1
|
Kim J, Jeong J, Jo JK, So H. Hollow microneedles as a flexible dosing control solution for transdermal drug delivery. Mater Today Bio 2025; 32:101754. [PMID: 40290896 PMCID: PMC12033995 DOI: 10.1016/j.mtbio.2025.101754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/16/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Microneedles, small needle-like structures typically less than 1000 μm in length, are effective tools for transporting substances across biological barriers via minimally invasive pathways. Various microelectromechanical system (MEMS) processes enable the production of different types of microneedles, including solid, coated, dissolving, hydrogel, and hollow microneedles, each tailored to specific drug and fluid delivery mechanisms. Among these, hollow microneedles stand out for their ability to offer flexible dosage control adaptable to varying drug formulations, making them particularly promising for transdermal drug delivery systems. This review examines the fabrication processes of hollow microneedles, highlights the advantages of their hollow structure for medical applications, and discusses the key factors influencing their performance. Finally, it proposes directions for advancing these technologies in both industrial and research settings.
Collapse
Affiliation(s)
- Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jaeheon Jeong
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jung Ki Jo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
- Department of Urology, College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Hongyun So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
2
|
Sato T, Kawai T, Shimohira M, Ohta K, Suzuki K, Nakayama K, Takikawa J, Kawaguchi T, Urano M, Ng KW, Leong SH, Hiwatashi A, Too CW. Robot-Assisted CT-Guided Biopsy with an Artificial Intelligence-Based Needle-Path Generator: An Experimental Evaluation Using a Phantom Model. J Vasc Interv Radiol 2025; 36:869-876. [PMID: 39848324 DOI: 10.1016/j.jvir.2025.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/20/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025] Open
Abstract
PURPOSE To investigate the feasibility of a robotic system with artificial intelligence-based lesion detection and path planning for computed tomography (CT)-guided biopsy compared with the conventional freehand technique. MATERIALS AND METHODS Eight nodules within an abdominal phantom, incorporating the simulated vertebrae and ribs, were designated as targets. A robotic system was used for lesion detection, trajectory generation, and needle holder positioning. Four interventional radiologists with more than 5 years of experience and 4 with 5 years of experience or less performed 96 robot-assisted insertions encompassing both in-plane and out-of-plane trajectories. Additionally, 32 CT fluoroscopy single-rotation scan-guided freehand needle insertions were performed along the in-plane trajectories. The 3-dimensional (3D), lateral, depth deviations, and insertion time were quantified using post-needle insertion CT scans. Statistical analysis was performed using the unpaired t-test or 1-way analysis of variance, with a significance level of P < .05. RESULTS The system detected all target lesions and generated appropriate needle paths. Robot-assisted insertions exhibited significantly smaller 3D and depth deviations than freehand insertions (3.8 mm ± 1.3 vs 4.7 mm ± 1.6, P = .001, and 1.8 mm ± 1.2 vs 2.6 mm ± 1.8, P = .005, respectively). No significant difference was observed in lateral deviations (3.0 mm ± 1.5 vs 3.5 mm ± 1.5, P = .118). Robotic assistance significantly reduced insertion time compared with freehand insertion (17.3 s ± 7.8 vs 78.6 s ± 38.1, P < .001). The same trends were observed between the 2 groups of radiologists. CONCLUSIONS The robotic system has the potential to shorten puncture time while maintaining sufficient accuracy in CT-guided procedures.
Collapse
Affiliation(s)
- Takafumi Sato
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Tatsuya Kawai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.
| | - Masashi Shimohira
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kengo Ohta
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Kazushi Suzuki
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Keita Nakayama
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Junichi Takikawa
- Division of Central Radiology, Nagoya City University Hospital, Nagoya, Aichi, Japan
| | - Takatsune Kawaguchi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan; Department of Radiology, Nagoya City University Midori Municipal Hospital, Nagoya, Aichi, Japan
| | - Misugi Urano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Ka Wei Ng
- NDR Medical Technology Pt. Ltd., Singapore, Singapore
| | | | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Chow Wei Too
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Dai X, Zhang Y, Sun Y. Research on Prostate Brachytherapy Robot Design and Puncture Control Strategy. Int J Med Robot 2025; 21:e70059. [PMID: 40121619 DOI: 10.1002/rcs.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/29/2025] [Accepted: 02/23/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND In prostate brachytherapy, oblique-tip needles are frequently used to deliver radioactive seeds to the target area. These needles often experience deflection during insertion, leading to deviations from the planned trajectory and compromising treatment accuracy. METHOD This study did not involve human participants or animals, and therefore, ethics review and approval were not required. The proposed method combines preoperative needle trajectory planning with real-time intraoperative corrections, using an adaptive PID controller enhanced by reinforcement learning to adjust corrective forces during needle insertion. RESULTS Experimental results demonstrated that the proposed method reduced the average seed implantation error to 1.92 mm, with a standard error of 0.56 mm. These findings indicate that the method minimises needle deflection and improves precision in seed implantation. CONCLUSION The proposed modular robotic system and puncture control method enhance the precision of seed implantation and show promise for improving treatment outcomes in prostate cancer therapy.
Collapse
Affiliation(s)
- Xuesong Dai
- School of Mechanical Engineering, Tianjin University, Tianjin, China
- Automation College, Wuxi University, Wuxi, China
| | - Yongde Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China
| | - Yue Sun
- Automation College, Wuxi University, Wuxi, China
| |
Collapse
|
4
|
Yunshan L, Chengli X, Peiming Z, Haocheng Q, Xudong L, Liming L. Integrative research on the mechanisms of acupuncture mechanics and interdisciplinary innovation. Biomed Eng Online 2025; 24:30. [PMID: 40055719 PMCID: PMC11889876 DOI: 10.1186/s12938-025-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
As a traditional therapeutic approach, acupuncture benefits from modern biomechanics, which offers a unique perspective for understanding its mechanisms by investigating the mechanical properties of biological tissues and cells under force, deformation, and movement. This review summarizes recent advancements in the biomechanics of acupuncture, focusing on three main areas: the mechanical effects of acupuncture, the transmission mechanisms of mechanical signals, and the personalization and precision of acupuncture treatments. First, the review introduces the structural basis of the tissues involved in acupuncture; analyzes the mechanical responses of the skin, dermis, and subcutaneous tissues from needle insertion to point activation; and discusses how these responses impact acupuncture efficacy. Second, the phenomenon of mechanical coupling during acupuncture is discussed in detail, especially the role of connective tissues, including the wrapping and self-locking of collagen fibers, the remodeling of the cytoskeleton and the regulation of mitochondrial function triggered by acupuncture. Third, this article examines the mechanisms of mechanical signal transmission in acupuncture, explaining how mechanosensitive ion channels are activated during the procedure and subsequently initiate a cascade of biochemical responses. Finally, the review highlights the numerical simulation methods used in acupuncture, including the mechanical modeling of skin tissues, the exploration of the mechanical mechanisms of acupuncture, and visualization studies of the needling process. By integrating multidisciplinary research findings, this paper delves into the entire mechanical process of acupuncture, from skin penetration to point stimulation, and analyzes tissue responses to provide a solid theoretical foundation for the scientific study of acupuncture. In addition, directions for future research to further refine acupuncture techniques for clinical applications are proposed.
Collapse
Affiliation(s)
- Liang Yunshan
- Clinical Medical College of Acupuncture moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xu Chengli
- School of Science, Harbin Institute of Technology(Shenzhen), Shenzhen, 518055, Guangdong , China
| | - Zhang Peiming
- Clinical Medical College of Acupuncture moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Quan Haocheng
- College of Engineering and Applied sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Liang Xudong
- School of Science, Harbin Institute of Technology(Shenzhen), Shenzhen, 518055, Guangdong , China.
| | - Lu Liming
- Clinical Medical College of Acupuncture moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
5
|
Takehara H, Inada M, Kanda Y, Ichiki T. Mechanical finite element analysis of needle tip shape to develop insertable polymer-based microneedle without plastic deformation. J Mech Behav Biomed Mater 2025; 163:106885. [PMID: 39832414 DOI: 10.1016/j.jmbbm.2025.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Bioabsorbable polymer microneedles are highly attractive as modernized medical devices for efficient yet safe transdermal drug delivery and biofluid biopsy. In this study, the elastoplastic deformation of polymer microneedles, having a high aspect ratio (over 5-10), is investigated using poly(lactic) acid polymer approved by the United States Food and Drug Administration to be generally considered safe. Microneedle geometries are comprehensively analyzed for tip geometries comprising the tip diameter (ϕt) and tip taper length (lt) of 100 designs. Elastoplastic analysis is conducted using the finite element method to determine the typical geometries of the polymer microneedles to avoid elastoplastic deformation accompanied by fatal fracture based on the mechanical properties of the polymer materials. The design principles of microneedle geometries based on polymer material properties are important guidelines for developing polymer microneedles, overcoming their mechanical weakness, and ensuring excellent functions.
Collapse
Affiliation(s)
- Hiroaki Takehara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), 3-25-14 Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan.
| | - Mizuki Inada
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yukihiro Kanda
- Innovation Center of NanoMedicine (iCONM), 3-25-14 Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Takanori Ichiki
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), 3-25-14 Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| |
Collapse
|
6
|
Duan B, Jia B, Wang C, Chen S, Xu J, Teng GJ. Optimization of percutaneous intervention robotic system for skin insertion force. Int J Comput Assist Radiol Surg 2025; 20:345-355. [PMID: 39514174 DOI: 10.1007/s11548-024-03274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Percutaneous puncture is a common interventional procedure, and its effectiveness is influenced by the insertion force of the needle. To optimize outcomes, we focus on reducing the peak force of the needle in the skin, aiming to apply this method to other tissue layers. METHODS We developed a clinical puncture system, setting and measuring various variables. We analyzed their effects, introduced admittance control, set thresholds, and adjusted parameters. Finally, we validated these methods to ensure their effectiveness. RESULTS Our system meets application requirements. We assessed the impact of various variables on peak force and validated the effectiveness of the new method. Results show a reduction of about 50% in peak force compared to the maximum force condition and about 13% compared to the minimum force condition. Finally, we summarized the factors to consider when applying this method. CONCLUSION To achieve peak force suppression, initial puncture variables should be set based on the trends in variable impact. Additionally, the factors of the new method should be introduced using these initial settings. When selecting these factors, the characteristics of the new method must also be considered. This process will help to better optimize peak puncture force.
