were characterized by an exponential increase with temperature, showing a marked increment at supraphysiological and ablative temperatures (at 91 °C, α and k were equal to 2.120 mm2/s and 2.721 W/(m·K), respectively, i.e., 13.7- and 13.1-fold higher compared to their baseline values). Regression analysis was performed to attain the best-fit curves interpolating the measured data, thus providing models of the temperature dependence of the investigated properties. These models can be useful for increasing the accuracy of simulation-based preplanning frameworks of interventional thermal procedures, and the realization of tissue-mimicking materials.
Collapse
|
32
|
Wang N, Li M, Haverinen P. Photon-counting computed tomography thermometry via material decomposition and machine learning. Vis Comput Ind Biomed Art 2023; 6:2. [PMID: 36640198 PMCID: PMC9840722 DOI: 10.1186/s42492-022-00129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Thermal ablation procedures, such as high intensity focused ultrasound and radiofrequency ablation, are often used to eliminate tumors by minimally invasively heating a focal region. For this task, real-time 3D temperature visualization is key to target the diseased tissues while minimizing damage to the surroundings. Current computed tomography (CT) thermometry is based on energy-integrated CT, tissue-specific experimental data, and linear relationships between attenuation and temperature. In this paper, we develop a novel approach using photon-counting CT for material decomposition and a neural network to predict temperature based on thermal characteristics of base materials and spectral tomographic measurements of a volume of interest. In our feasibility study, distilled water, 50 mmol/L CaCl2, and 600 mmol/L CaCl2 are chosen as the base materials. Their attenuations are measured in four discrete energy bins at various temperatures. The neural network trained on the experimental data achieves a mean absolute error of 3.97 °C and 1.80 °C on 300 mmol/L CaCl2 and a milk-based protein shake respectively. These experimental results indicate that our approach is promising for handling non-linear thermal properties for materials that are similar or dissimilar to our base materials.
Collapse
Affiliation(s)
- Nathan Wang
- grid.21107.350000 0001 2171 9311Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Mengzhou Li
- grid.33647.350000 0001 2160 9198Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Petteri Haverinen
- grid.5373.20000000108389418Aalto Design Factory, Aalto University, Espoo, 02150 Finland
| |
Collapse
|
33
|
Kim K, Diederich C, Narsinh K, Ozhinsky E. Motion-robust, multi-slice, real-time MR thermometry for MR-guided thermal therapy in abdominal organs. Int J Hyperthermia 2023; 40:2151649. [PMID: 36535967 PMCID: PMC10269483 DOI: 10.1080/02656736.2022.2151649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To develop an effective and practical reconstruction pipeline to achieve motion-robust, multi-slice, real-time MR thermometry for monitoring thermal therapy in abdominal organs. METHODS The application includes a fast spiral magnetic resonance imaging (MRI) pulse sequence and a real-time reconstruction pipeline based on multi-baseline proton resonance frequency shift (PRFS) method with visualization of temperature imaging. The pipeline supports multi-slice acquisition with minimal reconstruction lag. Simulations with a virtual motion phantom were performed to investigate the influence of the number of baselines and respiratory rate on the accuracy of temperature measurement. Phantom experiments with ultrasound heating were performed using a custom-made motion phantom to evaluate the performance of the pipeline. Lastly, experiments in healthy volunteers (N = 2) without heating were performed to evaluate the accuracy and stability of MR thermometry in abdominal organs (liver and kidney). RESULTS The multi-baseline approach with greater than 25 baselines resulted in minimal temperature errors in the simulation. Phantom experiments demonstrated a 713 ms update time for 3-slice acquisitions. Temperature maps with 30 baselines showed clear temperature distributions caused by ultrasound heating in the respiratory phantom. Finally, the pipeline was evaluated with physiologic motions in healthy volunteers without heating, which demonstrated the accuracy (root mean square error [RMSE]) of 1.23 ± 0.18 °C (liver) and 1.21 ± 0.17 °C (kidney) and precision of 1.13 ± 0.11 °C (liver) and 1.16 ± 0.15 °C (kidney) using 32 baselines. CONCLUSIONS The proposed real-time acquisition and reconstruction pipeline allows motion-robust, multi-slice, real-time temperature monitoring within the abdomen during free breathing.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Chris Diederich
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Kazim Narsinh
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| |
Collapse
|
34
|
Moradi Kashkooli, Jakhmola A, Ferrier GA, Hornsby TK, Tavakkoli J(J, Kolios MC. Integrating Therapeutic Ultrasound With Nanosized Drug Delivery Systems in the Battle Against Cancer. Technol Cancer Res Treat 2023; 22:15330338231211472. [PMID: 37946517 PMCID: PMC10637173 DOI: 10.1177/15330338231211472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2017] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
Controlled, localized, and timely activation of nanosized drug delivery systems (NSDDSs), using an external stimulus such as therapeutic ultrasound (TUS), can improve the efficacy of cancer treatments compared to either conventional chemotherapy methods or passive NSDDSs alone. Specifically, TUS induces thermal and mechanical effects that trigger drug release from NSDDSs and overcomes drug delivery barriers in tumor microenvironments to allow nanoparticle drug carriers to penetrate more deeply into tumor tissue while minimizing side effects. This review highlights recent advancements, contemplates future prospects, and addresses challenges in using TUS-mediated NSDDSs for cancer treatment, encompassing preclinical and clinical applications.
