1
|
Davids M, Vendramini L, Klein V, Ferris N, Guerin B, Wald LL. Experimental validation of a PNS-optimized whole-body gradient coil. Magn Reson Med 2024; 92:1788-1803. [PMID: 38767407 PMCID: PMC11262990 DOI: 10.1002/mrm.30157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/19/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Peripheral nerve stimulation (PNS) limits the usability of state-of-the-art whole-body and head-only MRI gradient coils. We used detailed electromagnetic and neurodynamic modeling to set an explicit PNS constraint during the design of a whole-body gradient coil and constructed it to compare the predicted and experimentally measured PNS thresholds to those of a matched design without PNS constraints. METHODS We designed, constructed, and tested two actively shielded whole-body Y-axis gradient coil winding patterns: YG1 is a conventional symmetric design without PNS-optimization, whereas YG2's design used an additional constraint on the allowable PNS threshold in the head-imaging landmark, yielding an asymmetric winding pattern. We measured PNS thresholds in 18 healthy subjects at five landmark positions (head, cardiac, abdominal, pelvic, and knee). RESULTS The PNS-optimized design YG2 achieved 46% higher average experimental thresholds for a head-imaging landmark than YG1 while incurring a 15% inductance penalty. For cardiac, pelvic, and knee imaging landmarks, the PNS thresholds increased between +22% and +35%. For abdominal imaging, PNS thresholds did not change significantly between YG1 and YG2 (-3.6%). The agreement between predicted and experimental PNS thresholds was within 11.4% normalized root mean square error for both coils and all landmarks. The PNS model also produced plausible predictions of the stimulation sites when compared to the sites of perception reported by the subjects. CONCLUSION The PNS-optimization improved the PNS thresholds for the target scan landmark as well as most other studied landmarks, potentially yielding a significant improvement in image encoding performance that can be safely used in humans.
Collapse
Affiliation(s)
- Mathias Davids
- Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Livia Vendramini
- Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Valerie Klein
- Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Natalie Ferris
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States
| | - Bastien Guerin
- Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Lawrence L. Wald
- Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States
| |
Collapse
|
2
|
Callejón-Leblic MA, Lazo-Maestre M, Fratter A, Ropero-Romero F, Sánchez-Gómez S, Reina-Tosina J. A full-head model to investigate intra and extracochlear electric fields in cochlear implant stimulation. Phys Med Biol 2024; 69:155010. [PMID: 38925131 DOI: 10.1088/1361-6560/ad5c38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Objective.Despite the widespread use and technical improvement of cochlear implant (CI) devices over past decades, further research into the bioelectric bases of CI stimulation is still needed. Various stimulation modes implemented by different CI manufacturers coexist, but their true clinical benefit remains unclear, probably due to the high inter-subject variability reported, which makes the prediction of CI outcomes and the optimal fitting of stimulation parameters challenging. A highly detailed full-head model that includes a cochlea and an electrode array is developed in this study to emulate intracochlear voltages and extracochlear current pathways through the head in CI stimulation.Approach.Simulations based on the finite element method were conducted under monopolar, bipolar, tripolar (TP), and partial TP modes, as well as for apical, medial, and basal electrodes. Variables simulated included: intracochlear voltages, electric field (EF) decay, electric potentials at the scalp and extracochlear currents through the head. To better understand CI side effects such as facial nerve stimulation, caused by spurious current leakage out from the cochlea, special emphasis is given to the analysis of the EF over the facial nerve.Main results.The model reasonably predicts EF magnitudes and trends previously reported in CI users. New relevant extracochlear current pathways through the head and brain tissues have been identified. Simulated results also show differences in the magnitude and distribution of the EF through different segments of the facial nerve upon different stimulation modes and electrodes, dependent on nerve and bone tissue conductivities.Significance.Full-head models prove useful tools to model intra and extracochlear EFs in CI stimulation. Our findings could prove useful in the design of future experimental studies to contrast FNS mechanisms upon stimulation of different electrodes and CI modes. The full-head model developed is freely available for the CI community for further research and use.
