1
|
Guo F, Zhou W, Luo Z. Numerical simulation of neural excitation during brain tumor ablation by microsecond pulses. Bioelectrochemistry 2024; 160:108752. [PMID: 38852384 DOI: 10.1016/j.bioelechem.2024.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Replacing monopolar pulse with bipolar pulses of the same energized time can minimize unnecessary neurological side effects during irreversible electroporation (IRE). An improved neural excitation model that considers dynamic conductivity and thermal effects during brain tumor IRE ablation was proposed for the first time in this study. Nerve fiber excitation during IRE ablation by applying a monopolar pulse (100 μs) and a burst of bipolar pulses (energized time of 100 μs with both the sub-pulse length and interphase delay of 1 μs) was investigated. Our results suggest that both thermal effects and dynamic conductivity change the onset time of action potential (AP), and dynamic conductivity also changes the hyperpolarization amplitude. Considering both thermal effects and dynamic conductivity, the hyperpolarization amplitude in nerve fibers located 2 cm from the tumor center was reduced by approximately 23.8 mV and the onset time of AP was delayed by approximately 17.5 μs when a 500 V monopolar pulse was applied. Moreover, bipolar pulses decreased the excitable volume of brain tissue by approximately 68.8 % compared to monopolar pulse. Finally, bipolar pulses cause local excitation with lesser damage to surrounding healthy tissue in complete tumor ablation, demonstrating the potential benefits of bipolar pulses in brain tissue ablation.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Weina Zhou
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhijun Luo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
2
|
Soyka F, Tarnaud T, Alteköster C, Schoeters R, Plovie T, Joseph W, Tanghe E. Action potential threshold variability for different electrostimulation models and its potential impact on occupational exposure limit values. Bioelectromagnetics 2024. [PMID: 39491315 DOI: 10.1002/bem.22529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Occupational exposure limit values (ELVs) for body internal electric fields can be derived from thresholds for action potential generation. These thresholds can be calculated with electrostimulation models. The spatially extended nonlinear node model (SENN) is often used to determine such thresholds. Important parameters of these models are the membrane channel dynamics describing the ionic transmembrane currents as well as the temperature at which the models operate. This work compares action potential thresholds for five different membrane channel dynamics used with the SENN model. Furthermore, two more detailed double-cable models by Gaines et al. (MRG-Sensory and MRG-Motor) are also considered in this work. Thresholds calculated with the SENN model and the MRG models are compared for frequencies between 1 Hz and 100 kHz and temperatures at 22°C and 37°C. Results show that MRG thresholds are lower than SENN thresholds. Deriving alternative ELVs from these thresholds shows that the alternative ELVs can change significantly with different ion channel dynamics (up to a factor of 22). Using the double cable model could lead to approximately ten times lower alternative exposure limit values. On the contrary, using the SENN model with different membrane channel dynamics could also lead to higher alternative exposure limit values. Therefore, future exposure guidelines should take the influence of different electrostimulation models into account when deriving ELVs.
Collapse
Affiliation(s)
- Florian Soyka
- Institute for Occupational Safety and Health, German Social Accident Insurance, Sankt Augustin, Germany
| | - Thomas Tarnaud
- INTEC-WAVES, Ghent University-IMEC, Ghent, Belgium
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Carsten Alteköster
- Institute for Occupational Safety and Health, German Social Accident Insurance, Sankt Augustin, Germany
| | - Ruben Schoeters
- INTEC-WAVES, Ghent University-IMEC, Ghent, Belgium
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Tom Plovie
- INTEC-WAVES, Ghent University-IMEC, Ghent, Belgium
| | - Wout Joseph
- INTEC-WAVES, Ghent University-IMEC, Ghent, Belgium
| | | |
Collapse
|
3
|
Jenderny S, Ochs K, Xue D. A memristive circuit for self-organized network topology formation based on guided axon growth. Sci Rep 2024; 14:16643. [PMID: 39025960 PMCID: PMC11258262 DOI: 10.1038/s41598-024-67400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Circuit implementations of neuronal networks so far have been focusing on synaptic weight changes as network growth principles. Besides these weight changes, however, it is also useful to incorporate additional network growth principles such as guided axon growth and pruning. These allow for dynamical signal delays and a higher degree of self-organization, and can thus lead to novel circuit design principles. In this work we develop an ideal, bio-inspired electrical circuit mimicking growth and pruning controlled by guidance cues. The circuit is based on memristively coupled neuronal oscillators. As coupling element, we use memsensors consisting of a general sensor, two gradient sensors, and two memristors. The oscillators and memsensors are arranged in a grid structure, where oscillators and memsensors realize nodes and edges, respectively. This allows for arbitrary 2D growth scenarios with axon growth controlled by guidance cues. Simulation results show that the circuit successfully mimics a biological example in which two neurons initially grow towards two target neurons, where undesired connections are pruned later on.
Collapse
Affiliation(s)
- Sebastian Jenderny
- Chair of Digital Communication Systems, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Karlheinz Ochs
- Chair of Digital Communication Systems, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Daniel Xue
- Department of Electrical and Computer Engineering, University of Virginia, Main Office: Room C210 Thornton Hall, 351 McCormick Road, PO Box 400743, Charlottesville, 22904, USA
| |
Collapse
|
4
|
Jafari S, Baum IS, Udalov OG, Lee Y, Rodriguez O, Fricke ST, Jafari M, Amini M, Probst R, Tang X, Chen C, Ariando DJ, Hevaganinge A, Mair LO, Albanese C, Weinberg IN. Opening the Blood Brain Barrier with an Electropermanent Magnet System. Pharmaceutics 2022; 14:1503. [PMID: 35890398 PMCID: PMC9317373 DOI: 10.3390/pharmaceutics14071503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Opening the blood brain barrier (BBB) under imaging guidance may be useful for the treatment of many brain disorders. Rapidly applied magnetic fields have the potential to generate electric fields in brain tissue that, if properly timed, may enable safe and effective BBB opening. By tuning magnetic pulses generated by a novel electropermanent magnet (EPM) array, we demonstrate the opening of tight junctions in a BBB model culture in vitro, and show that induced monophasic electrical pulses are more effective than biphasic ones. We confirmed, with in vivo contrast-enhanced MRI, that the BBB can be opened with monophasic pulses. As electropermanent magnets have demonstrated efficacy at tuning B0 fields for magnetic resonance imaging studies, our results suggest the possibility of implementing an EPM-based hybrid theragnostic device that could both image the brain and enhance drug transport across the BBB in a single sitting.
Collapse
Affiliation(s)
- Sahar Jafari
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA; (S.J.); (I.S.B.); (O.G.U.); (X.T.); (C.C.); (A.H.); (L.O.M.)
| | - Ittai S. Baum
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA; (S.J.); (I.S.B.); (O.G.U.); (X.T.); (C.C.); (A.H.); (L.O.M.)
| | - Oleg G. Udalov
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA; (S.J.); (I.S.B.); (O.G.U.); (X.T.); (C.C.); (A.H.); (L.O.M.)
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (Y.L.); (O.R.); (S.T.F.); (C.A.)
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (Y.L.); (O.R.); (S.T.F.); (C.A.)
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Stanley T. Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (Y.L.); (O.R.); (S.T.F.); (C.A.)
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Radiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Maryam Jafari
- Independent Consultant, Oklahoma City, OK 73134, USA;
| | - Mostafa Amini
- Department of Management Science and Information Systems, Oklahoma State University, Stillwater, OK 74078, USA;
| | | | - Xinyao Tang
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA; (S.J.); (I.S.B.); (O.G.U.); (X.T.); (C.C.); (A.H.); (L.O.M.)
| | - Cheng Chen
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA; (S.J.); (I.S.B.); (O.G.U.); (X.T.); (C.C.); (A.H.); (L.O.M.)
| | - David J. Ariando
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Anjana Hevaganinge
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA; (S.J.); (I.S.B.); (O.G.U.); (X.T.); (C.C.); (A.H.); (L.O.M.)
| | - Lamar O. Mair
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA; (S.J.); (I.S.B.); (O.G.U.); (X.T.); (C.C.); (A.H.); (L.O.M.)
| | - Christopher Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (Y.L.); (O.R.); (S.T.F.); (C.A.)
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Radiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Irving N. Weinberg
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA; (S.J.); (I.S.B.); (O.G.U.); (X.T.); (C.C.); (A.H.); (L.O.M.)
| |
Collapse
|
5
|
Molendowska M, Fasano F, Rudrapatna U, Kimmlingen R, Jones DK, Kusmia S, Tax CMW, John Evans C. Physiological effects of human body imaging with 300 mT/m gradients. Magn Reson Med 2022; 87:2512-2520. [PMID: 34932236 PMCID: PMC7615249 DOI: 10.1002/mrm.29118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE The use of high-performance gradient systems (i.e., high gradient strength and/or high slew rate) for human MRI is limited by physiological effects (including the elicitation of magnetophosphenes and peripheral nerve stimulation (PNS)). These effects, in turn, depend on the interaction between time-varying magnetic fields and the body, and thus on the participant's position with respect to the scanner's isocenter. This study investigated the occurrence of magnetophosphenes and PNS when scanning participants on a high-gradient (300 mT/m) system, for different gradient amplitudes, ramp times, and participant positions. METHODS Using a whole-body 300 mT/m gradient MRI system, a cohort of participants was scanned with the head, heart, and prostate at magnet isocenter and a train of trapezoidal bipolar gradient pulses, with ramp times from 0.88 to 4.20 ms and gradient amplitudes from 60 to 300 mT/m. Reports of magnetophosphenes and incidental reports of PNS were obtained. A questionnaire was used to record any additional subjective effects. RESULTS Magnetophosphenes were strongly dependent on participant position in the scanner. 87% of participants reported the effect with the heart at isocenter, 33% with the head at isocenter, and only 7% with the prostate at isocenter. PNS was most widely reported by participants for the vertical gradient axis (67% of participants), and was the dominant physiological effect for ramp times below 2 ms. CONCLUSION This study evaluates the probability of eliciting magnetophosphenes during whole-body imaging using an ultra-strong gradient MRI system. It provides empirical guidance on the use of high-performance gradient systems for whole-body human MRI.