Collapse
Affiliation(s)
- Benfang Duan
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Biao Jia
- Hanglok-Tech Co., Ltd., Hengqin, 519000, China
| | - Cheng Wang
- Hanglok-Tech Co., Ltd., Hengqin, 519000, China
| | - Shijia Chen
- Hanglok-Tech Co., Ltd., Hengqin, 519000, China
| | - Jun Xu
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Gao-Jun Teng
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
7
|
Friis SJ, Hansen TS, Olesen C, Poulsen M, Gregersen H, Vinge Nygaard J. Experimental and numerical study of solid needle insertions into human stomach tissue. J Mech Behav Biomed Mater 2025; 162:106832. [PMID: 39591721 DOI: 10.1016/j.jmbbm.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
PURPOSE Oral drug delivery is the Holy Grail in the field of drug delivery. However, poor bioavailability limits the oral intake of macromolecular drugs. Oral devices may overcome this limitation, but a knowledge gap exists on the device-tissue interaction. This study focuses on needle insertion into the human stomach experimentally and numerically. This will guide early stages of device development. METHODS Needle insertions were done into excised human gastric tissue with sharp and blunt needles at velocities of 0.0001 and 0.1 m/s. Parameters for constitutive models were determined from tensile visco-hyperelastic biomechanical tests. The computational setup modeled four different needle shape indentations at five velocities from 0.0001 to 5 m/s. RESULTS From experiments, peak forces at 0.1 and 0.0001 m/s were 0.995 ± 0.296 N and 1.281 ± 0.670 N (blunt needle) and 0.325 ± 0.235 N and 0.362 ± 0.119 N (sharp needle). The needle geometry significantly influenced peak forces (p < 0.05). A Yeoh-Prony series combination was fitted to the tensile visco-hyperelastic biomechanical data and used for the numerical model with excellent fit (R2 = 0.973). Both needle geometry and insertion velocity influenced the stress contour and displacement magnitudes as well as energy curves. CONCLUSION This study contributes to a better understanding of needle insertion into the stomach wall. The numerical model demonstrated agreement with experimental data providing a good approach to early device iterations. Findings in this study showed that insertion velocity and needle shape affect tissue mechanical outcomes.
Collapse
Affiliation(s)
- Sif Julie Friis
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Camilla Olesen
- Department of Mechanical and Production Engineering, Aarhus University, Aarhus, Denmark
| | - Mette Poulsen
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Hans Gregersen
- California Medical Innovations Institute, San Diego, CA, United States
| | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Visscher M, Frijlink HW, Hinrichs WLJ. What Is the Optimal Geometry of Dissolving Microneedle Arrays? A Literature Review. Pharmaceutics 2025; 17:124. [PMID: 39861771 PMCID: PMC11769129 DOI: 10.3390/pharmaceutics17010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The application of dissolving microneedle arrays (DMNAs) is an emerging trend in drug and vaccine delivery as an alternative for hypodermic needles or other less convenient drug administration methods. The major benefits include, amongst others, that no trained healthcare personnel is required and that the recipient experiences hardly any pain during administration. However, for a successful drug or vaccine delivery from the DMNA, the microneedles should be inserted intact into the skin. A successful penetration into the upper skin layers may be challenging because of the elastic nature of the skin; therefore, a minimum insertion force is required to overcome the total resistance force of the skin. In addition, the microneedles need to stay intact, which requires a certain mechanical strength, and be able to resist the required insertion force. In addition to the type of material with which the DMNAs are produced, the geometry of the DMNAs will also have a profound effect, not only on the mechanical strength but also on the number of insertions and penetration depth into the skin. In this review, the effects of shape, aspect ratio, length, width of the base, tip diameter and angle, and spacing of DMNAs on the aforementioned effect parameters were evaluated to answer the following question: 'What is the optimal geometry of dissolving microneedle arrays?'.
Collapse
Affiliation(s)
| | | | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands; (M.V.); (H.W.F.)
| |
Collapse
|
9
|
Bloemberg J, van Wees S, Kortman VG, Sakes A. Design of a wasp-inspired biopsy needle capable of self-propulsion and friction-based tissue transport. Front Bioeng Biotechnol 2025; 12:1497221. [PMID: 39834634 PMCID: PMC11743259 DOI: 10.3389/fbioe.2024.1497221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Percutaneous pancreatic core biopsy is conclusive but challenging due to large-diameter needles, while smaller-diameter needles used in aspiration methods suffer from buckling and clogging. Inspired by the ovipositor of parasitic wasps, which resists buckling through self-propulsion and prevents clogging via friction-based transport, research has led to the integration of these functionalities into multi-segment needle designs or tissue transport system designs. This study aimed to combine these wasp-inspired functionalities into a single biopsy needle by changing the interconnection of the needle segments. The resulting biopsy needle features six parallel needle segments interconnected by a ring passing through slots along the length of the needle segments, enabling a wasp-inspired reciprocating motion. Actuation employs a cam and follower mechanism for controlled translation of the segments. The needle prototype, constructed from nitinol rods and stainless steel rings, measures 3 mm in outer diameter and 1 mm in inner diameter. Testing in gelatin phantoms demonstrated efficient gelatin core transport (up to 69.9% ± 9.1% transport efficiency) and self-propulsion (0.842 ± 0.042 slip ratio). Future iterations should aim to reduce the outer diameter while maintaining tissue yield. The design offers a promising new avenue for wasp-inspired medical tools, potentially enhancing early pancreatic cancer detection, thus reducing healthcare costs and patient complications.
Collapse
Affiliation(s)
- Jette Bloemberg
- Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Suzanne van Wees
- Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands
- Department of Biomedical Engineering, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Vera G. Kortman
- Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Aimée Sakes
- Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
10
|
Delbos B, Chalard R, Leleve A, Moreau R. A Generalized Tracking Wall Approach to the Haptic Simulation of Tip Forces During Needle Insertion. IEEE TRANSACTIONS ON HAPTICS 2025; 18:110-123. [PMID: 39499592 DOI: 10.1109/toh.2024.3487000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Haptic simulation of needle insertion requires both a needle-tissue interaction model and a method to render the outputs of this model into real-time force feedback for the user. In comparison with interaction models, rendering methods in the literature have seen little development and are either oversimplified or too computationally complex. Therefore, this study introduces the Generalized Tracking Wall (GTW) approach, a haptic rendering method inspired by the proxy approach. It aims to accurately simulate the interaction between a needle tip and soft tissues without the complex calculations of tissue deformations. The essence of the proposed method is that it associates an algorithm based on the energetic analysis of cutting with a contact model capable of simulating viscoelasticity and nonlinearity. This association proved to be a potent tool to faithfully replicate the different phases of needle insertion while adhering to underlying physics. Multi-layered-tissue insertions are also considered. The performance and generecity of the GTW are first evaluated through simulations. Then, the GTW is experimentally compared to empirical methods inspired by the literature.
Collapse
|
11
|
Bloemberg J, Fung-A-Jou Z, Breedveld P, Sakes A. Design and evaluation of a ball spline wasp-inspired needle. Front Bioeng Biotechnol 2024; 12:1468605. [PMID: 39669417 PMCID: PMC11634578 DOI: 10.3389/fbioe.2024.1468605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
In percutaneous interventions, needles are used to reach target locations inside the body. However, when the needle is pushed through the tissue, forces arise at the needle tip and along the needle body, making the needle prone to buckling. Recently, needles that prevent buckling inspired by the ovipositor of female parasitic wasps have been developed. Building on these needle designs, this study proposes a manual actuation unit that allows the operator to drive the wasp-inspired needle through stationary tissue. The needle consists of six 0.3-mm spring steel wires, of which one is advanced while the others are retracted. The advancing needle segment has to overcome a cutting and friction force while the retracting ones experience a friction force in the opposite direction. The actuation unit moves the needle segments in the required sequence using a low-friction ball spline mechanism. The moving components of the needle have low inertia, and its connection to the actuation unit using a ball spline introduces a small friction force, generating a small push force on the needle that facilitates the needle's propulsion into tissue while preventing needle buckling. Experimental testing evaluated the needle's ability to move through stationary 15-wt% gelatin tissue phantoms for different actuation velocities. It was found that the needle moved through the tissue phantoms with mean slip ratios of 0.35, 0.31, and 0.29 for actuation velocities of π, 2π, and 3π rad/s, respectively. Furthermore, evaluation in 15-wt%, 10-wt%, and 5-wt% gelatin tissue phantoms showed that decreasing the gelatin concentration decreased the mean slip ratios from 0.35 to 0.19 and 0.18, respectively. The needle actuation system design is a step forward in developing a wasp-inspired needle for percutaneous procedures that prevents buckling.
Collapse
|
12
|
Hadjicharalambous M, Roussakis Y, Bourantas G, Ioannou E, Miller K, Doolan P, Strouthos I, Zamboglou C, Vavourakis V. Personalised in silico biomechanical modelling towards the optimisation of high dose-rate brachytherapy planning and treatment against prostate cancer. Front Physiol 2024; 15:1491144. [PMID: 39512470 PMCID: PMC11540655 DOI: 10.3389/fphys.2024.1491144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
High dose-rate brachytherapy presents a promising therapeutic avenue for prostate cancer management, involving the temporary implantation of catheters which deliver radioactive sources to the cancerous site. However, as catheters puncture and penetrate the prostate, tissue deformation is evident which may affect the accuracy and efficiency of the treatment. In this work, a data-driven in silico modelling procedure is proposed to simulate brachytherapy while accounting for prostate biomechanics. Comprehensive magnetic resonance and transrectal ultrasound images acquired prior, during and post brachytherapy are employed for model personalisation, while the therapeutic procedure is simulated via sequential insertion of multiple catheters in the prostate gland. The medical imaging data are also employed for model evaluation, thus, demonstrating the potential of the proposed in silico procedure to be utilised pre- and intra-operatively in the clinical setting.