Collapse
Affiliation(s)
- M A Callejón-Leblic
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
- Oticon Medical, 28108 Madrid, Spain
- Dept. Signal Theory and Communications, Biomedical Engineering Group, University of Seville, Seville 41092, Spain
| | - M Lazo-Maestre
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - A Fratter
- Oticon Medical, 06220 Vallauris, France
| | - F Ropero-Romero
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - S Sánchez-Gómez
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - J Reina-Tosina
- Dept. Signal Theory and Communications, Biomedical Engineering Group, University of Seville, Seville 41092, Spain
| |
Collapse
|
3
|
Berry DB, Gordon JA, Adair V, Frank LR, Ward SR. From Voxels to Physiology: A Review of Diffusion Magnetic Resonance Imaging Applications in Skeletal Muscle. J Magn Reson Imaging 2024. [PMID: 39031753 DOI: 10.1002/jmri.29489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/22/2024] Open
Abstract
Skeletal muscle has a classic structure function relationship; both skeletal muscle microstructure and architecture are directly related to force generating capacity. Biopsy, the gold standard for evaluating muscle microstructure, is highly invasive, destructive to muscle, and provides only a small amount of information about the entire volume of a muscle. Similarly, muscle fiber lengths and pennation angles, key features of muscle architecture predictive of muscle function, are traditionally studied via cadaveric dissection. Noninvasive techniques such as diffusion magnetic resonance imaging (dMRI) offer quantitative approaches to study skeletal muscle microstructure and architecture. Despite its prevalence in applications for musculoskeletal research, clinical adoption is hindered by a lack of understanding regarding its sensitivity to clinically important biomarkers such as muscle fiber cross-sectional area. This review aims to elucidate how dMRI has been utilized to study skeletal muscle, covering fundamentals of muscle physiology, dMRI acquisition techniques, dMRI modeling, and applications where dMRI has been leveraged to noninvasively study skeletal muscle changes in response to disease, aging, injury, and human performance. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- David B Berry
- Department of Orthopaedic Surgery, University of California, San Diego, California, USA
| | - Joseph A Gordon
- Department of Orthopaedic Surgery, University of California, San Diego, California, USA
| | - Vincent Adair
- Department of Medicine, University of California, San Diego, California, USA
| | - Lawrence R Frank
- Center for Scientific Computation in Imaging, University of California, San Diego, California, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, University of California, San Diego, California, USA
- Department of Radiology, University of California, San Diego, California, USA
- Department of Bioengineering, University of California, San Diego, California, USA
| |
Collapse
|
4
|
Zilberti L, Arduino A, Torchio R, Zanovello U, Baruffaldi F, Sanchez-Lopez H, Bettini P, Alotto P, Chiampi M, Bottauscio O. Orthopedic implants affect the electric field induced by switching gradients in MRI. Magn Reson Med 2024; 91:398-412. [PMID: 37772634 DOI: 10.1002/mrm.29861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE To investigate whether the risk of peripheral nerve stimulation increases in the presence of bulky metallic prostheses implanted in a patient's body. METHODS A computational tool was used to calculate the electric field (E-field) induced in a realistic human model due to the action of gradient fields. The calculations were performed both on the original version of the anatomical model and on a version modified through "virtual surgery" to incorporate knee, hip, and shoulder prostheses. Five exam positions within a body gradient coil and one position using a head gradient coil were simulated, subjecting the human model to the readout gradient from an EPI sequence. The induced E-field in models with and without prostheses was compared, focusing on the nerves and all other tissues (both including and excluding the bones from the analysis). RESULTS In the nerves, the most pronounced increase in the E-field (+24%) was observed around the knee implant during an abdominal MRI (Y axis readout). When extending the analysis to encompass all tissues (excluding bones), the greatest amplification (+360%) occurred around the knee implant during pelvic MRI (Z axis readout). Notable increases in E-field peaks were also identified around the shoulder and hip implants in multiple scenarios. CONCLUSION Based on the presented results, further investigations aimed at quantifying the threshold of nerve stimulation in the presence of bulky implants are desirable.
Collapse
Affiliation(s)
- Luca Zilberti
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| | | | - Riccardo Torchio
- Department of Industrial Engineering, Università degli Studi di Padova, Padova, Italy
| | | | | | - Hector Sanchez-Lopez
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Paolo Bettini
- Department of Industrial Engineering, Università degli Studi di Padova, Padova, Italy
| | - Piergiorgio Alotto
- Department of Industrial Engineering, Università degli Studi di Padova, Padova, Italy
| | - Mario Chiampi
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| | | |
Collapse
|
5
|
Chen L, Deng Z, Asamoah B, Laughlin MM. Trigeminal nerve direct current stimulation causes sustained increase in neural activity in the rat hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571341. [PMID: 38168241 PMCID: PMC10760027 DOI: 10.1101/2023.12.12.571341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation method that can modulate many brain functions including learning and memory. Recent evidence suggests that tDCS memory effects may be caused by co-stimulation of scalp nerves such as the trigeminal nerve (TN), and not the electric field in the brain. The TN gives input to brainstem nuclei, including the locus coeruleus that controls noradrenaline release across brain regions, including hippocampus. However, the effects of TN direct current stimulation (TN-DCS) are currently not well understood. In this study we hypothesized that TN-DCS manipulates hippocampal activity via an LC-noradrenergic bottom-up pathway. We recorded neural activity in rat hippocampus using multichannel silicon probes. We applied 3 minutes of 0.25 mA or 1 mA TN-DCS, monitored hippocampal activity for up to 1 hour and calculated spikes-rate and spike-field coherence metrics. Subcutaneous