Collapse
Affiliation(s)
- Moradi Kashkooli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Graham A. Ferrier
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Tyler K. Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Jahangir (Jahan) Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
35
|
Kernot D, Yang J, Williams N, Thomas T, Ledger P, Arora H, van Loon R. Transient changes during microwave ablation simulation : a comparative shape analysis. Biomech Model Mechanobiol 2023; 22:271-280. [PMID: 36287313 PMCID: PMC9957862 DOI: 10.1007/s10237-022-01646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
Abstract
Microwave ablation therapy is a hyperthermic treatment for killing cancerous tumours whereby microwave energy is dispersed into a target tissue region. Modelling can provide a prediction for the outcome of ablation, this paper explores changes in size and shape of temperature and Specific absorption rate fields throughout the course of simulated treatment with different probe concepts. Here, an axisymmetric geometry of a probe embedded within a tissue material is created, solving coupled electromagnetic and bioheat equations using the finite element method, utilizing hp discretisation with the NGSolve library. Results show dynamic changes across all metrics, with different responses from different probe concepts. The sleeve probe yielded the most circular specific absorption rate pattern with circularity of 0.81 initially but suffered the largest reduction throughout ablation. Similarly, reflection coefficients differ drastically from their initial values, with the sleeve probe again experiencing the largest change, suggesting that it is the most sensitive the changes in the tissue dielectric properties in these select probe designs. These collective characteristic observations highlight the need to consider dielectric property changes and probe specific responses during the design cycle.
Collapse
Affiliation(s)
- Dale Kernot
- School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Fabian Way, Swansea, Glamorgan, SA1 8EN, UK.
| | - Jimmy Yang
- Olympus Surgical Technologies Europe, Fortran road, Cardiff, Glamorgan CF3 0LT UK
| | - Nicholas Williams
- Olympus Surgical Technologies Europe, Fortran road, Cardiff, Glamorgan CF3 0LT UK
| | - Tudor Thomas
- Olympus Surgical Technologies Europe, Fortran road, Cardiff, Glamorgan CF3 0LT UK
| | - Paul Ledger
- grid.9757.c0000 0004 0415 6205School of Computing and Mathematics, Keele University, Keele, Staffordshire ST5 5BG UK
| | - Hari Arora
- grid.4827.90000 0001 0658 8800School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Fabian Way, Swansea, Glamorgan SA1 8EN UK
| | - Raoul van Loon
- grid.4827.90000 0001 0658 8800School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Fabian Way, Swansea, Glamorgan SA1 8EN UK
| |
Collapse
|
36
|
Recent Clinical and Preclinical Advances in External Stimuli-Responsive Therapies for Head and Neck Squamous Cell Carcinoma. J Clin Med 2022; 12:jcm12010173. [PMID: 36614974 PMCID: PMC9821160 DOI: 10.3390/jcm12010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has long been one of the most prevalent cancers worldwide; even though treatments such as surgery, chemotherapy, radiotherapy and immunotherapy have been proven to benefit the patients and prolong their survival time, the overall five-year survival rate is still below 50%. Hence, the development of new therapies for better patient management is an urgent need. External stimuli-responsive therapies are emerging therapies with promising antitumor effects; therapies such as photodynamic (PDT) and photothermal therapies (PTT) have been tested clinically in late-stage HNSCC patients and have achieved promising outcomes, while the clinical translation of sonodynamic therapy (SDT), radiodynamic therapy (RDT), microwave dynamic/thermodynamic therapy, and magnetothermal/magnetodynamic therapy (MDT/MTT) still lag behind. In terms of preclinical studies, PDT and PTT are also the most extensively studied therapies. The designing of nanoparticles and combinatorial therapies of PDT and PTT can be referenced in designing other stimuli-responsive therapies in order to achieve better antitumor effects as well as less toxicity. In this review, we consolidate the advancements and limitations of various external stimuli-responsive therapies, as well as critically discuss the prospects of this type of therapies in HNSCC treatments.