Collapse
Affiliation(s)
| | - Yiannis Roussakis
- Department of Medical Physics, German Oncology Centre, Limassol, Cyprus
| | - George Bourantas
- Department of Agriculture, University of Patras, Messolonghi, Greece
- Intelligent Systems for Medicine Laboratory, University of Western Australia, Perth, WA, Australia
| | - Eleftherios Ioannou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Karol Miller
- Intelligent Systems for Medicine Laboratory, University of Western Australia, Perth, WA, Australia
| | - Paul Doolan
- Department of Medical Physics, German Oncology Centre, Limassol, Cyprus
| | - Iosif Strouthos
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus
| | | | - Vasileios Vavourakis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
13
|
Behera B, Orlando MF, Anand RS. Prediction of puncturing events through LSTM for multilayer tissue. Biomed Phys Eng Express 2024; 10:065041. [PMID: 39378895 DOI: 10.1088/2057-1976/ad844c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Recognizing penetration events in multilayer tissue is critical for many biomedical engineering applications, including surgical procedures and medical diagnostics. This paper presents a unique method for detecting penetration events in multilayer tissue using Long Short-Term Memory (LSTM) networks. LSTM networks, a form of recurrent neural network (RNN), excel at analyzing sequential data because of their ability to hold long-term dependencies. The suggested method collects time-series insertion force data from sensors integrated from a 1-DOF prismatic robot as it penetrates tissue. This data is then processed by the LSTM network, which has been trained to recognize patterns indicating penetration events through various tissue layers. The effectiveness of this approach is validated through experimental setups, demonstrating high accuracy and reliability in detecting penetration events. This technique offers significant improvements over traditional methods, providing a non-invasive, real-time solution that enhances the precision and safety of medical procedures involving multilayer tissue interaction.
Collapse
Affiliation(s)
- Bulbul Behera
- Indian Institute of Technology Roorkee, Department of Electrical Engineering, Advanced Robotics Laboratory, Roorkee, Uttarakhand, 247667, India
| | - M Felix Orlando
- Indian Institute of Technology Roorkee, Department of Electrical Engineering, Advanced Robotics Laboratory, Roorkee, Uttarakhand, 247667, India
| | - R S Anand
- Indian Institute of Technology Roorkee, Department of Electrical Engineering, Advanced Robotics Laboratory, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
14
|
Yuan T, Zhan W, Terzano M, Holzapfel GA, Dini D. A comprehensive review on modeling aspects of infusion-based drug delivery in the brain. Acta Biomater 2024; 185:1-23. [PMID: 39032668 DOI: 10.1016/j.actbio.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Brain disorders represent an ever-increasing health challenge worldwide. While conventional drug therapies are less effective due to the presence of the blood-brain barrier, infusion-based methods of drug delivery to the brain represent a promising option. Since these methods are mechanically controlled and involve multiple physical phases ranging from the neural and molecular scales to the brain scale, highly efficient and precise delivery procedures can significantly benefit from a comprehensive understanding of drug-brain and device-brain interactions. Behind these interactions are principles of biophysics and biomechanics that can be described and captured using mathematical models. Although biomechanics and biophysics have received considerable attention, a comprehensive mechanistic model for modeling infusion-based drug delivery in the brain has yet to be developed. Therefore, this article reviews the state-of-the-art mechanistic studies that can support the development of next-generation models for infusion-based brain drug delivery from the perspective of fluid mechanics, solid mechanics, and mathematical modeling. The supporting techniques and database are also summarized to provide further insights. Finally, the challenges are highlighted and perspectives on future research directions are provided. STATEMENT OF SIGNIFICANCE: Despite the immense potential of infusion-based drug delivery methods for bypassing the blood-brain barrier and efficiently delivering drugs to the brain, achieving optimal drug distribution remains a significant challenge. This is primarily due to our limited understanding of the complex interactions between drugs and the brain that are governed by principles of biophysics and biomechanics, and can be described using mathematical models. This article provides a comprehensive review of state-of-the-art mechanistic studies that can help to unravel the mechanism of drug transport in the brain across the scales, which underpins the development of next-generation models for infusion-based brain drug delivery. More broadly, this review will serve as a starting point for developing more effective treatments for brain diseases and mechanistic models that can be used to study other soft tissue and biomaterials.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK.
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Trondheim, Norway
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
15
|
Selim M, Dresscher D, Abayazid M. Virtual Needle Insertion with Enhanced Haptic Feedback for Guidance and Needle-Tissue Interaction Forces. SENSORS (BASEL, SWITZERLAND) 2024; 24:5560. [PMID: 39275470 PMCID: PMC11397964 DOI: 10.3390/s24175560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
Interventional radiologists mainly rely on visual feedback via imaging modalities to steer a needle toward a tumor during biopsy and ablation procedures. In the case of CT-guided procedures, there is a risk of exposure to hazardous X-ray-based ionizing radiation. Therefore, CT scans are usually not used continuously, which increases the chances of a misplacement of the needle and the need for reinsertion, leading to more tissue trauma. Interventionalists also encounter haptic feedback via needle-tissue interaction forces while steering a needle. These forces are useful but insufficient to clearly perceive and identify deep-tissue structures such as tumors. The objective of this paper was to investigate the effect of enhanced force feedback for sensing interaction forces and guiding the needle when applied individually and simultaneously during a virtual CT-guided needle insertion task. We also compared the enhanced haptic feedback to enhanced visual feedback. We hypothesized that enhancing the haptic feedback limits the time needed to reach the target accurately and reduces the number of CT scans, as the interventionalist depends more on real-time enhanced haptic feedback. To test the hypothesis, a simulation environment was developed to virtually steer a needle in five degrees of freedom (DoF) to reach a tumor target embedded in a liver model. Twelve participants performed in the experiment with different feedback conditions where we measured their performance in terms of the following: targeting accuracy, trajectory tracking, number of CT scans required, and the time needed to finish the task. The results suggest that the combination of enhanced haptic feedback for guidance and sensing needle-tissue interaction forces significantly reduce the number of scans and the duration required to finish the task by 32.1% and 46.9%, respectively, when compared to nonenhanced haptic feedback. The other feedback modalities significantly reduced the duration to finish the task by around 30% compared to nonenhanced haptic feedback.
Collapse
Affiliation(s)
- Mostafa Selim
- Robotics and Mechatronics Research Group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7500 AE Enschede, The Netherlands
| | - Douwe Dresscher
- Robotics and Mechatronics Research Group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7500 AE Enschede, The Netherlands
| | - Momen Abayazid
- Robotics and Mechatronics Research Group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
16
|
Jiang S, Gao Y, Yang Z, Li Y, Zhou Z. A method for predicting needle insertion deflection in soft tissue based on cutting force identification. Comput Methods Biomech Biomed Engin 2024:1-12. [PMID: 39099146 DOI: 10.1080/10255842.2024.2386326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
The deflection modeling during the insertion of bevel-tipped flexible needles into soft tissues is crucial for robot-assisted flexible needle insertion into specific target locations within the human body during percutaneous biopsy surgery. This paper proposes a mechanical model based on cutting force identification to predict the deflection of flexible needles in soft tissues. Unlike other models, this method does not require measuring Young's modulus (E ) and Poisson's ratio (ν ) of tissues, which require complex hardware to obtain. In the model, the needle puncture process is discretized into a series of uniform-depth puncture steps. The needle is simplified as a cantilever beam supported by a series of virtual springs, and the influence of tissue stiffness on needle deformation is represented by the spring stiffness coefficient of the virtual spring. By theoretical modeling and experimental parameter identification of cutting force, the spring stiffness coefficients are obtained, thereby modeling the deflection of the needle. To verify the accuracy of the proposed model, the predicted model results were compared with the deflection of the puncture experiment in polyvinyl alcohol (PVA) gel samples, and the average maximum error range predicted by the model was between 0.606 ± 0.167 mm and 1.005 ± 0.174 mm, which showed that the model can successfully predict the deflection of the needle. This work will contribute to the design of automatic control strategies for needles.
Collapse
Affiliation(s)
- Shan Jiang
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Yihan Gao
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Zhiyong Yang
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Yuhua Li
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Zeyang Zhou
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Terefe TO, Chawla A, Datla NV. Low-velocity nail penetration response of muscle tissue and gelatin. Forensic Sci Int 2024; 361:112082. [PMID: 38843765 DOI: 10.1016/j.forsciint.2024.112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 08/06/2024]
Abstract
Quantitative estimation of soft tissue injuries due to penetration of sharp objects is a challenging task for forensic pathologists. The severity of injury depends on the force required to penetrate the tissue. This study focuses on investigating the amount of force required to penetrate porcine muscle tissue and gelatin simulants (10 % wt) to mimic human muscle tissue when subjected to sharp objects like nail at velocities below 5 m/s. A custom-made experimental setup was used to examine the influence of penetration velocity and nail diameter on penetration forces. Images captured by a high-speed camera were used to track the position and velocity of the nail. A finite element (FE) model was established to simulate the penetration behavior of the tissue and gelatin. The FE simulations of the nail penetration were validated through direct comparison with the experimental results. In tissues as well as in the simulant, penetration forces were seen to increase with increasing nail diameter and velocity. Porcine muscle tissue showed 23.9-46.5 % higher penetration forces than gelatin simulants (10 % wt) depending on nail diameter and velocity; the difference being higher for higher nail diameter and velocity. The ranges of maximum penetration forces measured were 8.6-59.1 N for porcine muscle tissue and 6.8-34.9 N for gelatin simulant. This study helps to quantify injuries caused by sharp nails at low velocities and offers insights with potential applications in injury management strategies and forensic studies.
Collapse
Affiliation(s)
- Tesfaye O Terefe
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Anoop Chawla
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Naresh V Datla
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
18
|
Li G, Jang D, Shin Y, Qiang Y, Qi Y, Wang S, Fang H. Cracking modes and force dynamics in the insertion of neural probes into hydrogel brain phantom. J Neural Eng 2024; 21:046009. [PMID: 38885673 PMCID: PMC11225066 DOI: 10.1088/1741-2552/ad5937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective. The insertion of penetrating neural probes into the brain is crucial for advancing neuroscience, yet it involves various inherent risks. Prototype probes are typically inserted into hydrogel-based brain phantoms and the mechanical responses are analyzed in order to inform the insertion mechanics duringin vivoimplantation. However, the underlying mechanism of the insertion dynamics of neural probes in hydrogel brain phantoms, particularly the phenomenon of cracking, remains insufficiently understood. This knowledge gap leads to misinterpretations and discrepancies when comparing results obtained from phantom studies to those observed under thein vivoconditions. This study aims to elucidate the impact of probe sharpness and dimensions on the cracking mechanisms and insertion dynamics characterized during the insertion of probes in hydrogel phantoms.Approach. The insertion of dummy probes with different shank shapes defined by the tip angle, width, and thickness is systematically studied. The insertion-induced cracks in the transparent hydrogel were accentuated by an immiscible dye, tracked byin situimaging, and the corresponding insertion force was recorded. Three-dimensional finite element analysis models were developed to obtain the contact stress between the probe tip and the phantom.Main results. The findings reveal a dual pattern: for sharp, slender probes, the insertion forces remain consistently low during the insertion process, owing to continuously propagating straight cracks that align with the insertion direction. In contrast, blunt, thick probes induce large forces that increase rapidly with escalating insertion depth, mainly due to the formation of branched crack with a conical cracking surface, and the subsequent internal compression. This interpretation challenges the traditional understanding that neglects the difference in the cracking modes and regards increased frictional force as the sole factor contributing to higher insertion forces. The critical probe sharpness factors separating straight and branched cracking is identified experimentally, and a preliminary explanation of the transition between the two cracking modes is derived from three-dimensional finite element analysis.Significance. This study presents, for the first time, the mechanism underlying two distinct cracking modes during the insertion of neural probes into hydrogel brain phantoms. The correlations between the cracking modes and the insertion force dynamics, as well as the effects of the probe sharpness were established, offering insights into the design of neural probes via phantom studies and informing future investigations into cracking phenomena in brain tissue during probe implantations.