Collapse
Affiliation(s)
- Malwina Molendowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Fabrizio Fasano
- Siemens Healthcare Ltd, Camberley, United Kingdom
- Siemens Healthcare Gmbh, Erlangen, Germany
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Faculty of Health Sciences, Mary McKillop Institute For Health Research, Australian Catholic University, Melbourne, Australia
| | - Slawomir Kusmia
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht Imaging Division, Utrecht, The Netherlands
| | - C. John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Zheng L, Feng Z, Xu Y, Yuan Y, Hu Y. An Anodic Phase Can Facilitate Rather Than Weaken a Cathodic Phase to Activate Neurons in Biphasic-Pulse Axonal Stimulations. Front Neurosci 2022; 16:823423. [PMID: 35368280 PMCID: PMC8968170 DOI: 10.3389/fnins.2022.823423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical pulses have been promisingly utilized in neural stimulations to treat various diseases. Usually, charge-balanced biphasic pulses are applied in the clinic to eliminate the possible side effects caused by charge accumulations. Because of its reversal action to the preceding cathodic phase, the subsequent anodic phase has been commonly considered to lower the activation efficiency of biphasic pulses. However, an anodic pulse itself can also activate axons with its “virtual cathode” effect. Therefore, we hypothesized that the anodic phase of a biphasic pulse could facilitate neuronal activation in some circumstances. To verify the hypothesis, we compared the activation efficiencies of cathodic pulse, biphasic pulse, and anodic pulse applied in both monopolar and bipolar modes in the axonal stimulation of alveus in rat hippocampal CA1 region in vivo. The antidromically evoked population spikes (APS) were recorded and used to evaluate the amount of integrated firing of pyramidal neurons induced by pulse stimulations. We also used a computational model to investigate the pulse effects on axons at various distances from the stimulation electrode. The experimental results showed that, with a small pulse intensity, a cathodic pulse recruited more neurons to fire than a biphasic pulse. However, the situation was reversed with an increased pulse intensity. In addition, setting an inter-phase gap of 100 μs was able to increase the activation efficiency of a biphasic pulse to exceed a cathodic pulse even with a relatively small pulse intensity. Furthermore, the latency of APS evoked by a cathodic pulse was always longer than that of APS evoked by a biphasic pulse, indicating different initial sites of the neuronal firing evoked by the different types of pulses. The computational results of axon modeling showed that the subsequent anodic phase was able to relieve the hyperpolarization block in the flanking regions generated by the preceding cathodic phase, thereby increasing rather than decreasing the activation efficiency of a biphasic pulse with a relatively great intensity. These results of both rat experiments and computational modeling firstly reveal a facilitation rather than an attenuation effect of the anodic phase on biphasic-pulse stimulations, which provides important information for designing electrical stimulations for neural therapies.
Collapse
|
7
|
Grau-Ruiz D, Rigla JP, Pallás E, Algarín JM, Borreguero J, Bosch R, López-Comazzi G, Galve F, Díaz-Caballero E, Gramage C, González JM, Pellicer R, Ríos A, Benlloch JM, Alonso J. Magneto-stimulation limits in medical imaging applications with rapid field dynamics. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac515c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/02/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The goal of this work is to extend previous peripheral nerve stimulation (PNS) studies to scenarios relevant to magnetic particle imaging (MPI) and low-field magnetic resonance imaging (MRI), where field dynamics can evolve at kilo-hertz frequencies. Approach. We have constructed an apparatus for PNS threshold determination on a subject’s limb, capable of narrow and broad-band magnetic stimulation with pulse characteristic times down to 40 μs. Main result. From a first set of measurements on 51 volunteers, we conclude that the PNS dependence on pulse frequency/rise-time is compatible with traditional stimulation models where nervous responses are characterized by a rheobase and a chronaxie. Additionally, we have extended pulse length studies to these fast timescales and confirm thresholds increase significantly as trains transition from tens to a few pulses. We also look at the influence of field spatial distribution on PNS effects, and find that thresholds are higher in an approximately linearly inhomogeneous field (relevant to MRI) than in a rather homogeneous distribution (as in MPI). Significance. PNS constrains the clinical performance of MRI and MPI systems. Extensive magneto-stimulation studies have been carried out recently in the field of MPI, where typical operation frequencies range from single to tens of kilo-hertz. However, PNS literature is scarce for MRI in this fast regime, relevant to small (low inductance) dedicated MRI setups, and where the resonant character of MPI coils prevents studies of broad-band stimulation pulses. This work advances in this direction.
Collapse
|
8
|
Lemaire T, Vicari E, Neufeld E, Kuster N, Micera S. MorphoSONIC: A morphologically structured intramembrane cavitation model reveals fiber-specific neuromodulation by ultrasound. iScience 2021; 24:103085. [PMID: 34585122 PMCID: PMC8456061 DOI: 10.1016/j.isci.2021.103085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/02/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
Low-Intensity Focused Ultrasound Stimulation (LIFUS) holds promise for the remote modulation of neural activity, but an incomplete mechanistic characterization hinders its clinical maturation. Here we developed a computational framework to model intramembrane cavitation (a candidate mechanism) in multi-compartment, morphologically structured neuron models, and used it to investigate ultrasound neuromodulation of peripheral nerves. We predict that by engaging membrane mechanoelectrical coupling, LIFUS exploits fiber-specific differences in membrane conductance and capacitance to selectively recruit myelinated and/or unmyelinated axons in distinct parametric subspaces, allowing to modulate their activity concurrently and independently over physiologically relevant spiking frequency ranges. These theoretical results consistently explain recent empirical findings and suggest that LIFUS can simultaneously, yet selectively, engage different neural pathways, opening up opportunities for peripheral neuromodulation currently not addressable by electrical stimulation. More generally, our framework is readily applicable to other neural targets to establish application-specific LIFUS protocols.
Collapse
Affiliation(s)
- Théo Lemaire
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Lausanne, Switzerland
| | - Elena Vicari
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Lausanne, Switzerland
- Biorobotics Institute, Scuola Superiore Sant’Anna (SSSA), 56127 Pisa, Italy
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Lausanne, Switzerland
- Biorobotics Institute, Scuola Superiore Sant’Anna (SSSA), 56127 Pisa, Italy
| |
Collapse
|
9
|
Kim V, Gudvangen E, Kondratiev O, Redondo L, Xiao S, Pakhomov AG. Peculiarities of Neurostimulation by Intense Nanosecond Pulsed Electric Fields: How to Avoid Firing in Peripheral Nerve Fibers. Int J Mol Sci 2021; 22:ijms22137051. [PMID: 34208945 PMCID: PMC8269031 DOI: 10.3390/ijms22137051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022] Open
Abstract
Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and can be employed to minimize such side effects. We quantified the impact of the electrode configuration, PEF strength (up to 20 kV/cm), repetition rate (up to 3 MHz), bi- and triphasic pulse shapes, and pulse duration (down to 10 ns) on eliciting compound action potentials (CAPs) in nerve fibers. The excitation thresholds for single unipolar but not bipolar stimuli followed the classic strength–duration dependence. The addition of the opposite polarity phase for nsPEF increased the excitation threshold, with symmetrical bipolar nsPEF being the least efficient. Stimulation by nsPEF bursts decreased the excitation threshold as a power function above a critical duty cycle of 0.1%. The threshold reduction was much weaker for symmetrical bipolar nsPEF. Supramaximal stimulation by high-rate nsPEF bursts elicited only a single CAP as long as the burst duration did not exceed the nerve refractory period. Such brief bursts of bipolar nsPEF could be the best choice to minimize neuromuscular stimulation in ablation therapies.
Collapse
Affiliation(s)
- Vitalii Kim
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (V.K.); (E.G.); (S.X.)
| | - Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (V.K.); (E.G.); (S.X.)
| | | | - Luis Redondo
- Lisbon Engineering Superior Institute, GIAAPP/ISEL, 1959-007 Lisbon, Portugal;
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (V.K.); (E.G.); (S.X.)
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA
| | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (V.K.); (E.G.); (S.X.)