injections of xylocaine were used to block TN and intraperitoneal injection of clonidine to block the LC pathway. We found that 1 mA TN-DCS caused a significant increase in hippocampal spike-rate lasting 45 minutes in addition to significant changes in spike-field coherence, while 0.25 mA TN-DCS did not. TN blockage prevented spike-rate increases, confirming effects were not caused by the electric field in the brain. When 1 mA TN-DCS was delivered during clonidine blockage no increase in spike-rate was observed, suggesting an important role for the LC-noradrenergic pathway. These results provide a neural basis to support a tDCS TN co-stimulation mechanism. TN-DCS emerges as an important tool to potentially modulate learning and memory. Highlights Trigeminal nerve direct current stimulation (TN-DCS) boosts hippocampal spike ratesTN-DCS alters spike-field coherence in theta and gamma bands across the hippocampus.Blockade experiments indicate that TN-DCS modulated hippocampal activity via the LC-noradrenergic pathway.TN-DCS emerges as a potential tool for memory manipulation. Figure Graphic Abstract
Collapse
|
6
|
Majdi A, Asamoah B, Mc Laughlin M. Reinterpreting published tDCS results in terms of a cranial and cervical nerve co-stimulation mechanism. Front Hum Neurosci 2023; 17:1101490. [PMID: 37415857 PMCID: PMC10320219 DOI: 10.3389/fnhum.2023.1101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation method that has been used to alter cognition in hundreds of experiments. During tDCS, a low-amplitude current is delivered via scalp electrodes to create a weak electric field in the brain. The weak electric field causes membrane polarization in cortical neurons directly under the scalp electrodes. It is generally assumed that this mechanism causes the observed effects of tDCS on cognition. However, it was recently shown that some tDCS effects are not caused by the electric field in the brain but rather via co-stimulation of cranial and cervical nerves in the scalp that also have neuromodulatory effects that can influence cognition. This peripheral nerve co-stimulation mechanism is not controlled for in tDCS experiments that use the standard sham condition. In light of this new evidence, results from previous tDCS experiments could be reinterpreted in terms of a peripheral nerve co-stimulation mechanism. Here, we selected six publications that reported tDCS effects on cognition and attributed the effects to the electric field in the brain directly under the electrode. We then posed the question: given the known neuromodulatory effects of cranial and cervical nerve stimulation, could the reported results also be understood in terms of tDCS peripheral nerve co-stimulation? We present our re-interpretation of these results as a way to stimulate debate within the neuromodulation field and as a food-for-thought for researchers designing new tDCS experiments.
Collapse
Affiliation(s)
- Alireza Majdi
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boateng Asamoah
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Davids M, Dietz P, Ruyters G, Roesler M, Klein V, Guérin B, Feinberg DA, Wald LL. Peripheral nerve stimulation informed design of a high-performance asymmetric head gradient coil. Magn Reson Med 2023; 90:784-801. [PMID: 37052387 DOI: 10.1002/mrm.29668] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE Peripheral nerve stimulation (PNS) limits the image encoding performance of both body gradient coils and the latest generation of head gradients. We analyze a variety of head gradient design aspects using a detailed PNS model to guide the design process of a new high-performance asymmetric head gradient to raise PNS thresholds and maximize the usable image-encoding performance. METHODS A novel three-layer coil design underwent PNS optimization involving PNS predictions of a series of candidate designs. The PNS-informed design process sought to maximize the usable parameter space of a coil with <10% nonlinearity in a 22 cm region of linearity, a relatively large inner diameter (44 cm), maximum gradient amplitude of 200 mT/m, and a high slew rate of 900 T/m/s. PNS modeling allowed identification and iterative adjustment of coil features with beneficial impact on PNS such as the number of winding layers, shoulder accommodation strategy, and level of asymmetry. PNS predictions for the final design were compared to measured thresholds in a constructed prototype. RESULTS The final head gradient achieved up to 2-fold higher PNS thresholds than the initial design without PNS optimization and compared to existing head gradients with similar design characteristics. The inclusion of a third intermediate winding layer provided the additional degrees of freedom necessary to improve PNS thresholds without significant sacrifices to the other design metrics. CONCLUSION Augmenting the design phase of a new high-performance head gradient coil by PNS modeling dramatically improved the usable image-encoding performance by raising PNS thresholds.
Collapse
Affiliation(s)
- Mathias Davids
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Valerie Klein
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Bastien Guérin
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - David A Feinberg
- Advanced MRI Technologies, Sebastopol, California, USA
- Brain Imaging Center and Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Lawrence L Wald
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Luckey AM, Adcock K, Vanneste S. Peripheral nerve stimulation: A neuromodulation-based approach. Neurosci Biobehav Rev 2023; 149:105180. [PMID: 37059406 DOI: 10.1016/j.neubiorev.2023.105180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Recent technological improvements have positioned us at the threshold of innovative discoveries that will assist in new perspectives and avenues of research. Increased attention has been directed towards peripheral nerve stimulation, particularly of the vagus, trigeminal, or greater occipital nerve, due to their unique pathway that engages neural circuits within networks involved in higher cognitive processes. Here, we question whether the effects of transcutaneous electrical stimulation are mediated by synergistic interactions of multiple neuromodulatory networks, considering this pathway is shared by more than one neuromodulatory system. By spotlighting this attractive transcutaneous pathway, this opinion piece aims to acknowledge the contributions of four vital neuromodulators and prompt researchers to consider them in future investigations or explanations.
