1
|
Rezvanitabar A, Jung G, Tekes C, Carpenter TM, Cowell DMJ, Freear S, Degertekin FL. Integrated Hybrid Sub-Aperture Beamforming and Time-Division Multiplexing for Massive Readout in Ultrasound Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:972-980. [PMID: 36074865 PMCID: PMC9796796 DOI: 10.1109/tbcas.2022.3205024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper demonstrates hybrid sub-aperture beamforming (SAB) with time-division multiplexing (TDM) for massive interconnect reduction in ultrasound imaging systems. A single-chip front-end system prototype has been fabricated in 180-nm HV BCD technology that combines 5×1 SAB with 8×1 TDM to efficiently reduce the number of receive signal interconnects by a factor of 40. The system includes on-chip high-voltage (HV) pulsers capable of generating unipolar pulses up to 70 V in transmit (TX) mode. The receiver (RX) chain consists of a T/R switch, a variable-gain low-noise amplifier (VG-LNA) with 4-step gain control (15-32 dB) for time-gain compensation followed by a programmable switched-capacitor analog delay-and-sum beamformer. The proof-of-concept prototype operates at a 200-MHz clock frequency and the SAB provides 32-step fine delays with a maximum delay of 310 ns corresponding to better than λ/20 delay quantization at 5 MHz. With these specifications, the SAB is capable of beam steering from 0 ° to 45 ° for a 5-element subarray with 150-micron pitch ( λ/2), providing a near-ideal phased array imaging performance. The sub-aperture beamformer is followed by the TDM system where each of the 8 channels is sampled at a rate of 25 MS/s after an anti-aliasing bandpass filter. The full functionality of the prototype chip is validated through electrical and acoustic measurements on a 1-D capacitive micromachined ultrasonic transducer (CMUT) array designed for intracardiac echocardiography (ICE).
Collapse
|
2
|
Evolution of Bioamplifiers: From Vacuum Tubes to Highly Integrated Analog Front-Ends. ELECTRONICS 2022. [DOI: 10.3390/electronics11152402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The past century has seen the ongoing development of amplifiers for different electrophysiological signals to study the work of the heart. Since the vacuum tube era, engineers and designers of bioamplifiers for recording electrophysiological signals have been trying to achieve similar objectives: increasing the input impedance and common-mode rejection ratio, as well as reducing power consumption and the size of the bioamplifier. This review traces the evolution of bioamplifiers, starting from circuits on vacuum tubes and discrete transistors through circuits on operational and instrumental amplifiers, and to combined analog-digital solutions on analog front-end integrated circuits. Examples of circuits and their technical features are provided for each stage of the bioamplifier development. Special emphasis is placed on the review of modern analog front-end solutions for biopotential registration, including their generalized structural diagram and table of comparative characteristics. A detailed review of analog front-end circuit integration in various practical applications is provided, with examples of the latest achievements in the field of electrocardiogram, electroencephalogram, and electromyogram registration. The review concludes with key points and insights for the future development of the analog front-end concept applied to bioelectric signal registration.
Collapse
|
3
|
Li D, Cheng W, Cui X, Chen D, Fei C, Yang Y. Echo Signal Receiving and Data Conversion Integrated Circuits for Portable High-Frequency Ultrasonic Imaging System. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1980-1993. [PMID: 35320097 DOI: 10.1109/tuffc.2022.3161293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrasonic imaging has become a very promising technology, and it has been widely applied in biomedicine, geology, and other fields due to its advantages of safety, nondamaging, and real time. Especially, the portable high-frequency (>20 MHz) ultrasonic imaging system (UIS) has been generally used in biomedical detection and diagnosis. In the complex actual environment, the effect of integrated circuits (ICs) on the performance of portable high-frequency UIS is obvious. In the echo signal transmission link, the analog front end (AFE) and the analog-to-digital converter (ADC) are the two most critical modules, where AFE is used to receive and preprocess the analog ultrasonic echo signals and ADC to convert the analog signals from the AFE output to digital. The structure and performance of the ICs integrated into terminal equipment and in-probe for the portable high-frequency UIS are introduced and discussed. Some typical commercial ICs are also summarized. Based on the requirements and challenges of portable high-frequency UIS, the future development directions of ICs mainly include high integration, ultralow power consumption, high speed, and high precision, which can provide valuable reference and advice for the design of AFE and ADC for portable high-frequency UIS.