Collapse
|
37
|
Locatelli A, Treggiari E, Innocenti M, Romanelli G. Percutaneous ultrasound-guided microwave ablation for treatment of hepatocellular carcinomas in dogs: four cases (2019-2020). J Small Anim Pract 2022; 63:897-903. [PMID: 36000486 DOI: 10.1111/jsap.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To describe ultrasound-guided microwave ablation as a minimally invasive treatment option for primary or metastatic hepatocellular carcinomas. METHODS Four client-owned dogs underwent percutaneous ultrasound-guided microwave ablation of three primary and one metastatic hepatocellular carcinoma, diagnosed on cytology/histopathology. In each case, multiple ultrasound-guided thermal lesions were created in a 10 to 40 minutes ablation at 30 to 35 W. Real-time monitoring was performed using 10 MHz diagnostic ultrasound transducers. The procedures were performed without complication and CT scans or abdominal ultrasounds were repeated immediately after. Patients were discharged on oral analgesia on the same day or 24 hours later. RESULTS Hepatocellular carcinomas were successfully ablated, which in some cases resulted in an improvement in clinical signs and laboratory values. The patients were followed up for a time ranging between 39 and 649 days and no evidence of disease progression was found. Three out of four patients are still alive at the time of writing. CLINICAL SIGNIFICANCE In these four patients, minimally invasive ultrasound-guided microwave ablation was feasible and resulted in no immediate complications. Regular imaging follow-up is recommended after the procedure and further studies on microwave ablation are warranted to establish its effectiveness in dogs with hepatocellular carcinomas.
Collapse
Affiliation(s)
- A Locatelli
- Centro Specialistico Veterinario, 20141, Milan, Italy
| | - E Treggiari
- Centro Specialistico Veterinario, 20141, Milan, Italy
| | - M Innocenti
- Centro Specialistico Veterinario, 20141, Milan, Italy
| | - G Romanelli
- Centro Specialistico Veterinario, 20141, Milan, Italy
| |
Collapse
|
38
|
Henglei R, Chunli G, Min L, Liang Z. Bimetallic Au–Pd nanoparticles/RGO as theranostic nanoplatform for photothermal therapy of throat cancer - an in vitro approach. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
van Oossanen R, Godart J, Brown JMC, Maier A, Pignol JP, Denkova AG, Djanashvili K, van Rhoon GC. Feasibility Study on the Radiation Dose by Radioactive Magnetic Core-Shell Nanoparticles for Open-Source Brachytherapy. Cancers (Basel) 2022; 14:cancers14225497. [PMID: 36428590 PMCID: PMC9688633 DOI: 10.3390/cancers14225497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Treatment of early-stage breast cancer currently includes surgical removal of the tumor and (partial) breast irradiation of the tumor site performed at fractionated dose. Although highly effective, this treatment is exhaustive for both patient and clinic. In this study, the theoretical potential of an alternative treatment combining thermal ablation with low dose rate (LDR) brachytherapy using radioactive magnetic nanoparticles (RMNPs) containing 103-palladium was researched. METHODS The radiation dose characteristics and emission spectra of a single RMNP were calculated, and dose distributions of a commercial brachytherapy seed and an RMNP brachytherapy seed were simulated using Geant4 Monte Carlo toolkit. RESULTS It was found that the RMNP seeds deliver a therapeutic dose similar to currently used commercial seed, while the dose distribution shows a spherical fall off compared to the more inhomogeneous dose distribution of the commercial seed. Changes in shell thickness only changed the dose profile between 2 × 10-4 mm and 3 × 10-4 mm radial distance to the RMNP, not effecting long-range dose. CONCLUSION The dose distribution of the RMNP seed is comparable with current commercial brachytherapy seeds, while anisotropy of the dose distribution is reduced. Because this reduces the dependency of the dose distribution on the orientation of the seed, their surgical placement is easier. This supports the feasibility of the clinical application of the proposed novel treatment modality.