Collapse
Affiliation(s)
- Alison M Luckey
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Katherine Adcock
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Analysis of Numerical Artifacts Using Tetrahedral Meshes in Low Frequency Numerical Dosimetry. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anatomical realistic voxel models of human beings are commonly used in numerical dosimetry to evaluate the human exposure to low-frequency electromagnetic fields. The downside of these models is that they do not correctly reproduce the boundaries of curved surfaces. The stair-casing approximation errors introduce computational artifacts in the evaluation of the induced electric field and the use of post-processing filtering methods is essential to mitigate these errors. With a suitable exposure scenario, this paper shows that tetrahedral meshes make it possible to remove stair-casing errors. However, using tetrahedral meshes is not a sufficient condition to completely remove artifacts, because the quality of the tetrahedral mesh plays an important role. The analyses carried out show that in real exposure scenarios, other sources of artifacts cause peak values of the induced electric field even with regular meshes. In these cases, the adoption of filtering techniques cannot be avoided.
Collapse
|
10
|
Tang M, Yamamoto T. Progress in Understanding Radiofrequency Heating and Burn Injuries for Safer MR Imaging. Magn Reson Med Sci 2022; 22:7-25. [PMID: 35228437 PMCID: PMC9849420 DOI: 10.2463/mrms.rev.2021-0047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RF electromagnetic wave exposure during MRI scans induces heat and occasionally causes burn injuries to patients. Among all the types of physical injuries that have occurred during MRI examinations, RF burn injuries are the most common ones. The number of RF burn injuries increases as the static magnetic field of MRI systems increases because higher RFs lead to higher heating. The commonly believed mechanisms of RF burn injuries are the formation of a conductive loop by the patient's posture or cables, such as an electrocardiogram lead; however, the mechanisms of RF burn injuries that occur at the contact points, such as the bore wall and the elbow, remain unclear. A comprehensive understanding of RF heating is needed to address effective countermeasures against all RF burn injuries for safe MRI examinations. In this review, we summarize the occurrence of RF burn injury cases by categorizing RF burn injuries reported worldwide in recent decades. Safety standards and regulations governing RF heating that occurs during MRI examinations are presented, along with their theoretical and physiological backgrounds. The experimental assessment techniques for RF heating are then reviewed, and the development of numerical simulation techniques is explained. In addition, a comprehensive theoretical interpretation of RF burn injuries is presented. By including the results of recent experimental and numerical simulation studies on RF heating, this review describes the progress achieved in understanding RF heating from the standpoint of MRI burn injury prevention.
Collapse
Affiliation(s)
- Minghui Tang
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toru Yamamoto
- Division of Biomedical Engineering and Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,Corresponding author: Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan. Phone: +81-11-706-3412, Fax: +81-11-706-4916, E-mail:
| |
Collapse
|
11
|
Tang F, Giaccone L, Hao J, Freschi F, Wu T, Crozier S, Liu F. Exposure of Infants to Gradient Fields in a Baby MRI Scanner. Bioelectromagnetics 2022; 43:69-80. [PMID: 35005795 DOI: 10.1002/bem.22387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 11/11/2022]
Abstract
In pediatric magnetic resonance imaging (MRI), infants are exposed to rapid, time-varying gradient magnetic fields, leading to electric fields induced in the body of infants and potential safety risks (e.g. peripheral nerve stimulation). In this numerical study, the in situ electric fields in infants induced by small-sized gradient coils for a 1.5 T MRI scanner were evaluated. The gradient coil set was specially designed for the efficient imaging of infants within a small-bore (baby) scanner. The magnetic flux density and induced electric fields by the small x, y, z gradient coils in an infant model (8-week-old with a mass of 4.3 kg) were computed using the scalar potential finite differences method. The gradient coils were driven by a 1 kHz sinusoidal waveform and also a trapezoidal waveform with a 250 µs rise time. The model was placed at different scan positions, including the head area (position I), chest area (position II), and body center (position III). It was found that the induced electric fields in most tissues exceeded the basic restrictions of the ICNIRP 2010 guidelines for both waveforms. The electric fields were similar in the region of interest for all coil types and model positions but different outside the imaging region. The y-coil induced larger electric fields compared with the x- and z- coils. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Fangfang Tang
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Australia
| | - Luca Giaccone
- Department of Energy, Politecnico di Torino, Torino, Italy
| | - Jiahao Hao
- College of Optoelectronic Engineering, Chongqing University, China
| | - Fabio Freschi
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Australia.,Department of Energy, Politecnico di Torino, Torino, Italy
| | - Tongning Wu
- China Academy of Information and Communications Technology, Beijing, China
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Australia
| | - Feng Liu
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Suzuki Y, Gomez-Tames J, Diao Y, Hirata A. Evaluation of Peripheral Electrostimulation Thresholds in Human Model for Uniform Magnetic Field Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:390. [PMID: 35010648 PMCID: PMC8751184 DOI: 10.3390/ijerph19010390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The external field strength according to the international guidelines and standards for human protection are derived to prevent peripheral nerve system pain at frequencies from 300-750 Hz to 1 MHz. In this frequency range, the stimulation is attributable to axon electrostimulation. One limitation in the current international guidelines is the lack of respective stimulation thresholds in the brain and peripheral nervous system from in vivo human measurements over a wide frequency range. This study investigates peripheral stimulation thresholds using a multi-scale computation based on a human anatomical model for uniform exposure. The nerve parameters are first adjusted from the measured data to fit the peripheral nerve in the trunk. From the parameters, the external magnetic field strength to stimulate the nerve was estimated. Here, the conservativeness of protection limits of the international guidelines and standards for peripheral stimulation was confirmed. The results showed a margin factor of 4-6 and 10-24 times between internal and external protection limits of Institute of Electrical and Electronics Engineers standard (IEEE C95.1) and International Commission on Non-Ionizing Radiation Protection guidelines, with the computed pain thresholds.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (Y.S.); (A.H.)
| | - Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (Y.S.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Yinliang Diao
- College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China;
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (Y.S.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Frontier Research Institute for Information Science, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
13
|
Assessment of Human Exposure (Including Interference to Implantable Devices) to Low-Frequency Electromagnetic Field in Modern Microgrids, Power Systems and Electric Transports. ENERGIES 2021. [DOI: 10.3390/en14206789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electromagnetic field emissions of modern power systems have increased in complexity if the many power conversion forms by means of power electronics and static converters are considered. In addition, the installed electric power has grown in many everyday applications such as wireless charging of vehicles, home integrated photovoltaic systems, high-performance electrified transportation systems, and so on. Attention must then be shifted to include harmonics and commutation components on one side, as well as closer interaction with humans, that concretizes in impact on physiological functions and interference to implantable medical devices and hearing aids. The panorama is complex in that standards and regulations have also increased significantly or underwent extensive revisions in the last 10 years or so. For assessment, the straightforward application of the limits of exposure is hindered by measurement problems (time or frequency domain methods, positioning errors, impact of uncertainty) and complex scenarios of exposure (multiple sources, large field gradient, time-varying emissions). This work considers thus both the clarification of the principles of interaction for each affected system (including humans) and the discussion of the large set of related normative and technical documents, deriving a picture of requirements and constraints. The methods of assessment are discussed in a metrological perspective using a range of examples.
Collapse
|
14
|
Lerner O, Friedman J, Frenkel-Toledo S. The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: a randomized controlled trial. J Neuroeng Rehabil 2021; 18:103. [PMID: 34174914 PMCID: PMC8236155 DOI: 10.1186/s12984-021-00899-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Background The results of transcranial direct current stimulation (tDCS) studies that seek to improve motor performance for people with neurological disorders, by targeting the primary motor cortex, have been inconsistent. One possible reason, among others, for this inconsistency, is that very little is known about the optimal protocols for enhancing motor performance in healthy individuals. The best way to optimize stimulation protocols for enhancing tDCS effects on motor performance by means of current intensity modulation has not yet been determined. We aimed to determine the effect of current intensity on motor performance using–for the first time–a montage optimized for maximal focal stimulation via anodal high-definition tDCS (HD-tDCS) on the right primary motor cortex in healthy subjects. Methods Sixty participants randomly received 20-min HD-tDCS at 1.5, 2 mA, or sham stimulation. Participants’ reaching performance with the left hand on a tablet was tested before, during, and immediately following stimulation, and retested after 24 h. Results In the current montage of HD-tDCS, movement time did not differ between groups in each timepoint. However, only after HD-tDCS at 1.5 mA did movement time improve at posttest as compared to pretest. This reduction in movement time from pretest to posttest was significantly greater compared to HD-tDCS 2 mA. Following HD-tDCS at 1.5 mA and sham HD-tDCS, but not 2 mA, movement time improved at retest compared to pretest, and at posttest and retest compared to the movement time during stimulation. In HD-tDCS at 2 mA, the negligible reduction in movement time from the course of stimulation to posttest was significantly lower compared to sham HD-tDCS. Across all groups, reaction time improved in retest compared to pretest and to the reaction time during stimulation, and did not differ between groups in each timepoint. Conclusions It appears that 2 mA in this particular experimental setup inhibited the learning effects. These results suggest that excitatory effects induced by anodal stimulation do not hold for every stimulation intensity, information that should be taken into consideration when translating tDCS use from the realm of research into more optimal neurorehabilitation. Trial registration: Clinical Trials Gov, NCT04577768. Registered 6 October 2019 -Retrospectively registered, https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S000A9B3&selectaction=Edit&uid=U0005AKF&ts=8&cx=buucf0. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00899-z.