Collapse
|
4
|
Song J, Zhang Q, Zhou L, Quan Z, Wang S, Liu Z, Fang X, Wu Y, Yang Q, Yin H, Ding M, Yuchi M. Design and Implementation of a Modular and Scalable Research Platform for Ultrasound Computed Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:62-72. [PMID: 34410922 DOI: 10.1109/tuffc.2021.3105691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing attention has been attracted to the research of ultrasound computed tomography (USCT). This article reports the design considerations and implementation details of a novel USCT research system named UltraLucid, which aims to provide a user-friendly platform for researchers to develop new algorithms and conduct clinical trials. The modular design strategy is adopted to make the system highly scalable. A prototype has been assembled in our laboratory, which is equipped with a 2048-element ring transducer, 1024 transmit (TX) channels, 1024 receive (RX) channels, two servers, and a control unit. The prototype can acquire raw data from 1024 channels simultaneously using a modular data acquisition and a transfer system, consisting of 16 excitation and data acquisition (EDAQ) boards. Each EDAQ board has 64 independent TX and RX channels and 4-Gb Ethernet interfaces for raw data transmission. The raw data can be transferred to two servers at a theoretical rate of 64 Gb/s. Both servers are equipped with a 10.9-TB solid-state drive (SSD) array that can store raw data for offline processing. Alternatively, after processing by onboard field-programmable gate arrays (FPGAs), the raw data can be processed online using multicore central processing units (CPUs) and graphics processing units (GPUs) in each server. Through control software running on the host computer, the researchers can configure parameters for transmission, reception, and data acquisition. Novel TX-RX scheme and coded imaging can be implemented. The modular hardware structure and the software-based processing strategy make the system highly scalable and flexible. The system performance is evaluated with phantoms and in vivo experiments.
Collapse
|
5
|
Zhang Y, Demosthenous A. Integrated Circuits for Medical Ultrasound Applications: Imaging and Beyond. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:838-858. [PMID: 34665739 DOI: 10.1109/tbcas.2021.3120886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medical ultrasound has become a crucial part of modern society and continues to play a vital role in the diagnosis and treatment of illnesses. Over the past decades, the development of medical ultrasound has seen extraordinary progress as a result of the tremendous research advances in microelectronics, transducer technology and signal processing algorithms. However, medical ultrasound still faces many challenges including power-efficient driving of transducers, low-noise recording of ultrasound echoes, effective beamforming in a non-linear, high-attenuation medium (human tissues) and reduced overall form factor. This paper provides a comprehensive review of the design of integrated circuits for medical ultrasound applications. The most important and ubiquitous modules in a medical ultrasound system are addressed, i) transducer driving circuit, ii) low-noise amplifier, iii) beamforming circuit and iv) analog-digital converter. Within each ultrasound module, some representative research highlights are described followed by a comparison of the state-of-the-art. This paper concludes with a discussion and recommendations for future research directions.
Collapse
|
6
|
Yang C, Zheng Z, Fang Z, Tang X, Tang K, Liu S, Lou L, Zheng Y. A Super-Sensitivity Photoacoustic Receiver System-on-Chip Based on Coherent Detection and Tracking. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:454-463. [PMID: 34156949 DOI: 10.1109/tbcas.2021.3091627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photoacoustic (PA) imaging is becoming more attractive because it can obtain high-resolution and high-contrast images through merging the merits of optical and acoustic imaging. High sensitivity receiver is required in deep in-vivo PA imaging due to detecting weak and noisy ultrasound signal. A novel photoacoustic receiver system-on-chip (SoC) with coherent detection (CD) based on the early-and-late acquisition and tracking is developed and first fabricated. In this system, a weak PA signal with negative signal-to-noise-ratio (SNR) can be clearly extracted when the tracking loop is locked to the input. Consequently, the output SNR of the receiver is significantly improved by about 29.9 dB than input one. For the system, a high dynamic range (DR) and high sensitivity analog front-end (AFE), a multiplier, a noise shaping (NS) successive-approximation (SAR) analog-to-digital convertor (ADC), a digital-to-analog convertor (DAC) and integrated digital circuits for the proposed system are implemented on-chip. Measurement results show that the receiver achieves 0.18 µVrms sensitivity at the depth of 1 cm with 1 mJ/cm2 laser output fluence. The contrast-to-noise (CNR) of the imaging is improved by about 22.2 dB. The area of the receiver is 5.71 mm2, and the power consumption of each channel is about 28.8 mW with 1.8 V and 1 V power supply on the TSMC 65 nm CMOS process.