Collapse
Affiliation(s)
- Rogier van Oossanen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015GD Rotterdam, The Netherlands
- Department of Radiation Science and Technology, TU Delft, 2629JB Delft, The Netherlands
- Correspondence:
| | - Jeremy Godart
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015GD Rotterdam, The Netherlands
| | - Jeremy M. C. Brown
- Department of Radiation Science and Technology, TU Delft, 2629JB Delft, The Netherlands
- Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Alexandra Maier
- Department of Radiation Science and Technology, TU Delft, 2629JB Delft, The Netherlands
- Department of Biotechnology, TU Delft, 2629HZ Delft, The Netherlands
| | - Jean-Philippe Pignol
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015GD Rotterdam, The Netherlands
| | - Antonia G. Denkova
- Department of Radiation Science and Technology, TU Delft, 2629JB Delft, The Netherlands
| | - Kristina Djanashvili
- Department of Radiation Science and Technology, TU Delft, 2629JB Delft, The Netherlands
- Department of Biotechnology, TU Delft, 2629HZ Delft, The Netherlands
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015GD Rotterdam, The Netherlands
- Department of Radiation Science and Technology, TU Delft, 2629JB Delft, The Netherlands
| |
Collapse
|
40
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH, Khan AA. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1257-1287. [PMID: 36209487 PMCID: PMC9759771 DOI: 10.1002/cac2.12366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023]
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9), an adaptive microbial immune system, has been exploited as a robust, accurate, efficient and programmable method for genome targeting and editing. This innovative and revolutionary technique can play a significant role in animal modeling, in vivo genome therapy, engineered cell therapy, cancer diagnosis and treatment. The CRISPR/Cas9 endonuclease system targets a specific genomic locus by single guide RNA (sgRNA), forming a heteroduplex with target DNA. The Streptococcus pyogenes Cas9/sgRNA:DNA complex reveals a bilobed architecture with target recognition and nuclease lobes. CRISPR/Cas9 assembly can be hijacked, and its nanoformulation can be engineered as a delivery system for different clinical utilizations. However, the efficient and safe delivery of the CRISPR/Cas9 system to target tissues and cancer cells is very challenging, limiting its clinical utilization. Viral delivery strategies of this system may have many advantages, but disadvantages such as immune system stimulation, tumor promotion risk and small insertion size outweigh these advantages. Thus, there is a desperate need to develop an efficient non-viral physical delivery system based on simple nanoformulations. The delivery strategies of CRISPR/Cas9 by a nanoparticle-based system have shown tremendous potential, such as easy and large-scale production, combination therapy, large insertion size and efficient in vivo applications. This review aims to provide in-depth updates on Streptococcus pyogenic CRISPR/Cas9 structure and its mechanistic understanding. In addition, the advances in its nanoformulation-based delivery systems, including lipid-based, polymeric structures and rigid NPs coupled to special ligands such as aptamers, TAT peptides and cell-penetrating peptides, are discussed. Furthermore, the clinical applications in different cancers, clinical trials and future prospects of CRISPR/Cas9 delivery and genome targeting are also discussed.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health SciencesCollege of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| |
Collapse
|
41
|
Koirala N, Joshi J, Duffy SF, McLennan G. Percutaneous-Reinforced Osteoplasty: A Review of Emerging Treatment Strategies for Bone Interventions. J Clin Med 2022; 11:jcm11195572. [PMID: 36233434 PMCID: PMC9571370 DOI: 10.3390/jcm11195572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Percutaneous-reinforced osteoplasty is currently being investigated as a possible therapeutic procedure for fracture stabilization in high-risk patients, primarily in patients with bone metastases or osteoporosis. For these patients, a percutaneous approach, if structurally sound, can provide a viable method for treating bone fractures without the physiologic stress of anesthesia and open surgery. However, the low strength of fixation is a common limitation that requires further refinement in scaffold design and selection of materials, and may potentially benefit from tissue-engineering-based regenerative approaches. Scaffolds that have tissue regenerative properties and low inflammatory response promote rapid healing at the fracture site and are ideal for percutaneous applications. On the other hand, preclinical mechanical tests of fracture-repaired specimens provide key information on restoration strength and long-term stability and enable further design optimization. This review presents an overview of percutaneous-reinforced osteoplasty, emerging treatment strategies for bone repair, and basic concepts of in vitro mechanical characterization.