Collapse
Affiliation(s)
- Ohad Lerner
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Jason Friedman
- Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Silvi Frenkel-Toledo
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel. .,Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel.
| |
Collapse
|
15
|
Huang WA, Stitt IM, Negahbani E, Passey DJ, Ahn S, Davey M, Dannhauer M, Doan TT, Hoover AC, Peterchev AV, Radtke-Schuller S, Fröhlich F. Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform. Nat Commun 2021; 12:3151. [PMID: 34035240 PMCID: PMC8149416 DOI: 10.1038/s41467-021-23021-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Computational modeling and human studies suggest that transcranial alternating current stimulation (tACS) modulates alpha oscillations by entrainment. Yet, a direct examination of how tACS interacts with neuronal spiking activity that gives rise to the alpha oscillation in the thalamo-cortical system has been lacking. Here, we demonstrate how tACS entrains endogenous alpha oscillations in head-fixed awake ferrets. We first show that endogenous alpha oscillations in the posterior parietal cortex drive the primary visual cortex and the higher-order visual thalamus. Spike-field coherence is largest for the alpha frequency band, and presumed fast-spiking inhibitory interneurons exhibit strongest coupling to this oscillation. We then apply alpha-tACS that results in a field strength comparable to what is commonly used in humans (<0.5 mV/mm). Both in these ferret experiments and in a computational model of the thalamo-cortical system, tACS entrains alpha oscillations by following the theoretically predicted Arnold tongue. Intriguingly, the fast-spiking inhibitory interneurons exhibit a stronger entrainment response to tACS in both the ferret experiments and the computational model, likely due to their stronger endogenous coupling to the alpha oscillation. Our findings demonstrate the in vivo mechanism of action for the modulation of the alpha oscillation by tACS.
Collapse
Affiliation(s)
- Wei A Huang
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Iain M Stitt
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA
| | - Ehsan Negahbani
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA
| | - D J Passey
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - Sangtae Ahn
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South Korea
| | - Marshall Davey
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Moritz Dannhauer
- Department of Psychiatry and Behavioral Science, Duke University, Durham, NC, USA
| | - Thien T Doan
- Department of Psychiatry and Behavioral Science, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Anna C Hoover
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Science, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
van Boekholdt L, Kerstens S, Khatoun A, Asamoah B, Mc Laughlin M. tDCS peripheral nerve stimulation: a neglected mode of action? Mol Psychiatry 2021; 26:456-461. [PMID: 33299136 DOI: 10.1038/s41380-020-00962-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation method widely used by neuroscientists and clinicians for research and therapeutic purposes. tDCS is currently under investigation as a treatment for a range of psychiatric disorders. Despite its popularity, a full understanding of tDCS's underlying neurophysiological mechanisms is still lacking. tDCS creates a weak electric field in the cerebral cortex which is generally assumed to cause the observed effects. Interestingly, as tDCS is applied directly on the skin, localized peripheral nerve endings are exposed to much higher electric field strengths than the underlying cortices. Yet, the potential contribution of peripheral mechanisms in causing tDCS's effects has never been systemically investigated. We hypothesize that tDCS induces arousal and vigilance through peripheral mechanisms. We suggest that this may involve peripherally-evoked activation of the ascending reticular activating system, in which norepinephrine is distributed throughout the brain by the locus coeruleus. Finally, we provide suggestions to improve tDCS experimental design beyond the standard sham control, such as topical anesthetics to block peripheral nerves and active controls to stimulate non-target areas. Broad adoption of these measures in all tDCS experiments could help disambiguate peripheral from true transcranial tDCS mechanisms.
Collapse
Affiliation(s)
- Luuk van Boekholdt
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Silke Kerstens
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Ahmad Khatoun
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boateng Asamoah
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Cornacchia S, La Tegola L, Maldera A, Pierpaoli E, Tupputi U, Ricatti G, Eusebi L, Salerno S, Guglielmi G. Radiation protection in non-ionizing and ionizing body composition assessment procedures. Quant Imaging Med Surg 2020; 10:1723-1738. [PMID: 32742963 PMCID: PMC7378088 DOI: 10.21037/qims-19-1035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/08/2020] [Indexed: 01/06/2023]
Abstract
Body composition assessment (BCA) represents a valid instrument to evaluate nutritional status through the quantification of lean and fat tissue, in healthy subjects and sick patients. According to the clinical indication, body composition (BC) can be assessed by different modalities. To better analyze radiation risks for patients involved, BCA procedures can be divided into two main groups: the first based on the use of ionizing radiation (IR), involving dual energy X-ray absorptiometry (DXA) and computed tomography (CT), and others based on non-ionizing radiation (NIR) [magnetic resonance imaging (MRI)]. Ultrasound (US) techniques using mechanical waves represent a separate group. The purpose of our study was to analyze publications about IR and NIR effects in order to make physicians aware about the risks for patients undergoing medical procedures to assess BCA providing to guide them towards choosing the most suitable method. To this end we reported the biological effects of IR and NIR and their associated risks, with a special regard to the excess risk of death from radio-induced cancer. Furthermore, we reported and compared doses obtained from different IR techniques, giving practical indications on the optimization process. We also summarized current recommendations and limits for techniques employing NIR and US. The authors conclude that IR imaging procedures carry relatively small individual risks that are usually justified by the medical need of patients, especially when the optimization principle is applied. As regards NIR imaging procedures, a few studies have been conducted on interactions between electromagnetic fields involved in MR exam and biological tissue. To date, no clear link exists between MRI or associated magnetic and pulsed radio frequency (RF) fields and subsequent health risks, whereas acute effects such as tissue burns and phosphenes are well-known; as regards the DNA damage and the capability of NIR to break chemical bonds, they are not yet robustly demonstrated. MRI is thus considered to be very safe for BCA as well US procedures.