Collapse
|
7
|
Bourbakis N, Tsakalakis M. A 3-D Ultrasound Wearable Array Prognosis System With Advanced Imaging Capabilities. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1062-1072. [PMID: 33079649 DOI: 10.1109/tuffc.2020.3032392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the last few decades, the medical and healthcare scientific communities have focused their attention on the use or development of real-time monitoring devices and remote control systems. New generations of wearable, portable, and implantable devices offer better and more accurate measurements/prognosis for those that suffer from diseases and/or disabilities. Thus, there are still challenging issues of current ultrasound imaging (USI) systems, such as low-quality ultrasound images, slow time response to emergencies, and location-based operation. Thus, in response to these challenges, we present a new low-cost, portable/wearable 3-D array ultrasound prognosis system with advanced imaging capabilities that offer high-resolution (HR) accurate results in a near real-time response. The USI unique features are based on 2-D array transducers with 3-D overlapping capabilities and a new image enhancement methodology compatible with the system's structural characteristics to compensate for any loss of image quality. This system will offer an alternative way of ultrasound examination, independent of the radiologist's skills, that is, a system to be capable of automatic scanning of the volume of interest (VOI) without the guidance of the radiologist.
Collapse
|
8
|
Remote control of a robotic prosthesis arm with six-degree-of-freedom for ultrasonic scanning and three-dimensional imaging. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.101606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Kim BH, Lee S, Kim KS. Orthogonal Chirp Coded Excitation in a Capacitive Micro-machined Ultrasonic Transducer Array for Ultrasound Imaging: A Feasibility Study. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19040883. [PMID: 30791619 PMCID: PMC6412236 DOI: 10.3390/s19040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
It has been reported that the frequency bandwidth of capacitive micro-machined ultrasonic transducers (CMUTs) is relatively broader than that of other ceramic-based conventional ultrasonic transducers. In this paper, a feasibility study for orthogonal chirp coded excitation to efficiently make use of the wide bandwidth characteristic of CMUT array is presented. The experimental result shows that the two orthogonal chirps mixed and simultaneously fired in CMUT array can be perfectly separated in decoding process of the received echo signal without sacrificing the frequency bandwidth each chirp. The experimental study also shows that frequency band-divided orthogonal chirps are successfully compressed to two short pulses having the -6 dB axial beam-width of 0.26- and 0.31-micro second for high frequency and low frequency chirp, respectively. B-mode image simulations are performed using Field II to estimate the improvement of image quality assuming that the orthogonal chirps designed for the experiments are used for simultaneous transmission multiple-zone focusing (STMF) technique. The simulation results show that the STMF technique used in CMUT array can improve the lateral resolution up to 77.1% and the contrast resolution up to 74.7%, respectively. It is shown that the penetration depth also increases by more than 3 cm.
Collapse
Affiliation(s)
- Bae-Hyung Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si 16678, Korea.
| | - Seungheun Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si 16678, Korea.
| | - Kang-Sik Kim
- Health & Medical Equipment Department, Samsung Electronics Co. Ltd, Suwon-si 16678, Korea.
| |
Collapse
|
10
|
Won JY, Lee JS. Highly Integrated FPGA-Only Signal Digitization Method Using Single-Ended Memory Interface Input Receivers for Time-of-Flight PET Detectors. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1401-1409. [PMID: 30113901 DOI: 10.1109/tbcas.2018.2865581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose a new highly integrated field-programm-able gate array (FPGA) only signal digitization method for individual signal digitization of time-of-flight positron emission tomography (TOF PET). We configured I/O port of the FPGA with a single-ended memory interface (SeMI) input receiver. The SeMI is a single-ended voltage-referenced interface that has a common reference voltage per I/O Bank, such that each SeMI input receiver can serve as a voltage comparator. The FPGA-only digitizer that uses the single-ended input receivers does not require a separate digitizing integrated chip, and can obtain twice as many signals as that using LVDS input receivers. We implemented a highly integrated digitizer consisting of 82 energy and 82 timing channels using a 28-nm FPGA. The energy and arrival time were measured using a 625-ps binary counter, and a 10-ps time-to-digital converter (TDC), respectively. We first measured the intrinsic characteristics of the proposed FPGA-only digitizer. The SeMI input receiver functioned as the voltage comparator without undesirable offset voltage. The standard deviation value of the time difference measured using two SeMI input receivers with respective TDCs was less than 14.6 ps RMS. In addition, we fed signals from the TOF PET detectors to the SeMI input receivers directly and collected data. The TOF PET detector consisted of a 3 × 3 × 20 mm3 LYSO crystal coupled with a silicon photomultiplier. The energy resolutions were 7.7% and 7.1% for two TOF PET detectors. The coincidence resolving time was 204 ps full width at half maximum. The SeMI digitizer with a high-performance signal digitizer, processor, and high-speed transceivers provides a compact all-in-one data acquisition system.