Collapse
Affiliation(s)
- Nischal Koirala
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | - Stephen F. Duffy
- Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | - Gordon McLennan
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
42
|
Pasek-Allen JL, Kantesaria S, Gangwar L, Shao Q, Gao Z, Idiyatullin D, Han Z, Etheridge ML, Garwood M, Jagadeesan BD, Bischof JC. Injectable and Repeatable Inductive Heating of Iron Oxide Nanoparticle-Enhanced "PHIL" Embolic toward Tumor Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41659-41670. [PMID: 36070361 DOI: 10.1021/acsami.2c05941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep-seated tumors of the liver, brain, and other organ systems often recur after initial surgical, chemotherapeutic, radiation, or focal treatments. Repeating these treatments is often invasive and traumatic. We propose an iron oxide nanoparticle (IONP)-enhanced precipitating hydrophobic injectable liquid (PHIL, MicroVention inc.) embolic as a localized dual treatment implant for nutrient deprivation and multiple repeatable thermal ablation. Following a single injection, multiple thermal treatments can be repeated as needed, based on monitoring of tumor growth/recurrence. Herein we show the ability to create an injectable stable PHIL-IONP solution, monitor deposition of the PHIL-IONP precipitate dispersion by μCT, and gauge the IONP distribution within the embolic by magnetic resonance imaging. Once precipitated, the implant could be heated to reach therapeutic temperatures >8 °C for thermal ablation (clinical temperature of ∼45 °C), in a model disk and a 3D tumor bed model. Heat output was not affected by physiological conditions, multiple heating sessions, or heating at intervals over a 1 month duration. Further, in ex vivo mice hind-limb tumors, we could noninvasively heat the embolic to an "ablative" temperature elevation of 17 °C (clinically 54 °C) in the first 5 min and maintain the temperature rise over +8 °C (clinically a temperature of 45 °C) for longer than 15 min.
Collapse
Affiliation(s)
- Jacqueline L Pasek-Allen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Saurin Kantesaria
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lakshya Gangwar
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhe Gao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Djaudat Idiyatullin
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael Garwood
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bharathi D Jagadeesan
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Radiology, Neurology and Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
43
|
Taneja N, Alam A, Patnaik RS, Taneja T. Current Trends in Anticancer Drug Delivery System for Oral Cancer- A PRISMA complaint Systematic Review. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2206275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background:
Oral cancer is a deadly disease affecting worldwide. Despite developments of conventional cancer therapy, there has been little improvement in the survival rates. This culminated in the evolution of a targeted. New Drug Delivery System, discovering novel objectives for successful drug delivery and synergistic combination of anticancer agents to minimize side effects.
Objective:
The main focus was on understanding the various aspects of different targeted drug delivery vehicles used in the treatment of oral cancer including advantages, disadvantages, and future perspectives.
Materials and Methods:
A literature search was accomplished from 2005 to 2020 via Google scholar. PubMed, EBSCO, Embase, and Scopus databases along with Clinical trials registries using the terms oral buccal thin films, Hyperthermia and Thermoablation, Intra-tumoral, Photodynamic, Immunotherapy, photothermal, and ultrasound therapy in oral cancer. The articles were scrutinized and those which were not relevant to our search were omitted. Clinical trials on targeted drug delivery systems for Oral Cancer being conducted or completed around the world from various registries of clinical trials have also been searched out and the findings were tabulated in the end. The PRISMA 2020 guidelines were followed.
Results:
The treatment of oral squamous cell carcinoma (OSCC) mostly depends upon the location, type, and stage of the tumor. Vivid targeted drug delivery systems are being used in the therapeutic interventions of oral cancer as they aim for specific target site delivery and are the most appropriate treatment. Active Pharmacological Ingredient (API) is taken to the targeting site, sparing non-target organs or cells, triggering selective and efficient localization, thereby maximizing the therapeutic index with minimizing toxicity. The successful targeted drug delivery system works on four principles i.e. Retain, Evade, Target and Release, which means loading of sufficient drug into a suitable drug carrier, does not affect body secretions, long duration in circulation, reaching the targeted site and, drug release within the time for effective functioning of the drug. All techniques described in this paper have proven to show effective results.