Collapse
Affiliation(s)
- Samantha Cornacchia
- Medical Physics Unit, Dimiccoli Hospital Barletta, Barletta, ASL Barletta-Andria-Trani, Italy
| | - Luciana La Tegola
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | - Arcangela Maldera
- Medical Physics Unit, Dimiccoli Hospital Barletta, Barletta, ASL Barletta-Andria-Trani, Italy
| | | | - Umberto Tupputi
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | - Giovanni Ricatti
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | | | - Sergio Salerno
- Department of Radiology, University of Palermo, Palermo, Italy
| | - Giuseppe Guglielmi
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
- “Dimiccoli” Hospital, University Campus of Barletta, Barletta, Italy
| |
Collapse
|
18
|
David M, Schmid G. Dosimetric analysis of hands exposure during handling of strong permanent magnets. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:520-529. [PMID: 31935705 DOI: 10.1088/1361-6498/ab6b9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Workers in a production line for synchronous motors occasionally reported tingling sensations or a feeling of numbness in their hands when handling strong permanent magnets. As the magnetic flux density (B) and its gradients along and close to the surface of the permanent magnets were expected to be comparably high and the movements of the workers' hands may therefore cause relevant induction inside the tissue, a detailed dosimetric analysis of the in situ electric field inside the hands (Ei) of the workers was carried out. The time derivate of the magnetic flux density (dB/dt) occurring along the hands was determined based on time domain measurements using a specially developed 'measurement glove' containing 12 Hall sensors. Based on these measurement results temporal peak electric field strength (Ei) induced inside a newly developed high resolution anatomical hand models were numerically computed, using the scalar potential finite difference (SPFD) method. The highest measured dB/dt along the palmar side of the hand was 51.2 T s-1. The corresponding worst case temporal peak value of the maximum of the Ei averaged over 2 × 2 × 2 mm3 in soft tissue was 2.0 V m-1, which is a factor of 1.8 higher than the applicable exposure limit value, but still below the range of 3.8-6.2 V m-1 which is presently assumed the range of lowest stimulation threshold for peripheral nerves. Our analysis did therefore not provide an indication that the perception reported by the workers are due to tissue stimulation in the sense of provoking action potentials.
Collapse
Affiliation(s)
- Mauro David
- Seibersdorf Laboratories, Dept. EMC & Optics, A-2444 Seibersdorf, Austria. University of Applied Sciences Technikum Wien, A-1200 Vienna, Austria
| | | |
Collapse
|
19
|
Transcranial magnetic stimulation safety from operator exposure perspective. Med Biol Eng Comput 2019; 58:249-256. [PMID: 31834609 DOI: 10.1007/s11517-019-02084-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
A simulated model of a commercial transcranial magnetic stimulation (TMS) coil is analyzed to determine electromagnetic field (EMF) exposure for an operator while holding or adjusting the coil. Induced EMF strengths are calculated using a commercial figure-8 coil geometry and pulse configuration, with geometrical representations of the subject's head and the operator's head, torso, and hand. Exposure levels are compared to experimental results in the literature and international guidelines for occupational EMF exposure limits. Exposure limit guidelines of 0.8 V/m rms are exceeded at approximately 24.6 cm from the coil for the torso model and at 20.3 cm for the head model measured perpendicular to the plane of the coil. In the plane of the coil, the operator can approach closer without exceeding guidelines. The results in the hand model along the edge of the coil give 9.9 V/m and 88.5 V/m for average and peak field strength, respectively. A discussion of the potential consequences of operator exposure to fields exceeding published guidelines concludes that since the guidelines are only concerned with acute effects and do not suggest any potential chronic effects, occupational exposure in the context of delivering TMS treatment may be considered reasonable. Graphical abstract A model of an operator's head/torso was moved in space relative to a standard TMS coil and subject. Positions at which safety guidelines are exceeded were calculated. The maximum induced electric field was also calculated in a hand model placed in a position commonly used to hold TMS coils during treatments.
Collapse
|
20
|
Khatoun A, Asamoah B, Mc Laughlin M. Investigating the Feasibility of Epicranial Cortical Stimulation Using Concentric-Ring Electrodes: A Novel Minimally Invasive Neuromodulation Method. Front Neurosci 2019; 13:773. [PMID: 31396045 PMCID: PMC6667561 DOI: 10.3389/fnins.2019.00773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/10/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Invasive cortical stimulation (ICS) is a neuromodulation method in which electrodes are implanted on the cortex to deliver chronic stimulation. ICS has been used to treat neurological disorders such as neuropathic pain, epilepsy, movement disorders and tinnitus. Noninvasive neuromodulation methods such as transcranial magnetic stimulation and transcranial electrical stimulation (TES) show great promise in treating some neurological disorders and require no surgery. However, only acute stimulation can be delivered. Epicranial current stimulation (ECS) is a novel concept for delivering chronic neuromodulation through subcutaneous electrodes implanted on the skull. The use of concentric-ring ECS electrodes may allow spatially focused stimulation and offer a less invasive alternative to ICS. OBJECTIVES Demonstrate ECS proof-of-concept using concentric-ring electrodes in rats and then use a computational model to explore the feasibility and limitations of ECS in humans. METHODS ECS concentric-ring electrodes were implanted in 6 rats and pulsatile stimulation delivered to the motor cortex. An MRI based electro-anatomical human head model was used to explore different ECS concentric-ring electrode designs and these were compared with ICS and TES. RESULTS Concentric-ring ECS electrodes can selectively stimulate the rat motor cortex. The computational model showed that the concentric-ring ECS electrode design can be optimized to achieve focused cortical stimulation. In general, focality was less than ICS but greater than noninvasive transcranial current stimulation. CONCLUSION ECS could be a promising minimally invasive alternative to ICS. Further work in large animal models and patients is needed to demonstrate feasibility and long-term stability.