- Correspondence:
| |
Collapse
|
10
|
Current Stimulation of the Midbrain Nucleus in Pigeons for Avian Flight Control. MICROMACHINES 2021; 12:mi12070788. [PMID: 34209448 PMCID: PMC8305299 DOI: 10.3390/mi12070788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
A number of research attempts to understand and modulate sensory and motor skills that are beyond the capability of humans have been underway. They have mainly been expounded in rodent models, where numerous reports of controlling movement to reach target locations by brain stimulation have been achieved. However, in the case of birds, although basic research on movement control has been conducted, the brain nuclei that are triggering these movements have yet to be established. In order to fully control flight navigation in birds, the basic central nervous system involved in flight behavior should be understood comprehensively, and functional maps of the birds’ brains to study the possibility of flight control need to be clarified. Here, we established a stable stereotactic surgery to implant multi-wire electrode arrays and electrically stimulated several nuclei of the pigeon’s brain. A multi-channel electrode array and a wireless stimulation system were implanted in thirteen pigeons. The pigeons’ flight trajectories on electrical stimulation of the cerebral nuclei were monitored and analyzed by a 3D motion tracking program to evaluate the behavioral change, and the exact stimulation site in the brain was confirmed by the postmortem histological examination. Among them, five pigeons were able to induce right and left body turns by stimulating the nuclei of the tractus occipito-mesencephalicus (OM), nucleus taeniae (TN), or nucleus rotundus (RT); the nuclei of tractus septo-mesencephalicus (TSM) or archistriatum ventrale (AV) were stimulated to induce flight aviation for flapping and take-off with five pigeons.
Collapse
|
11
|
Aycock KN, Zhao Y, Lorenzo MF, Davalos RV. A Theoretical Argument for Extended Interpulse Delays in Therapeutic High-Frequency Irreversible Electroporation Treatments. IEEE Trans Biomed Eng 2021; 68:1999-2010. [PMID: 33400646 PMCID: PMC8291206 DOI: 10.1109/tbme.2021.3049221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-frequency irreversible electroporation (H-FIRE) is a tissue ablation modality employing bursts of electrical pulses in a positive phase-interphase delay (d1)-negative phase-interpulse delay (d2) pattern. Despite accumulating evidence suggesting the significance of these delays, their effects on therapeutic outcomes from clinically-relevant H-FIRE waveforms have not been studied extensively. OBJECTIVE We sought to determine whether modifications to the delays within H-FIRE bursts could yield a more desirable clinical outcome in terms of ablation volume versus extent of tissue excitation. METHODS We used a modified spatially extended nonlinear node (SENN) nerve fiber model to evaluate excitation thresholds for H-FIRE bursts with varying delays. We then calculated non-thermal tissue ablation, thermal damage, and excitation in a clinically relevant numerical model. RESULTS Excitation thresholds were maximized by shortening d1, and extension of d2 up to 1,000 μs increased excitation thresholds by at least 60% versus symmetric bursts. In the ablation model, long interpulse delays lowered the effective frequency of burst waveforms, modulating field redistribution and reducing heat production. Finally, we demonstrate mathematically that variable delays allow for increased voltages and larger ablations with similar extents of excitation as symmetric waveforms. CONCLUSION Interphase and interpulse delays play a significant role in outcomes resulting from H-FIRE treatment. SIGNIFICANCE Waveforms with short interphase delays (d1) and extended interpulse delays (d2) may improve therapeutic efficacy of H-FIRE as it emerges as a clinical tissue ablation modality.
Collapse
Affiliation(s)
- Kenneth N. Aycock
- Department of Biomedical Engineering and Mechanics, Bioelectromechanical Systems Laboratory at Virginia Tech, Blacksburg, VA 24061 USA
| | - Yajun Zhao
- Department of Biomedical Engineering and Mechanics, Bioelectromechanical Systems Laboratory at Virginia Tech, Blacksburg, VA 24061 USA
| | - Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Bioelectromechanical Systems Laboratory at Virginia Tech, Blacksburg, VA 24061 USA
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Bioelectromechanical Systems Laboratory at Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
12
|
Differential Modulation of Dorsal Horn Neurons by Various Spinal Cord Stimulation Strategies. Biomedicines 2021; 9:biomedicines9050568. [PMID: 34070113 PMCID: PMC8158340 DOI: 10.3390/biomedicines9050568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
New strategies for spinal cord stimulation (SCS) for chronic pain have emerged in recent years, which may work better via different analgesic mechanisms than traditional low-frequency (e.g., 50 Hz) paresthesia-based SCS. To determine if 10 kHz and burst SCS waveforms might have a similar mechanistic basis, we examined whether these SCS strategies at intensities ostensibly below sensory thresholds would modulate spinal dorsal horn (DH) neuronal function in a neuron type-dependent manner. By using an in vivo electrophysiological approach in rodents, we found that low-intensity 10 kHz SCS, but not burst SCS, selectively activates inhibitory interneurons in the spinal DH. This study suggests that low-intensity 10 kHz SCS may inhibit pain-sensory processing in the spinal DH by activating inhibitory interneurons without activating DC fibers, resulting in paresthesia-free pain relief, whereas burst SCS likely operates via other mechanisms.
Collapse
|
13
|
Lorenzo MF, Bhonsle SP, Arena CB, Davalos RV. Rapid Impedance Spectroscopy for Monitoring Tissue Impedance, Temperature, and Treatment Outcome During Electroporation-Based Therapies. IEEE Trans Biomed Eng 2021; 68:1536-1546. [PMID: 33156779 PMCID: PMC8127872 DOI: 10.1109/tbme.2020.3036535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Electroporation-based therapies (EBTs) employ high voltage pulsed electric fields (PEFs) to permeabilize tumor tissue; this results in changes in electrical properties detectable using electrical impedance spectroscopy (EIS). Currently, commercial potentiostats for EIS are limited by impedance spectrum acquisition time ( ∼ 10 s); this timeframe is much larger than pulse periods used with EBTs ( ∼ 1 s). In this study, we utilize rapid EIS techniques to develop a methodology for characterizing electroporation (EP) and thermal effects associated with high-frequency irreversible EP (H-FIRE) in real-time by monitoring inter-burst impedance changes. METHODS A charge-balanced, bipolar rectangular chirp signal is proposed for rapid EIS. Validation of rapid EIS measurements against a commercial potentiostat was conducted in potato tissue using flat-plate electrodes and thereafter for the measurement of impedance changes throughout IRE treatment. Flat-plate electrodes were then utilized to uniformly heat potato tissue; throughout high-voltage H-FIRE treatment, low-voltage inter-burst impedance measurements were used to continually monitor impedance change and to identify a frequency at which thermal effects are delineated from EP effects. RESULTS Inter-burst impedance measurements (1.8 kHz - 4.93 MHz) were accomplished at 216 discrete frequencies. Impedance measurements at frequencies above ∼ 1 MHz served to delineate thermal and EP effects in measured impedance. CONCLUSION We demonstrate rapid-capture ( 1 s) EIS which enables monitoring of inter-burst impedance in real-time. For the first time, we show impedance analysis at high frequencies can delineate thermal effects from EP effects in measured impedance. SIGNIFICANCE The proposed waveform demonstrates the potential to perform inter-burst EIS using PEFs compatible with existing pulse generator topologies.
Collapse
|
14
|
Neudorfer C, Chow CT, Boutet A, Loh A, Germann J, Elias GJ, Hutchison WD, Lozano AM. Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimul 2021; 14:513-530. [PMID: 33757930 DOI: 10.1016/j.brs.2021.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Electrical stimulation in the kilohertz-frequency range has gained interest in the field of neuroscience. The mechanisms underlying stimulation in this frequency range, however, are poorly characterized to date. OBJECTIVE/HYPOTHESIS To summarize the manifold biological effects elicited by kilohertz-frequency stimulation in the context of the currently existing literature and provide a mechanistic framework for the neural responses observed in this frequency range. METHODS A comprehensive search of the peer-reviewed literature was conducted across electronic databases. Relevant computational, clinical, and mechanistic studies were selected for review. RESULTS The effects of kilohertz-frequency stimulation on neural tissue are diverse and yield effects that are distinct from conventional stimulation. Broadly, these can be divided into 1) subthreshold, 2) suprathreshold, 3) synaptic and 4) thermal effects. While facilitation is the dominating mechanism at the subthreshold level, desynchronization, spike-rate adaptation, conduction block, and non-monotonic activation can be observed during suprathreshold kilohertz-frequency stimulation. At the synaptic level, kilohertz-frequency stimulation has been associated with the transient depletion of the available neurotransmitter pool - also known as synaptic fatigue. Finally, thermal effects associated with extrinsic (environmental) and intrinsic (associated with kilohertz-frequency stimulation) temperature changes have been suggested to alter the neural response to stimulation paradigms. CONCLUSION The diverse spectrum of neural responses to stimulation in the kilohertz-frequency range is distinct from that associated with conventional stimulation. This offers the potential for new therapeutic avenues across stimulation modalities. However, stimulation in the kilohertz-frequency range is associated with distinct challenges and caveats that need to be considered in experimental paradigms.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Gavin Jb Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - William D Hutchison
- Krembil Research Institute, University of Toronto, Ontario, Canada; Department of Physiology, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada; Krembil Research Institute, University of Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Stefano M, Cordella F, Loppini A, Filippi S, Zollo L. A Multiscale Approach to Axon and Nerve Stimulation Modeling: A Review. IEEE Trans Neural Syst Rehabil Eng 2021; 29:397-407. [PMID: 33497336 DOI: 10.1109/tnsre.2021.3054551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electrical nerve fiber stimulation is a technique widely used in prosthetics and rehabilitation, and its study from a computational point of view can be a useful instrument to support experimental tests. In the last years, there was an increasing interest in computational modeling of neural cells and numerical simulations on nerve fibers stimulation because of its usefulness in forecasting the effect of electrical current stimuli delivered to tissues through implanted electrodes, in the design of optimal stimulus waveforms based on the specific application (i.e., inducing limb movements, sensory feedback or physiological function restoring), and in the evaluation of the current stimuli properties according to the characteristics of the nerves surrounding tissue. Therefore, a review study on the main modeling and computational frameworks adopted to investigate peripheral nerve stimulation is an important instrument to support and drive future research works. To this aim, this paper deals with mathematical models of neural cells with a detailed description of ion channels and numerical simulations using finite element methods to describe the dynamics of electrical stimulation by implanted electrodes in peripheral nerve fibers. In particular, we evaluate different nerve cell models considering different ion channels present in neurons and provide a guideline on multiscale numerical simulations of electrical nerve fibers stimulation.