Conclusion:
Oral Cancer is an emerging public health problem worldwide. Various conventional therapies are used for treating oral cancer, but they enclose variable degrees of side effects both on the body as well as the cellular microenvironment. With advanced technology, many other aids have been introduced in the field of oncology to treat oral cancer with minimal side effects. All techniques described in this paper have proven to show effective results in the therapeutic interventions of oral cancer. Moreover, they can be used even in combination with conventional drug therapy to show beneficial outcomes. Several clinical trials are being conducted and completed in this aspect to investigate definite results of these therapies, yet robust research is needed for further confirmation.
Collapse
|
44
|
Niu Q, Sun Q, Bai R, Zhang Y, Zhuang Z, Zhang X, Xin T, Chen S, Han B. Progress of Nanomaterials-Based Photothermal Therapy for Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:10428. [PMID: 36142341 PMCID: PMC9499573 DOI: 10.3390/ijms231810428] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the top 15 most prevalent cancers worldwide. However, the current treatment models for OSCC (e.g., surgery, chemotherapy, radiotherapy, and combination therapy) present several limitations: damage to adjacent healthy tissue, possible recurrence, low efficiency, and severe side effects. In this context, nanomaterial-based photothermal therapy (PTT) has attracted extensive research attention. This paper reviews the latest progress in the application of biological nanomaterials for PTT in OSCC. We divide photothermal nanomaterials into four categories (noble metal nanomaterials, carbon-based nanomaterials, metal compounds, and organic nanomaterials) and introduce each category in detail. We also mention in detail the drug delivery systems for PTT of OSCC and briefly summarize the applications of hydrogels, liposomes, and micelles. Finally, we note the challenges faced by the clinical application of PTT nanomaterials and the possibility of further improvement, providing direction for the future research of PTT in OSCC treatment.
Collapse
Affiliation(s)
- Qin Niu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Qiannan Sun
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Rushui Bai
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Zimeng Zhuang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Si Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
45
|
Cao Y, Chen Z, Ran H. In vivo photoacoustic image-guided tumor photothermal therapy and real-time temperature monitoring using a core-shell polypyrrole@CuS nanohybrid. NANOSCALE 2022; 14:12069-12076. [PMID: 35947015 DOI: 10.1039/d2nr02848d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Near-infrared (NIR) laser triggered theranostic platforms are increasingly used in clinical nanomedicine applications. In this work, a core-shell composite consisting of polypyrrole (PPy) coated copper sulfide (CuS) nanospheres with high photothermal efficiency and good photostability has been fabricated via a facile interfacial polymerization. The PPy@CuS nanohybrid had a hydrodynamic diameter of 58.5 nm with a CuS core and PPy shell and exhibited strong optical absorption and photon-to-heat conversion in the NIR region, leading to a sufficient photohyperthermic effect under irradiation with a 808 nm continuous wave laser. In vivo studies showed that the Ppy@CuS nanohybrids produced significant photoacoustic signals and exhibited remarkable photothermal therapeutic efficacy. Furthermore, the core-shell composites exhibited improved temperature elevation and photostability. The temperature-induced changes can be detected and monitored using photoacoustic imaging, thus allowing the control of the thermal dose while minimizing photothermal damage to surrounding healthy tissues. In summary, this study demonstrates that this novel platform could potentially be used for photoacoustic image-guided photothermal therapy and real-time temperature monitoring in cancer theranostics.
Collapse
Affiliation(s)
- Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - Ziqun Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
46
|
Khurana D, Dudi R, Shukla SK, Singh D, Mondhe DM, Soni S. Gold nanoblackbodies mediated plasmonic photothermal cancer therapy for melanoma. Nanomedicine (Lond) 2022; 17:1323-1338. [PMID: 36136404 DOI: 10.2217/nnm-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Gold nanoblackbodies (AuNBs)-mediated plasmonic photothermal cancer therapy was investigated through melanoma-bearing mice. Materials & methods: Polydopamine-coated Au nanoclusters were synthesized, termed AuNBs and PEGylated AuNBs (AuNBs-PEG). The photothermal response of AuNBs-PEG was evaluated upon low-intensity broadband near-infrared irradiation (785/62 nm; 0.9 Wcm-2), and cytotoxicity was assessed on B16-F10 cells. Further, the therapeutic potential of intravenously administered AuNBs-PEG was evaluated on B16-F10 melanoma in C57BL/6 mice. Results: AuNBs-PEG showed an excellent photothermal response (photothermal conversion efficiency of 60.3%), robust photothermal stability and no cytotoxicity. For AuNB-mediated plasmonic photothermal therapy, an average temperature of 63°C was attained within 5 min of irradiation, and tumors were eradicated. Conclusion: AuNBs-PEG are promising photothermal agents for treating melanoma through low-intensity broadband near-infrared irradiation.