Collapse
|
11
|
Ibrahim A, Zhang S, Angiolini F, Arditi M, Kimura S, Goto S, Thiran JP, De Micheli G. Towards Ultrasound Everywhere: A Portable 3D Digital Back-End Capable of Zone and Compound Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:968-981. [PMID: 29993558 DOI: 10.1109/tbcas.2018.2828382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasound imaging is a ubiquitous diagnostic technique, but does not fit the requirements of the telemedicine approach, because it relies on the real-time manipulation and image recognition skills of a trained expert, called sonographer. Sonographers are only available in hospitals and clinics, negating or at least delaying access to ultrasound scans in many locales-rural areas, developing countries-as well as in medical rescue operations. Telesonography would require an advanced imager that supports three-dimensional (3-D) acquisition; this would allow untrained operators to acquire broad scans and upload them remotely for diagnosis. Such advanced imagers do exist, but do not meet several other requirements for telesonography, such as being portable, inexpensive, and sufficiently low power to enable battery operation. In this work, we present our prototype of the first portable 3-D digital ultrasound back-end system. The prototype is implemented in a single midrange Xilinx field programmable gate array (FPGA), for an estimated power consumption of 5 W. The device supports up to 1024 input channels, which is state of the art and could be scaled further, and supports multiple image reconstruction modes. We evaluate the resource utilization of the FPGA and provide various quality metrics to ascertain the output image quality.
Collapse
|
12
|
Huang Q, Wu B, Lan J, Li X. Fully Automatic Three-Dimensional Ultrasound Imaging Based on Conventional B-Scan. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:426-436. [PMID: 29570068 DOI: 10.1109/tbcas.2017.2782815] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Robotic ultrasound systems have turned into clinical use over the past few decades, increasing precision and quality of medical operations. In this paper, we propose a fully automatic scanning system for three-dimensional (3-D) ultrasound imaging. A depth camera was first used to obtain the depth data and color data of the tissue surface. Based on the depth image, the 3-D contour of the tissue was rendered and the scan path of ultrasound probe was automatically planned. Following the scan path, a 3-D translating device drove the probe to move on the tissue surface. Simultaneously, the B-scans and their positional information were recorded for subsequent volume reconstruction. In order to stop the scanning process when the pressure on the skin exceeded a preset threshold, two force sensors were attached to the front side of the probe for force measurement. In vitro and in vivo experiments were conducted for assessing the performance of the proposed system. Quantitative results show that the error of volume measurement was less than 1%, indicating that the system is capable of automatic ultrasound scanning and 3-D imaging. It is expected that the proposed system can be well used in clinical practices.
Collapse
|
13
|
Chen MC, Perez AP, Kothapalli SR, Cathelin P, Cathelin A, Gambhir SS, Murmann B. A Pixel Pitch-Matched Ultrasound Receiver for 3-D Photoacoustic Imaging With Integrated Delta-Sigma Beamformer in 28-nm UTBB FD-SOI. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2017; 52:2843-2856. [PMID: 31303662 PMCID: PMC6625768 DOI: 10.1109/jssc.2017.2749425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper presents a pixel pitch-matched readout chip for 3-D photoacoustic (PA) imaging, featuring a dedicated signal conditioning and delta-sigma modulation integrated within a pixel area of 250 µm by 250 µm. The proof-of-concept receiver was implemented in an STMicroelectronics's 28-nm Fully Depleted Silicon On Insulator technology, and interfaces to a 4 × 4 subarray of capacitive micromachined ultrasound transducers (CMUTs). The front-end signal conditioning in each pixel employs a coarse/fine gain tuning architecture to fulfill the 90-dB dynamic range requirement of the application. The employed delta-sigma beamforming architecture obviates the need for area-consuming Nyquist ADCs and thereby enables an efficient in-pixel A/D conversion. The per-pixel switched-capacitor ΔΣ modulator leverages slewing-dominated and area-optimized inverter-based amplifiers. It occupies only 1/4th of the pixel, and its area compares favorably with state-of-the-art designs that offer the same SNR and bandwidth. The modulator's measured peak signal-to-noise-and-distortion ratio is 59.9 dB for a 10-MHz input bandwidth, and it consumes 6.65 mW from a 1-V supply. The overall subarray beamforming approach improves the area per channel by 7.4 times and the single-channel SNR by 8 dB compared to prior art with similar delay resolution and power dissipation. The functionality of the designed chip was evaluated within a PA imaging experiment, employing a flip-chip bonded 2-D CMUT array.
Collapse
Affiliation(s)
| | - Aldo Peña Perez
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | | | | | | | - Sanjiv Sam Gambhir
- Rad/Molecular Imaging Program, Stanford University, Stanford, CA 94305 USA
| | - Boris Murmann
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
14
|
Ibrahim A, Hager PA, Bartolini A, Angiolini F, Arditi M, Thiran JP, Benini L, De Micheli G. Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:815-831. [PMID: 28574367 DOI: 10.1109/tbcas.2017.2673547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.
Collapse
|