Collapse
|
16
|
Van de Steene T, Tanghe E, Tarnaud T, Kampusch S, Kaniusas E, Martens L, Van Holen R, Joseph W. Sensitivity Study of Neuronal Excitation and Cathodal Blocking Thresholds of Myelinated Axons for Percutaneous Auricular Vagus Nerve Stimulation. IEEE Trans Biomed Eng 2020; 67:3276-3287. [DOI: 10.1109/tbme.2020.2982271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Saito A, Wada K, Suzuki Y, Nakasono S. The response of the neuronal activity in the somatosensory cortex after high-intensity intermediate-frequency magnetic field exposure to the spinal cord in rats under anesthesia and waking states. Brain Res 2020; 1747:147063. [PMID: 32818531 DOI: 10.1016/j.brainres.2020.147063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/01/2022]
Abstract
Novel technologies using the intermediate-frequency magnetic field (IF-MF) in living environments are becoming popular with the advance in electricity utilization. However, the biological effects induced by the high-intensity and burst-type IF-MF exposure used in the wireless power transfer technologies for electric vehicles or medical devices, such as the magnetic stimulation techniques, are not well understood. Here, we developed an experimental platform using rats, that combined an 18 kHz, high-intensity (Max. 88 mT), Gaussian-shaped burst IF-MF exposure system with an in vivo extracellular recording system. In this paper, we aimed to report the qualitative differences in stimulus responses in the regions of the somatosensory cortex and peripheral nerve fibers that were induced by the IF-MF exposure to the rat spinal cord. We also report the modulation of the stimulus responses in the somatosensory cortex under anesthesia or waking states. Using this experimental platform, we succeeded in the detection of the motor evoked potentials or the neuronal activity in the somatosensory cortex that was induced by the IF-MF exposure to the spinal cord in rats. Compared to the state of anesthesia, the neuronal activities in the somatosensory cortex was enhanced during the waking state. On the other hand, these neuronal responses could not be confirmed by the IF-MF exposure-related coil sound only. Our experimental results indicated the basic knowledge of the biological responses and excitation mechanisms of the spinal cord stimulation by the IF-MF exposure.
Collapse
Affiliation(s)
- Atsushi Saito
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Abiko-shi, Chiba, Japan.
| | - Keiji Wada
- Department of Electrical Engineering and Computer Science, Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, Japan.
| | - Yukihisa Suzuki
- Department of Electrical Engineering and Computer Science, Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, Japan.
| | - Satoshi Nakasono
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Abiko-shi, Chiba, Japan.
| |
Collapse
|
18
|
Quantification of clinically applicable stimulation parameters for precision near-organ neuromodulation of human splenic nerves. Commun Biol 2020; 3:577. [PMID: 33067560 PMCID: PMC7568572 DOI: 10.1038/s42003-020-01299-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Neuromodulation is a new therapeutic pathway to treat inflammatory conditions by modulating the electrical signalling pattern of the autonomic connections to the spleen. However, targeting this sub-division of the nervous system presents specific challenges in translating nerve stimulation parameters. Firstly, autonomic nerves are typically embedded non-uniformly among visceral and connective tissues with complex interfacing requirements. Secondly, these nerves contain axons with populations of varying phenotypes leading to complexities for axon engagement and activation. Thirdly, clinical translational of methodologies attained using preclinical animal models are limited due to heterogeneity of the intra- and inter-species comparative anatomy and physiology. Here we demonstrate how this can be accomplished by the use of in silico modelling of target anatomy, and validation of these estimations through ex vivo human tissue electrophysiology studies. Neuroelectrical models are developed to address the challenges in translation of parameters, which provides strong input criteria for device design and dose selection prior to a first-in-human trial. Due to the difference between rodent, porcine and human nerve morphology, Gupta et al. propose an integrative approach of computational modelling and ex vivo electrophysiology studies to identify clinically relevant optimal parameters for human peripheral nerve stimulation as a therapeutic tool. The agreement between results validate the use of computer simulations as a first step toward determining stimulation parameters to provide input criteria for device design and dose selection prior to first-in-human trials.
Collapse
|
19
|
Malinowski MN, Jain S, Jassal N, Deer T. Spinal cord stimulation for the treatment of neuropathic pain: expert opinion and 5-year outlook. Expert Rev Med Devices 2020; 17:1293-1302. [PMID: 32715786 DOI: 10.1080/17434440.2020.1801411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Spinal cord stimulation (SCS) is an effective treatment for chronic, intractable neuropathic pain. There have been relatively few high-level studies that suggest its unequivocal use. The decay of stimulation efficacy over time have opened opportunity for the entrance of new pulse trains and waveforms. AREAS COVERED In this state-of-the-art review, we focused on many of the major studies published in the last 10 years that were considered level one evidence. A retrospective narrative approach was taken to conceptualize foundation studies as they pertain to current evidence. A special focus was taken on reported safety outcomes in comparison to foundation studies especially as they pertain to our 5-year outlook on the use of spinal cord stimulation. EXPERT OPINION We find there are still significant limitations in the body of reviewed evidence and suggest that long-term data beyond 24 months are lacking in the literature. In addition, adverse event rates, device explantation rates and the sham effect looms as important concepts to address in the future in spite of the existing novel stimulation paradigms.
Collapse
Affiliation(s)
| | - Sameer Jain
- Pain Treatment Centers of America , Little Rock, AR, USA
| | - Navdeep Jassal
- School of Medicine - Neurology & Pain, University of South Florida , Wesley Chapel, FL, USA
| | - Timothy Deer
- Spine and Nerve Center of the Virginias , Charleston, WV, USA
| |
Collapse
|
20
|
Gomez–Tames J, Laakso I, Murakami T, Ugawa Y, Hirata A. TMS activation site estimation using multiscale realistic head models. J Neural Eng 2020; 17:036004. [DOI: 10.1088/1741-2552/ab8ccf] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Davids M, Guérin B, Klein V, Schmelz M, Schad LR, Wald LL. Optimizing selective stimulation of peripheral nerves with arrays of coils or surface electrodes using a linear peripheral nerve stimulation metric. J Neural Eng 2020; 17:016029. [PMID: 31665707 DOI: 10.1088/1741-2552/ab52bd] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We present a PNS oracle, which solves these computation time and linearity problems and is, therefore, well-suited for fast optimization of voltage distributions in contact electrode arrays and current drive patterns in non-contact magnetic coil arrays. APPROACH The PNS oracle metric for a nerve fiber is computed from an electric field map using only linear operations (projection, differentiation, convolution, scaling). Due to its linearity, this PNS metric can be precomputed for a set of coil or electrode segments, allowing rapid PNS prediction and comparison of any possible coil or electrode stimulation configuration constructed from this set. The PNS oracle is closely related to the classical activating function and modified driving functions but is adjusted to better correlate with full neurodynamic modeling of myelinated mammalian nerves. MAIN RESULTS We validated the PNS oracle in three MRI gradient coils and two body models and found good correlation between the PNS oracle and the full neurodynamic modeling approach (R 2 > 0.995). Finally, we demonstrated its potential utility by optimizing the driving currents and voltages of arrays of 108 magnetic coils or 108 contact electrodes to selectively stimulate target nerves in the lower leg. SIGNIFICANCE Peripheral nerve stimulation (PNS) by electromagnetic fields can be accurately simulated using coupled electromagnetic and neurodynamic modeling. Such simulations are slow and non-linear in the electric field, which makes it difficult to iteratively optimize coil and electrode configurations or drive patterns aiming to avoid PNS or to initiate it for therapeutic purposes.
Collapse
Affiliation(s)
- Mathias Davids
- A A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America. Harvard Medical School, Boston, Massachusetts, United States of America. Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Lee KY, Bae C, Lee D, Kagan Z, Bradley K, Chung JM, La JH. Low-intensity, Kilohertz Frequency Spinal Cord Stimulation Differently Affects Excitatory and Inhibitory Neurons in the Rodent Superficial Dorsal Horn. Neuroscience 2020; 428:132-139. [PMID: 31917342 DOI: 10.1016/j.neuroscience.2019.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Since 1967, spinal cord stimulation (SCS) has been used to manage chronic intractable pain of the trunk and limbs. Compared to traditional high-intensity, low-frequency (<100 Hz) SCS that is thought to produce paresthesia and pain relief by stimulating large myelinated fibers in the dorsal column (DC), low-intensity, high-frequency (10 kHz) SCS has demonstrated long-term pain relief without generation of paresthesia. To understand this paresthesia-free analgesic mechanism of 10 kHz SCS, we examined whether 10 kHz SCS at intensities below sensory thresholds would modulate spinal dorsal horn (DH) neuronal function in a neuron type-dependent manner. By using in vivo and ex vivo electrophysiological approaches, we found that low-intensity (sub-sensory threshold) 10 kHz SCS, but not 1 kHz or 5 kHz SCS, selectively activates inhibitory interneurons in the spinal DH. This study suggests that low-intensity 10 kHz SCS may inhibit pain sensory processing in the spinal DH by activating inhibitory interneurons without activating DC fibers, resulting in paresthesia-free pain relief.