Collapse
Affiliation(s)
- Divya Khurana
- CSIR-Central Scientific Instruments Organisation, Chandigarh, 160030, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajesh Dudi
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sanket K Shukla
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Deepika Singh
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | | | - Sanjeev Soni
- CSIR-Central Scientific Instruments Organisation, Chandigarh, 160030, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
47
|
Koebe SD, Curci NE, Caoili EM, Triche BL, Dreyfuss LD, Allen GO, Brace CL, Davenport MS, Abel EJ, Wells SA. Contrast-enhanced CT immediately following percutaneous microwave ablation of cT1a renal cell carcinoma: Optimizing cancer outcomes. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:2674-2680. [PMID: 35278110 DOI: 10.1007/s00261-022-03481-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To evaluate the effect of intra-procedural contrast-enhanced CT (CECT) and same-session repeat ablation (SSRA) on primary efficacy, the complete eradication of tumor after the first ablation session as confirmed on first imaging follow-up, of clinically localized T1a (cT1a) renal cell carcinoma (RCC). METHODS 398 consecutive patients with cT1a RCC were treated with cryoablation between 10/2003 and 12/2017, radiofrequency (RFA) or microwave ablation (MWA) between 1/2010 and 12/2017. SSRA was performed for residual tumor identified on intra-procedural CECT. Kruskal-Wallis and Pearson's chi-squared tests were performed to assess differences in continuous and categorical variables, respectively. Multivariate linear regression was used to determine predictors for primary efficacy and decline in estimated glomerular filtration rate. RESULTS 347 consecutive patients (231 M, mean age 67.5 ± 9.1 years) were included. Median tumor diameter was smaller [2.5 vs 2.7 vs 2.6 (p = 0.03)] and RENAL Nephrometry Score (NS) was lower [6 vs 7 vs 7 (p = 0.009] for MWA compared to the RFA and cryoablation cohorts, respectively. Primary efficacy was higher in the MWA cohort [99.4% (170/171)] compared to the RFA [91.4% (85/93)] and cryoablation [92.8% (77/83)] cohorts (p = 0.001). Microwave ablation and SSRA was associated with higher primary efficacy on multivariate linear regression (p = 0.01-0.03). CONCLUSION MWA augmented by SSRA, when residual tumor is identified on intra-procedural CECT, may improve primary efficacy for cT1a RCC.
Collapse
Affiliation(s)
- Samuel D Koebe
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nicole E Curci
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Elaine M Caoili
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Leo D Dreyfuss
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Glenn O Allen
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Christopher L Brace
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | | | - E Jason Abel
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Urology, University of Wisconsin, Madison, WI, USA
| | - Shane A Wells
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Department of Radiology, University of Wisconsin, Madison, WI, USA.
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/376. 600 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
48
|
Chen CC, Chen HL, Chiang PL, Luo SD, Chang YH, Chen WC, Wang CK, Lin AN, Chen YS, Chi SY, Lin WC. Efficacy and safety of radiofrequency ablation for primary and secondary hyperparathyroidism with or without previous parathyroidectomy: a retrospective study. Int J Hyperthermia 2022; 39:907-917. [PMID: 35848429 DOI: 10.1080/02656736.2022.2097324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
INTRODUCTION This study aimed to investigate and compare the therapeutic efficacy and safety of ultrasound-guided radiofrequency ablation (RFA), between primary hyperparathyroidism (PHPT) and secondary hyperparathyroidism (SHPT) patients, with or without previous parathyroidectomy (PTX). SUBJECTS AND METHODS A total of 21 patients (7 PHPT, 14 SHPT) underwent RFA for hyperparathyroidism (HPT) at Kaohsiung Chang Gung Memorial Hospital, Taiwan. Five of the 14 SHPT patients had previously received PTX. The laboratory data, volume change of each parathyroid nodule, symptomatic scores, and complications were analyzed and compared between all groups at 1 and 7 days, and at 1, 3, 6, and 12 months after RFA. RESULTS After RFA, the volume reduction ratio (VRR) for all patients at the last follow-up was 93.76%, and clinical symptoms significantly improved. At 12 months, all PHPT patients achieved successful treatment of intact PTH (iPTH). In SHPT patients, the mean iPTH value significantly decreased 1-day post-RFA, subsequently exhibiting a transient rebound which proceeded to decrease, with 57.1% reaching successful treatment standards. SHPT patients with PTX showed a lower complication score, shorter ablation time, higher iPTH baseline and outcomes, and lower VRR, compared to patients without PTX. The serum calcium level significantly decreased to normal range in 85.7% of all patients at 12 months. Severe hypocalcemia occurred in 23.8% at 1 week, and all were corrected with calcium supplements. CONCLUSIONS RFA demonstrates a therapeutic efficacy similar to PTX. It can thus be considered an effective alternative treatment for PHPT, SHPT, or post-PTX patients who are unsuitable for another PTX.