Collapse
Affiliation(s)
- Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Dongyeol Jang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Yieljae Shin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Yongli Qi
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Shuodao Wang
- School of Mechanical & Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| |
Collapse
|
19
|
Bloemberg J, Hoppener B, Coolen B, Sakes A, Breedveld P. Design and evaluation of a pneumatic actuation unit for a wasp-inspired self-propelled needle. PLoS One 2024; 19:e0306411. [PMID: 38954720 PMCID: PMC11218968 DOI: 10.1371/journal.pone.0306411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Transperineal laser ablation is a minimally invasive thermo-ablative treatment for prostate cancer that requires the insertion of a needle for accurate optical fiber positioning. Needle insertion in soft tissues may cause tissue motion and deformation, resulting in tissue damage and needle positioning errors. In this study, we present a wasp-inspired self-propelled needle that uses pneumatic actuation to move forward with zero external push force, thus avoiding large tissue motion and deformation. The needle consists of six parallel 0.25-mm diameter Nitinol rods driven by a pneumatic actuation system. The pneumatic actuation system consists of Magnetic Resonance (MR) safe 3D-printed parts and off-the-shelf plastic screws. A self-propelled motion is achieved by advancing the needle segments one by one, followed by retracting them simultaneously. The advancing needle segment has to overcome a cutting and friction force, while the stationary needle segments experience a friction force in the opposite direction. The needle self-propels through the tissue when the friction force of the five stationary needle segments overcomes the sum of the friction and cutting forces of the advancing needle segment. We evaluated the prototype's performance in 10-wt% gelatin phantoms and ex vivo porcine liver tissue inside a preclinical Magnetic Resonance Imaging (MRI) scanner in terms of the slip ratio of the needle with respect to the phantom or liver tissue. Our results demonstrated that the needle was able to self-propel through the phantom and liver tissue with slip ratios of 0.912-0.955 and 0.88, respectively. The prototype is a promising step toward the development of self-propelled needles for MRI-guided transperineal laser ablation as a method to treat prostate cancer.
Collapse
Affiliation(s)
- Jette Bloemberg
- Faculty of Mechanical Engineering, Department of BioMechanical Engineering, Bio-Inspired Technology (BITE) Group, Delft University of Technology, Delft, The Netherlands
| | - Bruce Hoppener
- Faculty of Mechanical Engineering, Department of BioMechanical Engineering, Bio-Inspired Technology (BITE) Group, Delft University of Technology, Delft, The Netherlands
| | - Bram Coolen
- Department of Biomedical Engineering & Physics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Aimée Sakes
- Faculty of Mechanical Engineering, Department of BioMechanical Engineering, Bio-Inspired Technology (BITE) Group, Delft University of Technology, Delft, The Netherlands
| | - Paul Breedveld
- Faculty of Mechanical Engineering, Department of BioMechanical Engineering, Bio-Inspired Technology (BITE) Group, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
20
|
Siddharth A, Bhandari A, Singh SS, Udai AD. Effect of twisting of intravitreal injections on ocular bio-mechanics: a novel insight to ocular surgery. Biomech Model Mechanobiol 2024; 23:1013-1030. [PMID: 38361086 DOI: 10.1007/s10237-024-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Although intravitreal (IVT) injections provide several advantages in treating posterior segment eye diseases, several associated challenges remain. The current study uses the finite element method (FEM) to highlight the effect of IVT needle rotation along the insertion axis on the reaction forces and deformation inside the eye. A comparison of the reaction forces at the eye's key locations has been made with and without rotation. In addition, a sensitivity analysis of various parameters, such as the needle's angular speed, insertion location, angle, gauge, shape, and intraocular pressure (IOP), has been carried out to delineate the individual parameter's effect on reaction forces during rotation. Results demonstrate that twisting the needle significantly reduces the reaction forces at the penetration location and throughout the needle travel length, resulting in quicker penetration. Moreover, ocular biomechanics are influenced by needle insertion location, angle, shape, size, and IOP. The reaction forces incurred by the patient may be reduced by using a bevel needle of the higher gauge when inserted close to the normal of the local scleral surface toward the orra serrata within the Pars Plana region. Results obtained from the current study can deepen the understanding of the twisting needle's interaction with the ocular tissue.
Collapse
Affiliation(s)
- Ashish Siddharth
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Ajay Bhandari
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Sarthak S Singh
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Arun Dayal Udai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
21
|
Wang C, Guo L, Zhu J, Zhu L, Li C, Zhu H, Song A, Lu L, Teng GJ, Navab N, Jiang Z. Review of robotic systems for thoracoabdominal puncture interventional surgery. APL Bioeng 2024; 8:021501. [PMID: 38572313 PMCID: PMC10987197 DOI: 10.1063/5.0180494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer, with high morbidity and high mortality, is one of the major burdens threatening human health globally. Intervention procedures via percutaneous puncture have been widely used by physicians due to its minimally invasive surgical approach. However, traditional manual puncture intervention depends on personal experience and faces challenges in terms of precisely puncture, learning-curve, safety and efficacy. The development of puncture interventional surgery robotic (PISR) systems could alleviate the aforementioned problems to a certain extent. This paper attempts to review the current status and prospective of PISR systems for thoracic and abdominal application. In this review, the key technologies related to the robotics, including spatial registration, positioning navigation, puncture guidance feedback, respiratory motion compensation, and motion control, are discussed in detail.
Collapse
Affiliation(s)
- Cheng Wang
- Hanglok-Tech Co. Ltd., Hengqin 519000, People's Republic of China
| | - Li Guo
- Hanglok-Tech Co. Ltd., Hengqin 519000, People's Republic of China
| | | | - Lifeng Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Chichi Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Macau, 999078, People's Republic of China
| | - Haidong Zhu
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Aiguo Song
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | | | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | | | - Zhongliang Jiang
- Computer Aided Medical Procedures, Technical University of Munich, Munich 80333, Germany
| |
Collapse
|
22
|
Duan Y, Ling J, Feng Z, Ye T, Sun T, Zhu Y. A Survey of Needle Steering Approaches in Minimally Invasive Surgery. Ann Biomed Eng 2024; 52:1492-1517. [PMID: 38530535 DOI: 10.1007/s10439-024-03494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
In virtue of a curved insertion path inside tissues, needle steering techniques have revealed the potential with the assistance of medical robots and images. The superiority of this technique has been preliminarily verified with several maneuvers: target realignment, obstacle circumvention, and multi-target access. However, the momentum of needle steering approaches in the past decade leads to an open question-"How to choose an applicable needle steering approach for a specific clinical application?" This survey discusses this question in terms of design choices and clinical considerations, respectively. In view of design choices, this survey proposes a hierarchical taxonomy of current needle steering approaches. Needle steering approaches of different manipulations and designs are classified to systematically review the design choices and their influences on clinical treatments. In view of clinical consideration, this survey discusses the steerability and acceptability of the current needle steering approaches. On this basis, the pros and cons of the current needle steering approaches are weighed and their suitable applications are summarized. At last, this survey concluded with an outlook of the needle steering techniques, including the potential clinical applications and future developments in mechanical design.
Collapse
Affiliation(s)
- Yuzhou Duan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jie Ling
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhao Feng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Tingting Ye
- Industrial and Systems Engineering Department, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Tairen Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuchuan Zhu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
23
|
Zhang Y, He W, Wang L, Su W, Chen H, Li A, Chen J. Penetrating the ultra-tough yeast cell wall with finite element analysis model-aided design of microtools. iScience 2024; 27:109503. [PMID: 38591007 PMCID: PMC11000014 DOI: 10.1016/j.isci.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Microinjecting yeast cells has been challenging for decades with no significant breakthrough due to the ultra-tough cell wall and low stiffness of the traditional injector tip at the micro-scale. Penetrating this protection wall is the key step for artificially bringing foreign substance into the yeast. In this paper, a yeast cell model was built by using finite element analysis (FEA) method to analyze the penetrating process. The key parameters of the yeast cell wall in the model (the Young's modulus, the shear modulus, and the Lame constant) were calibrated according to a general nanoindentation experiment. Then by employing the calibrated model, the injection parameters were optimized to minimize the cell damage (the maximum cell deformation at the critical stress of the cell wall). Key guidelines were suggested for penetrating the cell wall during microinjection.
Collapse
Affiliation(s)
- Yanfei Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wende He
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Hao Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Anqing Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
24
|
Yang Z, Wen S, Qi Q, Zhang X, Shen H, Chen G, Xu J, Lv Z, Ji A. Design of composite puncture blood collection system and research on puncture force. Comput Methods Biomech Biomed Engin 2024:1-12. [PMID: 38587364 DOI: 10.1080/10255842.2024.2338474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Venous blood collection testing is one of the most commonly used medical diagnostic methods. Compared with conventional venous blood collection, robotic collection can reduce needle-stick injuries, medical staff workload, and infection risk; allow doctor-patient isolation; and improve collection reliability. Existing venous blood collection robots use rigid puncture needles, which can easily puncture the lower wall of blood vessels, causing vessel damage and collection failure. This paper proposes a bionic blood collection strategy based on a composite puncture needle that mimics the structure and function of mosquito mouthparts. A bionic composite puncture needle insertion system with puncture-force sensing was designed, and venipuncture forces were simulated and mathematically modelled. A prototype insertion system was built and used in an experiment, which demonstrated effective composite puncture blood collection and explored the factors influencing puncture force. Puncture force decreases with increased puncture speed and angle and with a decreased needle diameter. This provides a basis for optimising the parameters of blood collection robots.