Collapse
Affiliation(s)
| | - Chilman Bae
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | - Jin Mo Chung
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Jun-Ho La
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
23
|
Conductivity change with needle electrode during high frequency irreversible electroporation: a finite element study. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2019. [DOI: 10.2478/pjmpe-2019-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Irreversible electroporation (IRE) is a process in which the cell membrane is damaged and leads to cell death. IRE has been used as a minimally invasive ablation tool. This process is affected by some factors. The most important factor is the electric field distribution inside the tissue. The electric field distribution depends on the electric pulse parameters and tissue properties, such as the electrical conductivity of tissue. The present study focuses on evaluating the tissue conductivity change due to high-frequency and low-voltage (HFLV) as well as low-frequency and high-voltage (LFHV) pulses during irreversible electroporation. We were used finite element analysis software, COMSOL Multiphysics 5.0, to calculate the conductivity change of the liver tissue. The HFLV pulses in this study involved 4000 bipolar and monopolar pulses with a frequency of 5 kHz, pulse width of 100 µs, and electric field intensity from 100 to 300 V/cm. On the other hand, the LFHV pulses, which we were used, included 8 bipolar and monopolar pulses with a frequency of 1 Hz, the pulse width of 2 ms and electric field intensity of 2500 V/cm. The results demonstrate that the conductivity change for LFHV pulses due to the greater electric field intensity was higher than for HFLV pulses. The most significant conclusion is the HFLV pulses can change tissue conductivity only in the vicinity of the tip of electrodes. While LFHV pulses change the electrical conductivity significantly in the tissue of between electrodes.
Collapse
|
24
|
Casciola M, Xiao S, Apollonio F, Paffi A, Liberti M, Muratori C, Pakhomov AG. Cancellation of nerve excitation by the reversal of nanosecond stimulus polarity and its relevance to the gating time of sodium channels. Cell Mol Life Sci 2019; 76:4539-4550. [PMID: 31055644 PMCID: PMC11105181 DOI: 10.1007/s00018-019-03126-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
The initiation of action potentials (APs) by membrane depolarization occurs after a brief vulnerability period, during which excitation can be abolished by the reversal of the stimulus polarity. This vulnerability period is determined by the time needed for gating of voltage-gated sodium channels (VGSC). We compared nerve excitation by ultra-short uni- and bipolar stimuli to define the time frame of bipolar cancellation and of AP initiation. Propagating APs in isolated frog sciatic nerve were elicited by cathodic pulses (200 ns-300 µs), followed by an anodic (canceling) pulse of the same duration after a 0-200-µs delay. We found that the earliest and the latest boundaries for opening the critical number of VGSC needed to initiate AP are, respectively, between 11 and 20 µs and between 100 and 200 µs after the onset of depolarization. Stronger depolarization accelerated AP initiation, apparently due to faster VGSC opening, but not beyond the 11-µs limit. Bipolar cancellation was augmented by reducing pulse duration, shortening the delay between pulses, decreasing the amplitude of the cathodic pulse, and increasing the amplitude of the anodic one. Some of these characteristics contrasted the bipolar cancellation of cell membrane electroporation (Pakhomov et al. in Bioelectrochemistry 122:123-133, 2018; Gianulis et al. in Bioelectrochemistry 119:10-19, 2017), suggesting different mechanisms. The ratio of nerve excitation thresholds for a unipolar cathodic pulse and a symmetrical bipolar pulse increased as a power function as the pulse duration decreased, in remarkable agreement with the predictions of SENN model of nerve excitation (Reilly and Diamant in Health Phys 83(3):356-365, 2002).
Collapse
Affiliation(s)
- Maura Casciola
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications (D.I.E.T.), Sapienza University of Rome, Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (D.I.E.T.), Sapienza University of Rome, Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications (D.I.E.T.), Sapienza University of Rome, Rome, Italy
| | - Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA.
| |
Collapse
|
25
|
Khadka N, Truong DQ, Williams P, Martin JH, Bikson M. The Quasi-uniform assumption for Spinal Cord Stimulation translational research. J Neurosci Methods 2019; 328:108446. [PMID: 31589892 DOI: 10.1016/j.jneumeth.2019.108446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Quasi-uniform assumption is a general theory that postulates local electric field predicts neuronal activation. Computational current flow model of spinal cord stimulation (SCS) of humans and animal models inform how the quasi-uniform assumption can support scaling neuromodulation dose between humans and translational animal. NEW METHOD Here we developed finite element models of cat and rat SCS, and brain slice, alongside SCS models. Boundary conditions related to species specific electrode dimensions applied, and electric fields per unit current (mA) predicted. RESULTS Clinically and across animal, electric fields change abruptly over small distance compared to the neuronal morphology, such that each neuron is exposed to multiple electric fields. Per unit current, electric fields generally decrease with body mass, but not necessarily and proportionally across tissues. Peak electric field in dorsal column rat and cat were ∼17x and ∼1x of clinical values, for scaled electrodes and equal current. Within the spinal cord, the electric field for rat, cat, and human decreased to 50% of peak value caudo-rostrally (C5-C6) at 0.48 mm, 3.2 mm, and 8 mm, and mediolaterally at 0.14 mm, 2.3 mm, and 3.1 mm. Because these space constants are different, electric field across species cannot be matched without selecting a region of interest (ROI). COMPARISON WITH EXISTING METHOD This is the first computational model to support scaling neuromodulation dose between humans and translational animal. CONCLUSIONS Inter-species reproduction of the electric field profile across the entire surface of neuron populations is intractable. Approximating quasi-uniform electric field in a ROI is a rational step to translational scaling.
Collapse
Affiliation(s)
- Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Dennis Q Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Preston Williams
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY, 10031, USA
| | - John H Martin
- CUNY Graduate Center, New York, NY, 10031, USA; Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY, 10031, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
26
|
Selective distant electrostimulation by synchronized bipolar nanosecond pulses. Sci Rep 2019; 9:13116. [PMID: 31511591 PMCID: PMC6739416 DOI: 10.1038/s41598-019-49664-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
A unique aspect of electrostimulation (ES) with nanosecond electric pulses (nsEP) is the inhibition of effects when the polarity is reversed. This bipolar cancellation feature makes bipolar nsEP less efficient at biostimulation than unipolar nsEP. We propose to minimize stimulation near pulse-delivering electrodes by applying bipolar nsEP, whereas the superposition of two phase-shifted bipolar nsEP from two independent sources yields a biologically-effective unipolar pulse remotely. This is accomplished by electrical compensation of all nsEP phases except the first one, resulting in the restoration of stimulation efficiency due to cancellation of bipolar cancellation (CANCAN-ES). We experimentally proved the CANCAN-ES paradigm by measuring YO-PRO-1 dye uptake in CHO-K1 cells which were permeabilized by multiphasic nsEP (600 ns per phase) from two generators; these nsEP were synchronized either to overlap into a unipolar pulse remotely from electrodes (CANCAN), or not to overlap (control). Enhancement of YO-PRO-1 entry due to CANCAN was observed in all sets of experiments and reached ~3-fold in the center of the gap between electrodes, exactly where the unipolar pulse was formed, and equaled the degree of bipolar cancellation. CANCAN-ES is promising for non-invasive deep tissue stimulation, either alone or combined with other remote stimulation techniques to improve targeting.
Collapse
|
27
|
Reilly JP. One man's career in bioelectricity: A tale of luck, pluck, and loving support. Bioelectromagnetics 2019; 40:522-534. [PMID: 31475734 DOI: 10.1002/bem.22212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 11/12/2022]
|
28
|
De Groote S, Goudman L, Peeters R, Linderoth B, Vanschuerbeek P, Sunaert S, De Jaeger M, De Smedt A, Moens M. Magnetic Resonance Imaging Exploration of the Human Brain During 10 kHz Spinal Cord Stimulation for Failed Back Surgery Syndrome: A Resting State Functional Magnetic Resonance Imaging Study. Neuromodulation 2019; 23:46-55. [PMID: 30974016 DOI: 10.1111/ner.12954] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/08/2019] [Accepted: 02/27/2019] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Apart from the clinical efficacy of high frequency spinal cord stimulation at 10 kHz, the underlying mechanism of action remains unclear. In parallel with spinal or segmental theories, supraspinal hypotheses have been recently proposed. In order to unveil hidden altered brain connectome patterns, a resting state functional magnetic resonance imaging (rsfMRI) protocol was performed in subjects routinely treated for back and/or leg pain with high-frequency spinal cord stimulation (HF-SCS) HF-SCS at 10 kHz. METHODS RsfMRI imaging was obtained from ten patients with failed back surgery syndrome who were eligible for HF-SCS at 10 kHz. Specifically-chosen regions of interest with different connectivity networks have been investigated over time. Baseline measurements were compared with measurements after 1 month and 3 months of HF-SCS at 10 kHz. Additionally, clinical parameters on pain intensity, central sensitization, pain catastrophizing, and sleep quality were correlated with the functional connectivity strengths. RESULTS The study results demonstrate an increased connectivity over time between the anterior insula (affective salience network) and regions of the frontoparietal network and the central executive network. After 3 months of HF-SCS, the increased strength in functional connectivity between the left dorsolateral prefrontal cortex and the right anterior insula was significantly correlated with the minimum clinically important difference (MCID) value of the Pittsburgh sleep quality index. CONCLUSION These findings support the hypothesis that HF-SCS at 10 kHz might influence the salience network and therefore also the emotional awareness of pain.