Collapse
Affiliation(s)
- Chi-Cheng Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pi-Ling Chiang
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Hsiang Chang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Chih Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Kang Wang
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - An-Ni Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Sheng Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shun-Yu Chi
- Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Abrishami Kashani M, Campbell-Washburn AE, Murphy MC, Catalano OA, McDermott S, Fintelmann FJ. Magnetic Resonance Imaging for Guidance and Follow-up of Thoracic Needle Biopsies and Thermal Ablations. J Thorac Imaging 2022; 37:201-216. [PMID: 35426857 PMCID: PMC10441002 DOI: 10.1097/rti.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Magnetic resonance imaging (MRI) is used for the guidance and follow-up of percutaneous minimally invasive interventions in many body parts. In the thorax, computed tomography (CT) is currently the most used imaging modality for the guidance and follow-up of needle biopsies and thermal ablations. Compared with CT, MRI provides excellent soft tissue contrast, lacks ionizing radiation, and allows functional imaging. The role of MRI is limited in the thorax due to the low hydrogen proton density and many air-tissue interfaces of the lung, as well as respiratory and cardiac motion. Here, we review the current experience of MR-guided thoracic needle biopsies and of MR-guided thermal ablations targeting lesions in the lung, mediastinum, and the chest wall. We provide an overview of MR-compatible biopsy needles and ablation devices. We detail relevant MRI sequences and their relative advantages and disadvantages for procedural guidance, assessment of complications, and long-term follow-up. We compare the advantages and disadvantages of CT and MR for thoracic interventions and identify areas in need of improvement and additional research.
Collapse
Affiliation(s)
| | - Adrienne E Campbell-Washburn
- Division of Intramural Research, Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mark C Murphy
- Division of Thoracic Imaging and Intervention, Department of Radiology
| | - Onofrio A Catalano
- Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | | | | |
Collapse
|
50
|
Das SS, Mahapatra SK. Study of heat sink effect of blood in a bifurcated vessel. Comput Methods Biomech Biomed Engin 2022; 26:721-733. [PMID: 35703320 DOI: 10.1080/10255842.2022.2085998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thermal ablation treatment uses elevated (hyperthermia) or depressed (hypothermia) tissue temperature to destroy tumor cells. The efficacy and effectiveness of thermal ablation therapy is dependent on the tissue temperature which is significantly affected due to heat sink effect of blood flow near the infected site. In this study, Euler-Euler multiphase model is used to analyze the effect of plasma and RBC concentration on the heat sink effect of blood in a bifurcated vessel. This study is divided into two separate cases. First case refers to the study of heat sink effect produced by a tumor patient suffering from HVS (hyperviscosity syndrome) and a normal (without blood disorder) tumor patient during hyperthermia treatment. The second case analyses the effect of RBCs on blood heat transfer. Temperature distribution and transient Nusselt number, which are used to represent heat sink effect, are calculated and compared for different cases of blood disorders. From the results, it is found that a patient with HVS blood disorder produces a smaller heat sink effect during hyperthermia treatment compared to a normal tumor patient. Also, the level of RBC concentration in the blood stream has a minimal effect on heat transfer.
Collapse
Affiliation(s)
- Sidharth Sankar Das
- Department of Mechanical Engineering, IIT Bhubaneswar, Khordha, Odisha, India
| | | |
Collapse
|