Collapse
Affiliation(s)
- Zhikang Yang
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Shikun Wen
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qian Qi
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaoshu Zhang
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Huan Shen
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Guangming Chen
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jiajun Xu
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhuhai Lv
- Department of Neurosurgery, Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Aihong Ji
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
25
|
Zhao YJ, Jin YX, Wen C, Zhang YD, Zhang H. A mechanics-based model for predicting flexible needle bending with large curvature in soft tissue. Med Eng Phys 2024; 126:104156. [PMID: 38621852 DOI: 10.1016/j.medengphy.2024.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/17/2024]
Abstract
Percutaneous insertion is one of the most common minimally invasive procedures. Compared with traditional straight rigid needles, bevel-tipped flexible needle can generate curved trajectories to avoid obstacles and sensitive organs. However, the nonlinear large deflection problem challenges the bending prediction of the needle, which dramatically influences the surgical success rate. This paper analyzed the mechanism of needle-tissue interaction, and established a mechanics-based model of the needle bending during an insertion. And then, a discretization of the bending model was adopted to accurately predict the large bending of the needle in soft tissue. Insertion experiments were conducted to validate the bending prediction model. The results showed that the large needle bending was predicted with the mean/RMSE/maximumu error of 0.42 mm / 0.26 mm / 1.08 mm, which was clinically acceptable. This proved the rationality and accuracy of the proposed model.
Collapse
Affiliation(s)
- Yan-Jiang Zhao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China.
| | - Ye-Xin Jin
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - Chao Wen
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China; College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
| | - Yong-De Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - He Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| |
Collapse
|
26
|
Nadda R, Repaka R. In-Silico Analysis of Optimal Configurations for Rotational Bioinspired Bone Marrow Biopsy Needle Designs: An ANN Approach. Ann Biomed Eng 2024; 52:846-864. [PMID: 38135833 DOI: 10.1007/s10439-023-03421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Medical needle innovations have utilized rotating motion to enhance tissue-cutting capabilities, reducing cutting force and improving clinical outcomes. This study analyzes the effects of six essential factors on insertion and extraction forces during bone marrow biopsy (BMB) procedures. The study uses Taguchi's L32 orthogonal array and numerically simulates the BMB process using the Lagrangian surface-based method on a three-dimensional (3D) heterogeneous Finite Element (FE) model of the human iliac crest. The study evaluates cutting forces in needle insertion and extraction using uni-directional (360° rotation) and bidirectional (180° clock and anti-clock rotation) bioinspired BMB needles. This work aims to create an AI tool that assists researchers and clinicians in selecting the most suitable and safe design parameters for a bio-inspired barbed biopsy needle. An efficient Graphical User Interface (GUI) has been developed for easy use and seamless interaction with the AI tool. With a remarkable accuracy rate exceeding 98%, the tool's predictions hold significant value in facilitating the development of environmentally conscious biopsy needles. The tool demonstrates significantly higher efficiency compared to Abaqus, rendering it a valuable asset for researchers and clinicians engaged in bio-inspired biopsy needle development.
Collapse
Affiliation(s)
- Rahul Nadda
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India.
| | - Ramjee Repaka
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| |
Collapse
|
27
|
Huang Y, Yu L, Zhang F. A survey on puncture models and path planning algorithms of bevel-tipped flexible needles. Heliyon 2024; 10:e25002. [PMID: 38322890 PMCID: PMC10844025 DOI: 10.1016/j.heliyon.2024.e25002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/02/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Percutaneous needle insertion is a minimally invasive surgery with broad medical application prospects, such as biopsy and brachytherapy. However, the currently adopted rigid needles have limitations, as they cannot bypass obstacles or correct puncture deviations and can only travel along a straight path. Bevel-tip flexible needles are increasingly being adopted to address these issues, owing to their needle body's ease of deformation and bending. Successful puncture of flexible needles relies on accurate models and path planning, ensuring the needle reaches the target while avoiding vital tissues. This review investigates puncture models and path-planning algorithms by reviewing recent literature, focusing on the path-planning part. According to the literature, puncture models can be divided into three types: mechanical, finite element method (FEM), and kinematic models, while path-planning algorithms are categorized and discussed following the division used for mobile robots, which differs from the conventional approach for flexible needles-an innovation in this review. This review systematically summarizes the following categories: graph theory search, sampling-based, intelligent search, local obstacle avoidance, and other algorithms, including their implementation, advantages, and disadvantages, to further explore the potential to overcome obstacles in path planning for minimally invasive puncture needles. Finally, this study proposes future development trends in path-planning algorithms, providing possible directions for subsequent research for bevel-tipped flexible needles. This research aims to provide a resource for researchers to quickly learn about common path-planning algorithms, their backgrounds, and puncture models.
Collapse
Affiliation(s)
- Ye Huang
- Department of Medical Information Engineering, School of Biomedical Engineering Anhui Medical University, China
| | - Longfeng Yu
- Department of Medical Information Engineering, School of Biomedical Engineering Anhui Medical University, China
| | - Feifan Zhang
- Department of Medical Information Engineering, School of Biomedical Engineering Anhui Medical University, China
| |
Collapse
|
28
|
Lee Y, Lee H, Kim EJ, Lee SD, Jung CY. Potential use of polydimethylsiloxane phantom in acupuncture manipulation practice. Heliyon 2024; 10:e25428. [PMID: 38322835 PMCID: PMC10845916 DOI: 10.1016/j.heliyon.2024.e25428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
Objectives Sufficient trials of acupuncture manipulations should be practiced to obtain proficiency. However, there is not an adequate quantitative methodology for selecting a tissue-mimicking phantom that effectively reproduces the mechanical behavior that occurs during acupuncture. The objective of this study was to determine the proper mixing ratio of polydimethylsiloxane (PDMS) to obtain tissue phantom that is the most similar to porcine phantoms. Design An automatic needle manipulator equipped with a six-degrees-of-freedom force/torque sensor was installed to monitor the interaction force that occurred when the acupuncture needle performed lifting-thrusting and twirling manipulations. Four types of PDMS phantoms, composed of two silicone elastomers with different hardener ratios, were studied alongside four control groups consisting of different porcine sites. A Visual Analog Scale was used to quantify the similarity of the PDMS phantoms to the controls by 11 Korean medical doctors. Results Using the lifting-thrusting method, PDMS D (mixing ratio of 1:4.5) and control 2 (porcine blade shoulder) revealed no significant difference in the dynamic friction coefficients or maximum and minimum friction force values (P < 0.001). Using the twirling method, PDMS D showed no significant difference from all controls in the viscosity coefficient or maximum and minimum torque values (P ≤ 0.001). By practitioners, PDMS D showed the greatest score. Conclusion PDMS D delivered a haptic sensation that is most similar to that of biological tissues in the case of acu-needle lifting-thrusting and twirling methods. This finding guides the preparation of tissue phantoms for acu-needle studies and acupuncture training.
Collapse
Affiliation(s)
- Yeonsun Lee
- Department of Acupuncture & Moxibustion, Bucheon Jaseng Hospital of Oriental Medicine, Bucheon, 14598, Republic of Korea
| | - Hyosang Lee
- Haptic intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Eun Jung Kim
- Department of Acupuncture & Moxibustion, Dongguk University Bundang Oriental Hospital, Seongnam, 13601, Republic of Korea
| | - Seung Deok Lee
- Dongguk University Los Angeles, 440 Shatto PI, Los Angeles, CA 90020, USA
| | - Chan Yung Jung
- Department of Acupuncture & Moxibustion, Dongguk University Ilsan Oriental Hospital, Goyang, 10326, Republic of Korea
| |
Collapse
|
29
|
Liu L, Chen W, Chen Z, Zhou W, Wei R, Liu Y. Realization and Control of Robotic Injection Prototype With Instantaneous Remote Center of Motion Mechanism. IEEE Trans Biomed Eng 2024; 71:433-445. [PMID: 37594869 DOI: 10.1109/tbme.2023.3306555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Although there have been studies conducted on the instantaneous remote center of motion (RCM) mechanism, the general closed-loop control method has not been studied. Thus, this article fills that gap and employs the advantages of this mechanism to develop a novel injection system. METHODS The injection prototype involves the instantaneous RCM mechanism, insertion unit and injection unit. The RCM system is investigated in the presence of time-varying axial stiffness of the screw drive and underactuated case. For safe interaction, compliance control is designed in the insertion system. The stability of all separate systems is investigated with the bounded parameter variation rate. The injection prototype and a robot end-effector were then combined to perform injection. RESULTS Our RCM prototype can achieve a large workspace, and its control effectiveness was verified by multiple frameworks and comparison with previous studies. Compliance-controlled insertion can achieve accurate depth regulation and zero-impedance control for manually operating the needle. With the help of three-dimensional reconstruction and hand/eye calibration, the manipulator can guide the injection prototype to a proper pose for injection of a face model. CONCLUSION The injection prototype was successfully designed. The effectiveness of the whole control system was verified by simulations and experiments. The particular robotic injection task can be performed by the prototype. SIGNIFICANCE This article provides alternative schemes for developing an instantaneous RCM system, screw drive-based surgical tool, and robotic insertion with small needles.
Collapse
|
30
|
Trączyński M, Patalas A, Rosłan K, Suszyński M, Talar R. Assessment of needle-tissue force models based on ex vivo measurements. J Mech Behav Biomed Mater 2024; 150:106247. [PMID: 37988883 DOI: 10.1016/j.jmbbm.2023.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Needle insertion is one of the most common procedures in clinical practice. Existing statistics reveal that success rates of needle insertions can be low, leading to potential complications and patient discomfort. Real-time imaging techniques like ultrasound and X-ray can assist in improving precision, but even experienced practitioners may face challenges in visualizing the needle tip. Researchers have proposed models of force interactions during needle insertions into biological tissue to enhance accuracy. This article presents an evaluation of the forces acting on intravenous needles during insertion into skin. The aim was to explore mathematical models, compare them with data from tests on animal specimens, and select the most suitable model for future research. The experimental setup involved conducting needle insertion tests on animal-originated cadavers, using the Brucker Universal Mechanical Tester device, which measured the force response during vertical movement of the needle. The research was divided into 2 stages. In Stage I, force measurements were recorded for both the insertion and extraction phases of the hypodermic needles. The measurements were conducted for several different needle sizes, speed and insertion angles. In Stage II, five different models were examined to determine how well they matched the experimental data. Based on the analysis of fit quality coefficients, the Gordon's exponential model was identified as the best fit to the measured data. The influence of needle size, insertion angle, and insertion speed on the measured force values was confirmed. Different insertion speeds revealed the viscoelastic properties of the tested samples. The presence of the skin layer affected the puncture force and force values for subsequent layers.