Collapse
Affiliation(s)
- Sander De Groote
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium.,Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Ronald Peeters
- Department of Radiology, Universitair Ziekenhuis Leuven, UZ, Leuven, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | - Stefan Sunaert
- Department of Radiology, Universitair Ziekenhuis Leuven, UZ, Leuven, Belgium
| | - Mats De Jaeger
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ann De Smedt
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium.,Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
29
|
van Gendt MJ, Briaire JJ, Frijns JHM. Effect of neural adaptation and degeneration on pulse-train ECAPs: A model study. Hear Res 2019; 377:167-178. [PMID: 30947041 DOI: 10.1016/j.heares.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/13/2019] [Accepted: 03/13/2019] [Indexed: 01/17/2023]
Abstract
Electrically evoked compound action potentials (eCAPs) are measurements of the auditory nerve's response to electrical stimulation. ECAP amplitudes during pulse trains can exhibit temporal alternations. The magnitude of this alternation tends to diminish over time during the stimulus. How this pattern relates to the temporal behavior of nerve fibers is not known. We hypothesized that the stochasticity, refractoriness, adaptation of the threshold and spike-times influence pulse-train eCAP responses. Thirty thousand auditory nerve fibers were modeled in a three-dimensional cochlear model incorporating pulse-shape effects, pulse-history effects, and stochasticity in the individual neural responses. ECAPs in response to pulse trains of different rates and amplitudes were modeled for fibers with different stochastic properties (by variation of the relative spread) and different temporal properties (by variation of the refractory periods, adaptation and latency). The model predicts alternation of peak amplitudes similar to available human data. In addition, the peak alternation was affected by changing the refractoriness, adaptation, and relative spread of auditory nerve fibers. As these parameters are related to factors such as the duration of deafness and neural survival, this study suggests that the eCAP pattern in response to pulse trains could be used to assess the underlying temporal and stochastic behavior of the auditory nerve. As these properties affect the nerve's response to pulse trains, they are of uttermost importance to sound perception with cochlear implants.
Collapse
Affiliation(s)
- M J van Gendt
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300, RC Leiden, the Netherlands.
| | - J J Briaire
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300, RC Leiden, the Netherlands
| | - J H M Frijns
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300, RC Leiden, the Netherlands; Leiden Institute for Brain and Cognition, PO Box 9600, 2300, RC Leiden, the Netherlands
| |
Collapse
|
30
|
Sivanesan E, Maher D, Raja SN, Linderoth B, Guan Y. Supraspinal Mechanisms of Spinal Cord Stimulation for Modulation of Pain: Five Decades of Research and Prospects for the Future. Anesthesiology 2019; 130:651-665. [PMID: 30556812 PMCID: PMC6338535 DOI: 10.1097/aln.0000000000002353] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The field of spinal cord stimulation is expanding rapidly, with new waveform paradigms asserting supraspinal sites of action. The scope of treatment applications is also broadening from chronic pain to include cerebral ischemia, dystonia, tremor, multiple sclerosis, Parkinson disease, neuropsychiatric disorders, memory, addiction, cognitive function, and other neurologic diseases. The role of neurostimulation as an alternative strategy to opioids for chronic pain treatment is under robust discussion in both scientific and public forums. An understanding of the supraspinal mechanisms underlying the beneficial effects of spinal cord stimulation will aid in the appropriate application and development of optimal stimulation strategies for modulating pain signaling pathways. In this review, the authors focus on clinical and preclinical studies that indicate the role of supraspinal mechanisms in spinal cord stimulation-induced pain inhibition, and explore directions for future investigations.
Collapse
Affiliation(s)
- Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Dermot Maher
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Tomtebodavägen 18A:05, SE 171 77 Stockholm, Sweden
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Sensitivity Analysis of a Numerical Model for Percutaneous Auricular Vagus Nerve Stimulation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Less-invasive percutaneous stimulation of the auricular branch of the vagus nerve (pVNS) gained importance as a possible nonpharmacological treatment for various diseases. The objective is to perform a sensitivity analysis of a realistic numerical model of pVNS and to investigate the effects of the model parameters on the excitation threshold for single and bundled axons. Methods: Sim4Life electrostatic solver and neural tissue models were combined for electromagnetic and neural simulation. The numerical model consisted of a high-resolution model of a human ear, blood vessels, nerves, and three needle electrodes. Investigated parameters include the axon diameter and number, model temperature, ear conductivity, and electrodes’ penetration depth and position. Results: The electric field distribution was evaluated. Model temperature and ear conductivity are the non-influential parameters. Axons fiber diameter and the electrodes’ penetration depth are the most influential parameters with a maximum threshold voltage sensitivity of 32 mV for each 1 μm change in the axon diameter and 38 mV for each 0.1 mm change in the electrodes’ penetration depth. Conclusions: The established sensitivity analysis allows the identification of the influential and the non-influential parameters with a sensitivity quantification. Results suggest that the electrodes’ penetration depth is the most influential parameter.
Collapse
|
32
|
Deer TR, Jain S, Hunter C, Chakravarthy K. Neurostimulation for Intractable Chronic Pain. Brain Sci 2019; 9:E23. [PMID: 30682776 PMCID: PMC6406470 DOI: 10.3390/brainsci9020023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
The field of neuromodulation has seen unprecedented growth over the course of the last decade with novel waveforms, hardware advancements, and novel chronic pain indications. We present here an updated review on spinal cord stimulation, dorsal root ganglion stimulation, and peripheral nerve stimulation. We focus on mechanisms of action, clinical indications, and future areas of research. We also present current drawbacks with current stimulation technology and suggest areas of future advancements. Given the current shortage of viable treatment options using a pharmacological based approach and conservative interventional therapies, neuromodulation presents an interesting area of growth and development for the interventional pain field and provides current and future practitioners a fresh outlook with regards to its place in the chronic pain treatment paradigm.
Collapse
Affiliation(s)
- Timothy R Deer
- Spine and Nerve Center of the Virginias, Charleston, VA 25301, USA.
| | - Sameer Jain
- Pain Treatment Centers of America, Little Rock, AR 72205, USA.
| | - Corey Hunter
- Ainsworth Institute of Pain Management, New York, NY 10022, USA.
| | - Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA 92037, USA.
| |
Collapse
|
33
|
Jain S, Deer TR. New Advances in Neuromodulation. CURRENT ANESTHESIOLOGY REPORTS 2018. [DOI: 10.1007/s40140-018-0298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Soldati M, Mikkonen M, Laakso I, Murakami T, Ugawa Y, Hirata A. A multi-scale computational approach based on TMS experiments for the assessment of electro-stimulation thresholds of the brain at intermediate frequencies. ACTA ACUST UNITED AC 2018; 63:225006. [DOI: 10.1088/1361-6560/aae932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Saito A, Terai T, Makino K, Takahashi M, Yoshie S, Ikehata M, Jimbo Y, Wada K, Suzuki Y, Nakasono S. Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure. Integr Biol (Camb) 2018; 10:442-449. [PMID: 30052248 DOI: 10.1039/c8ib00097b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally, although it is known that dendrites, a type of unmyelinated neuronal fibre, play an important role in information processing in the central nervous system, the stimulus threshold in dendrites has not been sufficiently investigated. We evaluated the excitation site-specific stimulus response of rat brain-derived cultured neurons by using a 20 kHz high-intensity intermediate-frequency magnetic field (hIF-MF) exposure system, a non-conductive fibre-optic imaging (NCFI) system, combined with a micro-patterning technique. Our hIF-MF exposure and NCFI system permitted real-time detection of the intracellular calcium ([Ca2+]i) spikes in neuronal cell bodies or unmyelinated neuronal fibres during exposure to a 20 kHz, 70 mT (peak), burst-type sinusoidal wave hIF-MF. Dosimetry of the induced electric fields intensities in the extracellular solution indicated that about 50% of unmyelinated neuronal fibres respond at about 147 V m-1. In contrast, the threshold of the [Ca2+]i spikes in neuronal cell bodies were lower than that in unmyelinated neuronal fibres. Our results provide a basis for understanding site-specific differences in the responses of cultured neurons to hIF-MFs.