Collapse
Affiliation(s)
- Marek Trączyński
- Institute of Mechanical Technology, Poznan University of Technology, Poznań, 60-965, Poland.
| | - Adam Patalas
- Institute of Mechanical Technology, Poznan University of Technology, Poznań, 60-965, Poland
| | - Katarzyna Rosłan
- Department of Orthopedics and Pediatric Traumatology, Poznan University of Medical Sciences, Poznań, 61-545, Poland
| | - Marcin Suszyński
- Institute of Mechanical Technology, Poznan University of Technology, Poznań, 60-965, Poland
| | - Rafał Talar
- Institute of Mechanical Technology, Poznan University of Technology, Poznań, 60-965, Poland
| |
Collapse
|
31
|
Brockstein R, Chen YC, Marshall C, Kwok L, Papoutsis A, Wei T, McDonagh DC, Sanderson S, Mental R, Labriola LT. Investigation of Needle Characteristics Using an Animal Model for Improved Outcomes in Anterior Chamber Paracentesis. J Ocul Pharmacol Ther 2024; 40:100-107. [PMID: 37851489 DOI: 10.1089/jop.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Background/Aims: The current standard of care to perform an anterior chamber paracentesis involves the use of a multipurpose market needle and syringe. The use of standard needles for this purpose may result in injury to the patient due to increased force with insertion and increased globe displacement during the procedure. This research investigates the current market needle characteristics and the impact of each needle characteristic on force. Methods: Several comparative trials were conducted to evaluate the needles. Needle characteristics of interest were gauge, primary bevel angle, number of bevels in the lancet, and needle hub geometry. Measurements of corneal insertion forces were made using a synthetic thermoplastic polyurethane medium, and bovine and porcine models. Needle safety was investigated with corneal abrasion experiments. Results: Reduced insertion force was observed with lower lancet primary angle. There was no difference based on the number of bevels in the lancet. Rounded hub geometry had minimal distribution to the corneal epithelium. Conclusions: Needle characteristics impact the force needed for needle insertion into the tissue. Since higher force can lead to increased risk and less efficiency during the procedure, reducing this force may improve the outcomes of the procedure. Needle entry can be reduced by designing an improved needle that includes a lower gauge and reduced primary angle of the lancet.
Collapse
Affiliation(s)
- Reed Brockstein
- Department of Bioengineering, University of Illinois Urbana-Champaign Grainger College of Engineering, Urbana, Illinois, USA
- Visionaire Products, Inc., Champaign, Illinois, USA
| | - Yu-Chang Chen
- Department of Bioengineering, University of Illinois Urbana-Champaign Grainger College of Engineering, Urbana, Illinois, USA
- Visionaire Products, Inc., Champaign, Illinois, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign Grainger College of Engineering, Urbana, Illinois, USA
| | - Curtis Marshall
- Visionaire Products, Inc., Champaign, Illinois, USA
- Applied Institute of Technology, University of Illinois Urbana-Champaign Grainger College of Engineering, Urbana, Illinois, USA
| | - Lindsay Kwok
- Department of Bioengineering, University of Illinois Urbana-Champaign Grainger College of Engineering, Urbana, Illinois, USA
- Visionaire Products, Inc., Champaign, Illinois, USA
| | - Athanacia Papoutsis
- Department of Bioengineering, University of Illinois Urbana-Champaign Grainger College of Engineering, Urbana, Illinois, USA
- Visionaire Products, Inc., Champaign, Illinois, USA
| | - Thomas Wei
- Visionaire Products, Inc., Champaign, Illinois, USA
- Industrial Design Program, University of Illinois Urbana-Champaign College of Fine and Applied Arts, Champaign, Illinois, USA
| | - Deana C McDonagh
- Visionaire Products, Inc., Champaign, Illinois, USA
- Beckman Institute of Advanced Science and Technology, (dis)Ability Design Studio, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Leanne T Labriola
- Visionaire Products, Inc., Champaign, Illinois, USA
- Sewickley Eye Group, Sewickley, Pennsylvania, USA
| |
Collapse
|
32
|
Zhang L, Zhu C, Shi J, Zhou Z, Ge D. Design of three-section microneedle towards low insertion force and high drug delivery amount using the finite element method. Comput Methods Biomech Biomed Engin 2024; 27:156-166. [PMID: 36762916 DOI: 10.1080/10255842.2023.2174019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
A microneedle has been greatly recognized as one of the most promising devices for novel transdermal drug delivery system due to its capacity of piercing the protective stratum corneum with a minimally invasive and painless manner. During the past two decades, although numerous achievements have been made in the structure and material combination of microneedles, they mostly focus on the pharmacology and functionality of microneedles, and little is reported about how to design the shape of microneedles to reduce insertion force and especially improve penetration efficiency. Using the developed finite element method, we designed three-section microneedles (TSMN) with various sizes and evaluated their maximum insertion force, penetration efficiency, drug delivery amount and strength. The simulation results demonstrate that the well-designed TSMN with shaft width of 60 μm exhibits a lower maximum insertion force of 116.68 mN relative to 167.92 mN of conical microneedle and an effective penetration length of 81.6% relative to 71.38% of conical microneedle. Besides, the optimized TSMN with shaft width of 80 μm shows similar maximum insertion force and 2.3 times the drug delivery amount compared to conical microneedle. These excellent properties are attributed to the optimized design of the shape curve of TSMN sidewall. Such results may provide an inspiration of microneedle design for low insertion force and high penetration efficiency.
Collapse
Affiliation(s)
- Liqiang Zhang
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, PR China
| | - Chenxi Zhu
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiakang Shi
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhuoran Zhou
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Daohan Ge
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, PR China
| |
Collapse
|
33
|
Hu Y, Du S, Xu T, Lei Y. A novel computational fracture toughness model for soft tissue in needle insertion. J Mech Behav Biomed Mater 2023; 147:106129. [PMID: 37774443 DOI: 10.1016/j.jmbbm.2023.106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
During the process of percutaneous puncture vascular intervention operation in endoscopic liver surgery, high precision needle manipulation requires the accurate needle tissue interaction model where the tissue fracture toughness is an important parameter to describe the tissue crack propagation, as well as to estimate tissue deformation and target displacement. However, the existing studies on fracture toughness estimation did not consider Young's modulus and the organ capsule structure. In this paper, a novel computational fracture toughness model is proposed considering insertion velocity, needle diameter and Young's modulus in insertion process, where the fracture toughness is determined by the tissue surface deformation, which was estimated through energy modeling using integrated shell element and three-dimensional solid element. The testbed is built to study the effect of different insertion velocities, needle diameters and Young's modulus on fracture toughness. The experiment result shows that the estimated result of computational fracture toughness model agrees well with the physical experimental data. In addition, the sensitivity analysis of different factors is conducted. Meanwhile, the model robustness analysis is investigated with different observation noises of Young's modulus and puncture displacement.
Collapse
Affiliation(s)
- Yingda Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Shilun Du
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Tian Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Yong Lei
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| |
Collapse
|
34
|
Wen R, Wang Z, Yi J, Hu Y. Bending-activated biotensegrity structure enables female Megarhyssa to cross the barrier of Euler's critical force. SCIENCE ADVANCES 2023; 9:eadi8284. [PMID: 37851796 PMCID: PMC10584334 DOI: 10.1126/sciadv.adi8284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023]
Abstract
The parasitic female Megarhyssa has a hair-like ovipositor capable of withstanding a penetration force 10 times greater than Euler's critical force, using a reciprocating penetration method. Understanding and replicating this penetration mechanism may notably broaden the application scenarios of artificial slender elements. Here, we show that the Megarhyssa's stretched intersegmental membrane and precurved abdomen activate the multipart ovipositor as a biotensegrity structure. The ovipositor's first and second valvulae alternately retract and protract, with each retracted valvula forming a tension network to support the other under compression, resulting in an exponentially increased critical force. We validated this mechanism in a multipart flexible microneedle that withstood a penetration force of 2.5× Euler's critical force and in a lightweight industrial robot that achieved intrinsic safety through its ideal dual-stiffness characteristic. This finding could potentially elucidate the high efficiency of insect probes and inspire more efficient and safer engineering designs.
Collapse
Affiliation(s)
- Rongwei Wen
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 000000, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 000000, China
- Department of Computer Science, The University of Hong Kong, Hong Kong 000000, China
| | - Zheng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Juan Yi
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 000000, China
- Orthopedics Center, The University of Hong Kong–Shenzhen Hospital, Shenzhen 518048, China
| |
Collapse
|
35
|
Al-Safadi S, Hutapea P. A study on modeling the deflection of surgical needle during insertion into multilayer tissues. J Mech Behav Biomed Mater 2023; 146:106071. [PMID: 37573763 DOI: 10.1016/j.jmbbm.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
The use of subcutaneous and percutaneous needle and catheter insertions is standard in modern clinical practice. However, a common issue with bevel tip surgical needles is their tendency to deflect, causing them to miss the intended target inside the tissue. This study aims to understand the interaction between the needle and soft tissue and develop a model to predict the deflection of a bevel tip needle during insertion into multi-layered soft tissues. The study examined the mechanics of needle-tissue interaction and modeled the forces involved during insertion. The force model includes cutting force, deformation force, and friction between the needle and tissue. There was an 8%-23% difference between the total analytical and experimental force measurements. A modified Euler-Bernoulli beam elastic foundation theory was used to create an analytical model to predict the needle tip deflection in soft tissue. To validate the results, the analytical deflection model was then compared to the deflection from needle insertion experiments on multi-layered phantom tissues, showing a 9%-21% error between the two. While there is a slight discrepancy between the analytical and experimental results, the study shows that the proposed model can accurately predict needle tip deflection during insertion.
Collapse
Affiliation(s)
- Samer Al-Safadi
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, USA
| | - Parsaoran Hutapea
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Acharya SR, Hutapea P. An experimental study on the mechanics and control of SMA-actuated bioinspired needle. BIOINSPIRATION & BIOMIMETICS 2023; 18:066008. [PMID: 37726011 DOI: 10.1088/1748-3190/acfb65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Active needles demonstrate improved accuracy and tip deflection compared to their passive needle counterparts, a crucial advantage in percutaneous procedures. However, the ability of these needles to effectively navigate through tissues is governed by needle-tissue interaction, which depends on the tip shape, the cannula surface geometry, and the needle insertion method. In this research, we evaluated the effect of cannula surface modifications and the application of a vibrational insertion technique on the performance of shape memory alloy (SMA)-actuated active needles. These features were inspired by the mosquito proboscis' unique design and skin-piercing technique that decreased the needle tissue interaction force, thus enhancing tip deflection and steering accuracy. The bioinspired features, i.e., mosquito-inspired cannula design and vibrational insertion method, in an active needle reduced the insertion force by 26.24% and increased the tip deflection by 37.11% in prostate-mimicking gel. In addition, trajectory tracking error was reduced by 48%, and control effort was reduced by 23.25%, pointing towards improved needle placement accuracy. The research highlights the promising potential of bioinspired SMA-actuated active needles. Better tracking control and increased tip deflection are anticipated, potentially leading to improved patient outcomes and minimized risk of complications during percutaneous procedures.
Collapse
Affiliation(s)
- Sharad Raj Acharya
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, United States of America
| | - Parsaoran Hutapea
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
37
|
Patel K, Hutapea P. Experimental and analytical study on insertion force of composite-coated needle in soft tissue material. Proc Inst Mech Eng H 2023; 237:1061-1071. [PMID: 37574843 DOI: 10.1177/09544119231191910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Medical interventions require control over surgical needle insertion to minimize tissue damage and target inaccuracies during percutaneous procedures. The composite coating of the needle using Polydopamine (PDA), Polytetrafluoroethylene (PTFE), and Activated Carbon (C) has been used to reduce the damaging needle insertion force. This research aims to further understand the interfacial mechanics of coated needle insertion by studying the forces at the needle and tissue interface and developing an analytical insertion force model through a combined experimental and numerical method. The proposed analytical force model is divided into two components: (1) Friction force on the needle shaft, modeled using a modified Karnopp model that includes an elastic force component; (2) Cutting force on the needle tip, modeled using a constant cutting coefficient for a given tissue and insertion speed. In this work, the analytical model was established by incorporating experiments conducted at a reasonable 35 mm insertion depth in tissues. In a bovine kidney with a 35 mm insertion depth, the insertion force evaluated through experimentation and modeling differed by 6.5% for a bare needle and 17.1% for a coated needle. It is important to note that this difference in the analytical insertion force model is anticipated when dealing with real tissues with a highly complex structured tissue. Prediction of the insertion force could potentially be utilized in robotic needle systems for needle control to improve the success of percutaneous procedures.
Collapse
Affiliation(s)
- Kavi Patel
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, USA
| | - Parsaoran Hutapea
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Nadda R, Repaka R, Sahani AK. Honeybee stinger-based biopsy needle and influence of the barbs on needle forces during insertion/extraction into the iliac crest: A multilayer finite element approach. Comput Biol Med 2023; 162:107125. [PMID: 37290393 DOI: 10.1016/j.compbiomed.2023.107125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Bone marrow biopsy (BMB) needles are frequently used in medical procedures, including extracting biological tissue to identify specific lesions or abnormalities discovered during a medical examination or a radiological scan. The forces applied by the needle during the cutting operation significantly impact the sample quality. Excessive needle insertion force and possible deflection might cause tissue damage, compromising the integrity of the biopsy specimen. The present study aims at proposing a revolutionary bioinspired needle design that will be utilized during the BMB procedure. A non-linear finite element method (FEM) has been used to analyze the insertion/extraction mechanisms of the honeybee-inspired biopsy needle with barbs into/from the human skin-bone domain (i.e., iliac crest model). It can be seen from the results of the FEM analysis that stresses are concentrated around the bioinspired biopsy needle tip and barbs during the needle insertion process. Also, these needles reduce the insertion force and reduce the tip deflection. The insertion force in the current study has been reduced by 8.6% for bone tissue and 22.66% for skin tissue layers. Similarly, the extraction force has been reduced by an average of 57.54%. Additionally, it has been observed that the needle-tip deflection got reduced from 10.44 mm for a plain bevel needle to 6.3 mm for a barbed biopsy bevel needle. According to the research findings, the proposed bioinspired barbed biopsy needle design could be utilized to create and produce novel biopsy needles for successful and minimally invasive piercing operations.
Collapse
Affiliation(s)
- Rahul Nadda
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| | - Ramjee Repaka
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India; Department of Mechanical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Ashish Kumar Sahani
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| |
Collapse
|
39
|
Gunderman AL, Schmidt EJ, Xiao Q, Tokuda J, Seethamraju RT, Neri L, Halperin HR, Kut C, Viswanathan AN, Morcos M, Chen Y. MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2023; 28:2405-2410. [PMID: 39104914 PMCID: PMC11299889 DOI: 10.1109/tmech.2022.3232546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Effective radiation therapy aims to maximize the radiation dose delivered to the tumor while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this paper, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and MRI-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 ± 2 mm anterior-posterior.
Collapse
Affiliation(s)
- Anthony L Gunderman
- Biomedical Engineering Department, Georgia Institute of Technology/Emory University, Atlanta, GA, 30318 USA
| | - Ehud J Schmidt
- Department of Medicine, Johns Hopkins University, Baltimore, MD., 21205
| | - Qingyu Xiao
- Biomedical Engineering Department, Georgia Institute of Technology/Emory University, Atlanta, GA, 30318 USA
| | - Junichi Tokuda
- Department of Radiology, Harvard Medical School, Boston, MA., 02115
| | | | - Luca Neri
- Department of Medicine, Johns Hopkins University, Baltimore, MD., 21205
| | - Henry R Halperin
- Department of Medicine, Johns Hopkins University, Baltimore, MD., 21205
| | - Carmen Kut
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD., 21205
| | - Akila N Viswanathan
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD., 21205
| | - Marc Morcos
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD., 21205
| | - Yue Chen
- Biomedical Engineering Department, Georgia Institute of Technology/Emory University, Atlanta, GA, 30318 USA
| |
Collapse
|
40
|
Delbos B, Chalard R, Rocco FD, Leleve A, Moreau R. Multimodal Haptic Simulation for Ventriculostomy Training . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083370 DOI: 10.1109/embc40787.2023.10340701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Freehand ventriculostomy is a frequent surgical procedure and is among the first ones that junior neurosurgery residents learn. Although training simulators exist, none has been adopted in the clinical routine to train junior residents. This paper focuses on a novel multimodal haptic training simulator that will lift the limitations of current simulators. We thus propose an architecture that integrates (1) visual feedback through augmented MRIs, and (2) a physical mock-up of the patient's skull to (3) active haptic feedback.
Collapse
|
41
|
Zhong X, Veilleux JC, Shi GH, Collins DS, Vlachos P, Ardekani AM. Hydrodynamic considerations for spring-driven autoinjector design. Int J Pharm 2023; 640:122975. [PMID: 37116602 DOI: 10.1016/j.ijpharm.2023.122975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
In recent years, significant progress has been made in the studies of the spring-driven autoinjector, leading to an improved understanding of this device and its interactions with tissue and therapeutic proteins. The development of simulation tools that have been validated against experiments has also enhanced the prediction of the performance of spring-driven autoinjectors. This paper aims to address critical hydrodynamic considerations that impact the design of spring-driven autoinjectors, with a specific emphasis on sloshing and cavitation. Additionally, we present a framework that integrates simulation tools to predict the performance of spring-driven autoinjectors and optimize their design. This work is valuable to the pharmaceutic industry, as it provides crucial insights into the development of spring-driven autoinjectors and therapeutic proteins. This work can also enhance the efficacy and safety of the delivery of therapeutic proteins, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Xiaoxu Zhong
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | | | | | - David S Collins
- Eli Lilly and Company, Indianapolis, IN 46225, United States
| | - Pavlos Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States.
| |
Collapse
|
42
|
Xia M, Agca BN, Yoshida T, Choi J, Amjad U, Bose K, Keren N, Zukerman S, Cima MJ, Graybiel AM, Schwerdt HN. Scalable, flexible carbon fiber electrode thread arrays for three-dimensional spatial profiling of neurochemical activity in deep brain structures of rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537033. [PMID: 37131810 PMCID: PMC10153108 DOI: 10.1101/2023.04.15.537033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We developed a flexible "electrode-thread" array for recording dopamine neurochemical activity from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼ 10 µm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single entry insertion but only allow measurements along the axis of insertion. Horizontally configured neurochemical recording arrays inflict separate penetrations for each individual channel (i.e., electrode). We tested functional performance of our CFET arrays in vivo for recording dopamine neurochemical dynamics and for providing lateral spread to multiple distributed sites in the striatum of rats. Spatial spread was further characterized using agar brain phantoms to measure electrode deflection as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology techniques. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Neurochemical recording operations tested here can be integrated with already widely established capabilities of CF-based electrodes to record single neuron activity and local field potentials, to enable multi-modal recording functions. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.