Collapse
Affiliation(s)
- Atsushi Saito
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Abiko, Chiba 270-1194, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clin Neurophysiol 2018; 129:851-862. [DOI: 10.1016/j.clinph.2017.12.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 02/08/2023]
|
37
|
Saito A, Takahashi M, Makino K, Suzuki Y, Jimbo Y, Nakasono S. Response of Cultured Neuronal Network Activity After High-Intensity Power Frequency Magnetic Field Exposure. Front Physiol 2018; 9:189. [PMID: 29662453 PMCID: PMC5890104 DOI: 10.3389/fphys.2018.00189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/23/2018] [Indexed: 01/20/2023] Open
Abstract
High-intensity and low frequency (1-100 kHz) time-varying electromagnetic fields stimulate the human body through excitation of the nervous system. In power frequency range (50/60 Hz), a frequency-dependent threshold of the external electric field-induced neuronal modulation in cultured neuronal networks was used as one of the biological indicator in international guidelines; however, the threshold of the magnetic field-induced neuronal modulation has not been elucidated. In this study, we exposed rat brain-derived neuronal networks to a high-intensity power frequency magnetic field (hPF-MF), and evaluated the modulation of synchronized bursting activity using a multi-electrode array (MEA)-based extracellular recording technique. As a result of short-term hPF-MF exposure (50-400 mT root-mean-square (rms), 50 Hz, sinusoidal wave, 6 s), the synchronized bursting activity was increased in the 400 mT-exposed group. On the other hand, no change was observed in the 50-200 mT-exposed groups. In order to clarify the mechanisms of the 400 mT hPF-MF exposure-induced neuronal response, we evaluated it after blocking inhibitory synapses using bicuculline methiodide (BMI); subsequently, increase in bursting activity was observed with BMI application, and the response of 400 mT hPF-MF exposure disappeared. Therefore, it was suggested that the response of hPF-MF exposure was involved in the inhibitory input. Next, we screened the inhibitory pacemaker-like neuronal activity which showed autonomous 4-10 Hz firing with CNQX and D-AP5 application, and it was confirmed that the activity was reduced after 400 mT hPF-MF exposure. Comparison of these experimental results with estimated values of the induced electric field (E-field) in the culture medium revealed that the change in synchronized bursting activity occurred over 0.3 V/m, which was equivalent to the findings of a previous study that used the external electric fields. In addition, the results suggested that the potentiation of neuronal activity after 400 mT hPF-MF exposure was related to the depression of autonomous activity of pacemaker-like neurons. Our results indicated that the synchronized bursting activity was increased by hPF-MF exposure (E-field: >0.3 V/m), and the response was due to reduced inhibitory pacemaker-like neuronal activity.
Collapse
Affiliation(s)
- Atsushi Saito
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Masayuki Takahashi
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Kei Makino
- Department of Electrical and Electronic Engineering, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Yukihisa Suzuki
- Department of Electrical and Electronic Engineering, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Satoshi Nakasono
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| |
Collapse
|
38
|
Tarnaud T, Joseph W, Martens L, Tanghe E. Dependence of excitability indices on membrane channel dynamics, myelin impedance, electrode location and stimulus waveforms in myelinated and unmyelinated fibre models. Med Biol Eng Comput 2018; 56:1595-1613. [PMID: 29476320 DOI: 10.1007/s11517-018-1799-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Neuronal excitability is determined in a complex way by several interacting factors, such as membrane dynamics, fibre geometry, electrode configuration, myelin impedance, neuronal terminations[Formula: see text] This study aims to increase understanding in excitability, by investigating the impact of these factors on different models of myelinated and unmyelinated fibres (five well-known membrane models are combined with three electrostimulation models, that take into account the spatial structure of the neuron). Several excitability indices (rheobase, polarity ratio, bi/monophasic ratio, time constants[Formula: see text]) are calculated during extensive parameter sweeps, allowing us to obtain novel findings on how these factors interact, e.g. how the dependency of excitability indices on the fibre diameter and myelin impedance is influenced by the electrode location and membrane dynamics. It was found that excitability is profoundly impacted by the used membrane model and the location of the neuronal terminations. The approximation of infinite myelin impedance was investigated by two implementations of the spatially extended non-linear node model. The impact of this approximation on the time constant of strength-duration plots is significant, most importantly in the Frankenhaeuser-Huxley membrane model for large electrode-neuron separations. Finally, a multi-compartmental model for C-fibres is used to determine the impact of the absence of internodes on excitability. Graphical Abstract Electrostimulation models, obtained by combining five membrane models with three representations of the neuronal cable equation, are fed with electrode and stimulus input parameters. The dependency of neuronal excitability on the interaction of these input parameters is determined by deriving excitability indices from the spatiotemporal model response. The impact of the myelin impedance and the fibre diameter on neural excitability is also considered.
Collapse
Affiliation(s)
- Thomas Tarnaud
- Ghent University-IMEC, Technologiepark 15, Zwijnaarde, 9052, Ghent, Belgium.
| | - Wout Joseph
- Ghent University-IMEC, Technologiepark 15, Zwijnaarde, 9052, Ghent, Belgium
| | - Luc Martens
- Ghent University-IMEC, Technologiepark 15, Zwijnaarde, 9052, Ghent, Belgium
| | - Emmeric Tanghe
- Ghent University-IMEC, Technologiepark 15, Zwijnaarde, 9052, Ghent, Belgium
| |
Collapse
|
39
|
Mercadal B, Arena CB, Davalos RV, Ivorra A. Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study. Phys Med Biol 2017; 62:8060-8079. [PMID: 28901954 DOI: 10.1088/1361-6560/aa8c53] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electroporation based treatments consist in applying one or multiple high voltage pulses to the tissues to be treated. As an undesired side effect, these pulses cause electrical stimulation of excitable tissues such as nerves and muscles. This increases the complexity of the treatments and may pose a risk to the patient. To minimize electrical stimulation during electroporation based treatments, it has been proposed to replace the commonly used monopolar pulses by bursts of short bipolar pulses. In the present study, we have numerically analyzed the rationale for such approach. We have compared different pulsing protocols in terms of their electroporation efficacy and their capability of triggering action potentials in nerves. For that, we have developed a modeling framework that combines numerical models of nerve fibers and experimental data on irreversible electroporation. Our results indicate that, by replacing the conventional relatively long monopolar pulses by bursts of short bipolar pulses, it is possible to ablate a large tissue region without triggering action potentials in a nearby nerve. Our models indicate that this is possible because, as the pulse length of these bipolar pulses is reduced, the stimulation thresholds raise faster than the irreversible electroporation thresholds. We propose that this different dependence on the pulse length is due to the fact that transmembrane charging for nerve fibers is much slower than that of cells treated by electroporation because of their geometrical differences.
Collapse
Affiliation(s)
- Borja Mercadal
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat, 138, 08018 Barcelona, Spain
| | | | | | | |
Collapse
|
40
|
Sano MB, Volotskova O, Xing L. Treatment of Cancer In Vitro Using Radiation and High-Frequency Bursts of Submicrosecond Electrical Pulses. IEEE Trans Biomed Eng 2017; 65:928-935. [PMID: 28783621 DOI: 10.1109/tbme.2017.2734887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-frequency irreversible electroporation (H-FIRE) is an emerging cancer therapy, which uses bursts of short duration, alternating polarity, high-voltage electrical pulses to focally ablate tumors. Here, we present a preliminary investigation of the combinatorial effects of H-FIRE and ionizing radiation. In vitro cell cultures were exposed to bursts of 500 ns pulses and single radiation doses of 2 or 20 Gy then analyzed for 14 days. H-FIRE and radiation therapy (RT) appear to induce different delayed cell death mechanisms and in all treatment groups combinatorial therapy resulted in lower overall viabilities. These results indicate that in vivo investigation of the antitumor efficacy of combined H-FIRE and RT is warranted.
Collapse
|
41
|
Predicting Magnetostimulation Thresholds in the Peripheral Nervous System using Realistic Body Models. Sci Rep 2017; 7:5316. [PMID: 28706244 PMCID: PMC5509681 DOI: 10.1038/s41598-017-05493-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/30/2017] [Indexed: 12/01/2022] Open
Abstract
Rapid switching of applied magnetic fields in the kilohertz frequency range in the human body induces electric fields powerful enough to cause Peripheral Nerve Stimulation (PNS). PNS has become one of the main constraints on the use of high gradient fields for fast imaging with the latest MRI gradient technology. In recent MRI gradients, the applied fields are powerful enough that PNS limits their application in fast imaging sequences like echo-planar imaging. Application of Magnetic Particle Imaging (MPI) to humans is similarly PNS constrained. Despite its role as a major constraint, PNS considerations are only indirectly incorporated in the coil design process, mainly through using the size of the linear region as a proxy for PNS thresholds or by conducting human experiments after constructing coil prototypes. We present for the first time, a framework to simulate PNS thresholds for realistic coil geometries to directly address PNS in the design process. Our PNS model consists of an accurate body model for electromagnetic field simulations, an atlas of peripheral nerves, and a neurodynamic model to predict the nerve responses to imposed electric fields. With this model, we were able to reproduce measured PNS thresholds of two leg/arm solenoid coils with good agreement.