Collapse
Affiliation(s)
- Mingyi Xia
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Busra Nur Agca
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Tomoko Yoshida
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Jiwon Choi
- Department of Bioengineering, University of Pittsburgh
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Usamma Amjad
- Department of Bioengineering, University of Pittsburgh
| | - Kade Bose
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Nikol Keren
- Department of Bioengineering, University of Pittsburgh
| | | | - Michael J Cima
- Koch Institute for Integrative Cancer Research and Department of Materials Science, Massachusetts Institute of Technology
| | - Ann M Graybiel
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
43
|
González-González MA, Alemansour H, Maroufi M, Coskun MB, Lloyd D, Reza Moheimani SO, Romero-Ortega MI. Biomechanics Characterization of Autonomic and Somatic Nerves by High Dynamic Closed-Loop MEMS force sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536752. [PMID: 37090537 PMCID: PMC10120675 DOI: 10.1101/2023.04.13.536752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The biomechanics of peripheral nerves are determined by the blood-nerve barrier (BNB), together with the epineural barrier, extracellular matrix, and axonal composition, which maintain structural and functional stability. These elements are often ignored in the fabrication of penetrating devices, and the implant process is traumatic due to the mechanical distress, compromising the function of neuroprosthesis for sensory-motor restoration in amputees. Miniaturization of penetrating interfaces offers the unique opportunity of decoding individual nerve fibers associated to specific functions, however, a main issue for their implant is the lack of high-precision standardization of insertion forces. Current automatized electromechanical force sensors are available; however, their sensitivity and range amplitude are limited (i.e. mN), and have been tested only in-vitro. We previously developed a high-precision bi-directional micro-electromechanical force sensor, with a closed-loop mechanism (MEMS-CLFS), that while measuring with high-precision (-211.7μN to 211.5μN with a resolution of 4.74nN), can be used in alive animal. Our technology has an on-chip electrothermal displacement sensor with a shuttle beam displacement amplification mechanism, for large range and high-frequency resolution (dynamic range of 92.9 dB), which eliminates the adverse effect of flexural nonlinearity measurements, observed with other systems, and reduces the mechanical impact on delicate biological tissue. In this work, we use the MEMS-CLFS for in-vivo bidirectional measurement of biomechanics in somatic and autonomic nerves. Furthermore we define the mechanical implications of irrigation and collagen VI in the BNB, which is different for both autonomic and somatic nerves (~ 8.5-8.6 fold density of collagen VI and vasculature CD31+ in the VN vs ScN). This study allowed us to create a mathematical approach to predict insertion forces. Our data highlights the necessity of nerve-customization forces to prevent injury when implanting interfaces, and describes a high precision MEMS technology and mathematical model for their measurements.
Collapse
Affiliation(s)
| | - Hammed Alemansour
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - Mohammad Maroufi
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - Mustafa Bulut Coskun
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - David Lloyd
- Biomedical Engineering and Biomedical Sciences. University of Houston, Houston TX. 77204-6064
| | - S. O. Reza Moheimani
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - Mario I. Romero-Ortega
- Biomedical Engineering and Biomedical Sciences. University of Houston, Houston TX. 77204-6064
| |
Collapse
|
44
|
Spenkelink IM, Heidkamp J, Avital Y, Fütterer JJ. Evaluation of the performance of robot assisted CT-guided percutaneous needle insertion: Comparison with freehand insertion in a phantom. Eur J Radiol 2023; 162:110753. [PMID: 36863276 DOI: 10.1016/j.ejrad.2023.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE To evaluate the performance of a novel robot for CT-guided needle positioning procedures and compare it to the freehand technique in an abdominal phantom. METHODS One interventional radiology fellow and one experienced interventional radiologist (IR) performed twelve robot-assisted and twelve freehand needle positionings in a phantom over predetermined trajectories. The robot automatically aimed a needle-guide according to the planned trajectories, after which the clinician manually inserted the needle. Using repeated CT scans, the needle position was assessed and adjusted if the clinician deemed it necessary. Technical success, accuracy, number of position adjustments, and procedure time were measured. All outcomes were analyzed using descriptive statistics and were compared between the robot-assisted and freehand procedures using the paired t-test and Wilcoxon signed rank test. RESULTS Compared with the freehand technique, the robot system improved the number of technically successfully needle targeting (20/24 vs 14/24), with higher accuracy (mean Euclidean deviation from target center: 3.5 ± 1.8 mm vs 4.6 ± 2.1 mm, p = 0.02) and required fewer needle position adjustments (0.0 ± 0.2 steps vs 1.7 ± 0.9 steps, p < 0.001), respectively. The robot improved the needle positioning for both, the fellow and the expert IR, compared to their freehand performances, with more improvement for the fellow than for the expert IR. The procedure time was similar for the robot-assisted and freehand procedures (19.5 ± 9.2 min. vs 21.0 ± 6.9 min., p = 0.777). CONCLUSIONS CT-guided needle positioning with the robot was more successful and accurate than freehand needle positioning and required fewer needle position adjustments without prolonging the procedure.
Collapse
Affiliation(s)
- Ilse M Spenkelink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Jan Heidkamp
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yaniv Avital
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Interventional Radiology, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
45
|
Armstrong SA, Jafary R, Forsythe JS, Gregory SD. Tissue-Mimicking Materials for Ultrasound-Guided Needle Intervention Phantoms: A Comprehensive Review. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:18-30. [PMID: 36210247 DOI: 10.1016/j.ultrasmedbio.2022.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/07/2022] [Accepted: 07/30/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound-guided needle interventions are common procedures in medicine, and tissue-mimicking phantoms are widely used for simulation training to bridge the gap between theory and clinical practice in a controlled environment. This review assesses tissue-mimicking materials from 24 studies as candidates for a high-fidelity ultrasound phantom, including methods for evaluating relevant acoustic and mechanical properties and to what extent the reported materials mimic the superficial layers of biological tissue. Speed of sound, acoustic attenuation, Young's modulus, hardness, needle interaction forces, training efficiency and material limitations were systematically evaluated. Although gelatin and agar have the closest acoustic values to tissue, mechanical properties are limited, and strict storage protocols must be employed to counteract dehydration and microbial growth. Polyvinyl chloride (PVC) has superior mechanical properties and is a suitable alternative if durability is desired and some ultrasound realism to human tissue may be sacrificed. Polyvinyl alcohol (PVA), while also requiring hydration, performs well across all categories. Furthermore, we propose a framework for the evaluation of future ultrasound-guided needle intervention tissue phantoms to increase the fidelity of training programs and thereby improve clinical performance.
Collapse
Affiliation(s)
- Sophie A Armstrong
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia; Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Rezan Jafary
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia; Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Shaun D Gregory
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia; Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Gidde STR, Islam S, Kim A, Hutapea P. Experimental study of mosquito-inspired needle to minimize insertion force and tissue deformation. Proc Inst Mech Eng H 2023; 237:113-123. [PMID: 36437600 DOI: 10.1177/09544119221137133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this work is to propose a mosquito-inspired (bioinspired) design of a surgical needle that can decrease the insertion force and the tissue deformation, which are the main causes of target inaccuracy during percutaneous procedures. The bioinspired needle was developed by mimicking the geometrical shapes of mosquito proboscis. Needle prototypes were manufactured and tested to determine optimized needle shapes and geometries. Needle insertion tests on a tissue-mimicking polyvinylchloride (PVC) gel were then performed to emulate the mosquito-proboscis stinging dynamics by applying vibration and insertion velocity during the insertion. An insertion test setup equipped with a sensing system was constructed to measure the insertion force and to assess the deformation of the tissue. It was discovered that using the proposed bioinspired design, the needle insertion force was decreased by 60% and the tissue deformation was reduced by 48%. This finding is significant for improving needle-based medical procedures.
Collapse
Affiliation(s)
| | - Sayemul Islam
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA, USA
| | - Albert Kim
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA, USA
| | - Parsaoran Hutapea
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
47
|
Preparation of particle-attached microneedles using a dry coating process. J Control Release 2022; 351:1003-1016. [DOI: 10.1016/j.jconrel.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/19/2022]
|
48
|
Bunni S, Nieminen HJ. Needle bevel geometry influences the flexural deflection magnitude in ultrasound-enhanced fine-needle biopsy. Sci Rep 2022; 12:17096. [PMID: 36224182 PMCID: PMC9556559 DOI: 10.1038/s41598-022-20161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023] Open
Abstract
It has been recently demonstrated that use of ultrasound increases the tissue yield in ultrasound-enhanced fine-needle aspiration biopsy (USeFNAB) as compared to conventional fine-needle aspiration biopsy (FNAB). To date, the association between bevel geometry and needle tip action has not been widely explored. In this study, we studied the needle resonance characteristics and deflection magnitude of various needle bevel geometries with varying bevel lengths. With a conventional lancet, having a 3.9 mm long bevel, the tip deflection-to-power ratio (DPR) in air and water was 220 and 105 µm/W, respectively. This was higher in comparison to an axi-symmetric tip, having a bevel length of 4 mm, which achieved a DPR of 180 and 80 µm/W in air and water, respectively. This study emphasised the importance of relationship between flexural stiffness of bevel geometry in the context of various insertion media and, thus, could provide understanding on approaches to control post-puncture cutting action by modifying the needle bevel geometry, essential for the USeFNAB application.
Collapse
Affiliation(s)
- Saif Bunni
- grid.5373.20000000108389418Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, 02150 Espoo, Finland
| | - Heikki J. Nieminen
- grid.5373.20000000108389418Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, 02150 Espoo, Finland
| |
Collapse
|
49
|
Saleh MS, Ritchie SM, Nicholas MA, Gordon HL, Hu C, Jahan S, Yuan B, Bezbaruah R, Reddy JW, Ahmed Z, Chamanzar M, Yttri EA, Panat RP. CMU Array: A 3D nanoprinted, fully customizable high-density microelectrode array platform. SCIENCE ADVANCES 2022; 8:eabj4853. [PMID: 36197979 PMCID: PMC9534502 DOI: 10.1126/sciadv.abj4853] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/17/2022] [Indexed: 05/27/2023]
Abstract
Microelectrode arrays provide the means to record electrophysiological activity critical to brain research. Despite its fundamental role, there are no means to customize electrode layouts to address specific experimental or clinical needs. Moreover, current electrodes demonstrate substantial limitations in coverage, fragility, and expense. Using a 3D nanoparticle printing approach that overcomes these limitations, we demonstrate the first in vivo recordings from electrodes that make use of the flexibility of the 3D printing process. The customizable and physically robust 3D multi-electrode devices feature high electrode densities (2600 channels/cm2 of footprint) with minimal gross tissue damage and excellent signal-to-noise ratio. This fabrication methodology also allows flexible reconfiguration consisting of different individual shank lengths and layouts, with low overall channel impedances. This is achieved, in part, via custom 3D printed multilayer circuit boards, a fabrication advancement itself that can support several biomedical device possibilities. This effective device design enables both targeted and large-scale recording of electrical signals throughout the brain.
Collapse
Affiliation(s)
- Mohammad Sadeq Saleh
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sandra M. Ritchie
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mark A. Nicholas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, PA 15213, USA
| | - Hailey L. Gordon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sanjida Jahan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Bin Yuan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rriddhiman Bezbaruah
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jay W. Reddy
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Eric A. Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rahul P. Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
50
|
Robotic needle steering: state-of-the-art and research challenges. INTEL SERV ROBOT 2022. [DOI: 10.1007/s11370-022-00446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|