Collapse
|
42
|
van Gendt MJ, Briaire JJ, Kalkman RK, Frijns JHM. Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation. Hear Res 2017. [PMID: 28625417 DOI: 10.1016/j.heares.2017.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cochlear implants encode speech information by stimulating the auditory nerve with amplitude-modulated pulse trains. A computer model of the auditory nerve's response to electrical stimulation can be used to evaluate different approaches to improving CI patients' perception. In this paper a computationally efficient stochastic and adaptive auditory nerve model was used to investigate full nerve responses to amplitude-modulated electrical pulse trains. The model was validated for nerve responses to AM pulse trains via comparison with animal data. The influence of different parameters, such as adaptation and stochasticity, on long-term adaptation and modulation-following behavior was investigated. Responses to pulse trains with different pulse amplitudes, amplitude modulation frequencies, and modulation depths were modeled. Rate responses as well as period histograms, Vector Strength and the fundamental frequency were characterized in different time bins. The response alterations, including frequency following behavior, observed over the stimulus duration were similar to those seen in animal experiments. The tested model can be used to predict complete nerve responses to arbitrary input, and thus to different sound coding strategies.
Collapse
Affiliation(s)
- M J van Gendt
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - J J Briaire
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | - R K Kalkman
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - J H M Frijns
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
43
|
Linderoth B, Foreman RD. Conventional and Novel Spinal Stimulation Algorithms: Hypothetical Mechanisms of Action and Comments on Outcomes. Neuromodulation 2017; 20:525-533. [PMID: 28568898 DOI: 10.1111/ner.12624] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/18/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) emerged as a direct clinical spin-off from the Gate Control Theory from 1965. Over the last decade, several new modes of SCS have appeared. This review discusses these novel techniques and their hypothetical mechanisms of action. MATERIAL AND METHODS A recent literature search on SCS coupled with the most recent data from poster presentations and congress lectures have been used to illustrate new hypothetical ways of modulating pain. RESULTS Several physiological and neurochemical mechanisms for conventional paresthetic SCS have been described in detail. However, much less is known about the novel SCS modes of action. One new algorithm utilizes very high frequencies (up to 10 kHz) intended for direct stimulation of dorsal horns at the T9-T10 level to treat both low back pain and leg pain. Another technique uses bursts of impulses with a high internal frequency delivered to the dorsal spinal cord with a frequency of 40 Hz. Both of these therapies intend to be subparesthetic and effective both for neuropathic and nociceptive pain components. During the last few years, more moderate changes in SCS parameters have been tried in order to increase the amount of electric charge passed from the lead to the neural tissue. This strategy, called "high density SCS," utilizes frequencies up to 1200 Hz or long pulse widths. CONCLUSIONS The present SCS therapies have developed beyond the Gate Control Concept. New hypotheses about mechanisms of action are presented and some improved results are discussed.
Collapse
Affiliation(s)
- Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Sweden
| | - Robert D Foreman
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
44
|
Numerical modeling of percutaneous auricular vagus nerve stimulation: a realistic 3D model to evaluate sensitivity of neural activation to electrode position. Med Biol Eng Comput 2017; 55:1763-1772. [DOI: 10.1007/s11517-017-1629-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/06/2017] [Indexed: 01/09/2023]
|
45
|
Saito A, Takahashi M, Jimbo Y, Nakasono S. Non-conductive and miniature fiber-optic imaging system for real-time detection of neuronal activity in time-varying electromagnetic fields. Biosens Bioelectron 2017; 87:786-793. [PMID: 27649336 DOI: 10.1016/j.bios.2016.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
Establishing an appropriate threshold value for neuronal modulation by time-varying electromagnetic field (EMF) exposure is important for developing international guidelines to protect against the potential health effects, and to design a variety of medical devices. However, it is technically difficult to achieve real-time detection of neuronal activity under repetitive and long-term exposure to EMF. For this purpose, we developed a non-conductive, miniature, and flexible fiber-optic imaging system that does not affect the electromagnetic noise, induction heating, or vibration in a high-intensity and repetitive time-varying EMF exposure. Using the proposed system, we succeeded at real-time detection of spontaneous Ca2+ oscillations in single neuronal and glial cells, as well as synchronized bursting activities of multiple neuronal networks at a micrometer-scale and millisecond-order spatiotemporal resolution during long-term EMF exposure (sinusoidal wave, 20kHz, 8.6mT, >30min). The results indicated that short-term (<5min) exposure-related neuronal modulation was not detectable; however, long-term (15-30min) exposure was observed to depress neuronal activities. In addition, the simultaneous and real-time recording of neuronal activity and the environmental temperature revealed that the neuronal modulation was accompanied by a 0.5-1°C rise in the temperature of the culture medium induced by the heat generation of exposure coils. These findings suggest that our real-time imaging system can be used for precise evaluation of the threshold values and clarification of the mechanisms of neuronal modulation induced by time-varying EMF exposure.
Collapse
Affiliation(s)
- Atsushi Saito
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Abiko-Shi, Chiba 270-1194, Japan.
| | - Masayuki Takahashi
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Abiko-Shi, Chiba 270-1194, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | - Satoshi Nakasono
- Biological Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Abiko-Shi, Chiba 270-1194, Japan
| |
Collapse
|
46
|
van Gendt M, Briaire J, Kalkman R, Frijns J. A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation. Hear Res 2016; 341:130-143. [DOI: 10.1016/j.heares.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 11/15/2022]
|
47
|
Quantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2689-2698. [PMID: 27372268 DOI: 10.1016/j.bbamem.2016.06.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/06/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
High-frequency bipolar electric pulses have been shown to mitigate undesirable muscle contraction during irreversible electroporation (IRE) therapy. Here, we evaluate the potential applicability of such pulses for introducing exogenous molecules into cells, such as in electrochemotherapy (ECT). For this purpose we develop a method for calculating the time course of the effective permeability of an electroporated cell membrane based on real-time imaging of propidium transport into single cells that allows a quantitative comparison between different pulsing schemes. We calculate the effective permeability for several pulsed electric field treatments including trains of 100μs monopolar pulses, conventionally used in IRE and ECT, and pulse trains containing bursts or evenly-spaced 1μs bipolar pulses. We show that shorter bipolar pulses induce lower effective membrane permeability than longer monopolar pulses with equivalent treatment times. This lower efficiency can be attributed to incomplete membrane charging. Nevertheless, bipolar pulses could be used for increasing the uptake of small molecules into cells more symmetrically, but at the expense of higher applied voltages. These data indicate that high-frequency bipolar bursts of electrical pulses may be designed to electroporate cells as effectively as and more homogeneously than conventional monopolar pulses.
Collapse
|
48
|
Neufeld E, Cassará AM, Montanaro H, Kuster N, Kainz W. Functionalized anatomical models for EM-neuron Interaction modeling. Phys Med Biol 2016; 61:4390-401. [PMID: 27224508 PMCID: PMC5381388 DOI: 10.1088/0031-9155/61/12/4390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions.
Collapse
Affiliation(s)
- Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zeughausstr. 43, 8004 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Neufeld E, Vogiatzis Oikonomidis I, Ida Iacono M, Angelone LM, Kainz W, Kuster N. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation. Phys Med Biol 2016; 61:4466-78. [PMID: 27223274 DOI: 10.1088/0031-9155/61/12/4466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An intricate network of a variety of nerves is embedded within the complex anatomy of the human body. Although nerves are shielded from unwanted excitation, they can still be stimulated by external electromagnetic sources that induce strongly non-uniform field distributions. Current exposure safety standards designed to limit unwanted nerve stimulation are based on a series of explicit and implicit assumptions and simplifications. This paper demonstrates the applicability of functionalized anatomical phantoms with integrated coupled electromagnetic and neuronal dynamics solvers for investigating the impact of magnetic resonance exposure on nerve excitation within the full complexity of the human anatomy. The impact of neuronal dynamics models, temperature and local hot-spots, nerve trajectory and potential smoothing, anatomical inhomogeneity, and pulse duration on nerve stimulation was evaluated. As a result, multiple assumptions underlying current safety standards are questioned. It is demonstrated that coupled EM-neuronal dynamics modeling involving realistic anatomies is valuable to establish conservative safety criteria.
Collapse
Affiliation(s)
- Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zeughausstr. 43, 8004 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Kalkman RK, Briaire JJ, Frijns JHM. Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: An overview of existing literature. NETWORK (BRISTOL, ENGLAND) 2016; 27:107-134. [PMID: 27135951 DOI: 10.3109/0954898x.2016.1171412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Since the 1970s, computational modeling has been used to investigate the fundamental mechanisms of cochlear implant stimulation. Lumped parameter models and analytical models have been used to simulate cochlear potentials, as well as three-dimensional volume conduction models based on the Finite Difference, Finite Element, and Boundary Element methods. Additionally, in order to simulate neural responses, several of these cochlear models have been combined with nerve models, which were either simple activation functions or active nerve fiber models of the cochlear auditory neurons. This review paper will present an overview of the ways in which these computational models have been employed to study different stimulation strategies and electrode designs. Research into stimulation strategies has concentrated mainly on multipolar stimulation as a means of achieving current focussing and current steering, while modeling work on electrode design has been chiefly concerned with finding the optimal position and insertion depth of the electrode array. Finally, the present and future of computational modeling of the electrically stimulated cochlea is discussed.
Collapse
Affiliation(s)
- Randy K Kalkman
- a ENT-Department , Leiden University Medical Centre , Leiden , The Netherlands
| | - Jeroen J Briaire
- a ENT-Department , Leiden University Medical Centre , Leiden , The Netherlands
- b Leiden Institute for Brain and Cognition , Leiden , The Netherlands
| | - Johan H M Frijns
- a ENT-Department , Leiden University Medical Centre , Leiden , The Netherlands
- b Leiden Institute for Brain and Cognition , Leiden , The Netherlands
| |
Collapse
|