Collapse
Affiliation(s)
- Ahmad Khatoun
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, KU Leuven, Leuven, Belgium
- The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boateng Asamoah
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, KU Leuven, Leuven, Belgium
- The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, KU Leuven, Leuven, Belgium
- The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Schmid G, Hirtl R, Samaras T. Benchmark of different assessment methods for non-sinusoidal magnetic field exposure in the context of European Directive 2013/35/EU. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:455-469. [PMID: 30794996 DOI: 10.1088/1361-6498/ab0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For the assessment of non-sinusoidal magnetic fields the European EMF Directive 2013/35/EU specified the Weighted Peak Method in Time Domain (WPM-TD) as the reference method. However, also other scientifically validated methods are allowed, provided that they lead to approximately equivalent and comparable results. In the non-binding guide for practical implementation of 2013/35/EU three methods alternative to the WPM-TD are described, i.e. the Weighted Peak Method in Frequency Domain (WPM-FD), the Multiple Frequency Rule (MFR), and an alternative Time Domain Assessment Method (TDAM). In this paper the results of a benchmark comparison of these assessment methods, based on 12 different time domain signals of magnetic induction, measured close to real devices and nine additional generic waveforms, are presented. The results demonstrated that assessments obtained with WPM-TD and WPM-FD can be considered approximately equivalent (maximum deviation 3.4 dB). The MFR systematically overestimates exposure, due to its inherently conservative definitions. In contrast, the TDAM significantly and systematically underestimates exposure up to a factor of 22 (26.8 dB) for the considered waveforms. The main reasons for this exposure underestimation by the TDAM are the introduction of an inappropriate time averaging, and the fact that the characteristic time parameter τ p,min, describing the minimum duration of all field changes dB/dt of the waveform is derived independently from the extent of the field change in the definitions of the TDAM. Consequently, we recommend not to use the TDAM as presently published in the non-binding guide to 2013/35/EU, as its application would be in contradiction with the underlying aim of 2013/35/EU, i.e. a harmonised level of occupational safety with respect to exposure to electromagnetic fields.
Collapse
Affiliation(s)
- Gernot Schmid
- Seibersdorf Laboratories, Dept. EMC & Optics, A-2444 Seibersdorf, Austria. Aristotle University of Thessaloniki, Dept. of Physics, GR-54124 Thessaloniki, Greece
| | | | | |
Collapse
|
22
|
Asamoah B, Khatoun A, Mc Laughlin M. tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat Commun 2019; 10:266. [PMID: 30655523 PMCID: PMC6336776 DOI: 10.1038/s41467-018-08183-w] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/19/2018] [Indexed: 01/19/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method which has been shown to modulate hearing, motor, cognitive and memory function. However, the mechanisms underpinning these findings are controversial, as studies show that the current reaching the cortex may not be strong enough to entrain neural activity. Here, we propose a new hypothesis to reconcile these opposing results: tACS effects are caused by transcutaneous stimulation of peripheral nerves in the skin and not transcranial stimulation of cortical neurons. Rhythmic activity from peripheral nerves then entrains cortical neurons. A series of experiments in rats and humans isolated the transcranial and transcutaneous mechanisms and showed that the reported effects of tACS on the motor system can be caused by transcutaneous stimulation of peripheral nerves. Whether or not the transcutaneous mechanism will generalize to tACS effects on other systems is debatable but should be investigated. Transcranial alternating current stimulation (tACS) uses weak electrical currents, applied to the head, to modulate brain activity. Here, the authors show that contrary to previous assumptions, the effects of tACS on the brain may be mediated by its effect on peripheral nerves in the skin, not direct.
Collapse
Affiliation(s)
- Boateng Asamoah
- Exp ORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium
| | - Ahmad Khatoun
- Exp ORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
23
|
Klein V, Davids M, Wald LL, Schad LR, Guérin B. Sensitivity analysis of neurodynamic and electromagnetic simulation parameters for robust prediction of peripheral nerve stimulation. Phys Med Biol 2018; 64:015005. [PMID: 30523884 DOI: 10.1088/1361-6560/aaf308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral nerve stimulation (PNS) has become an important limitation for fast MR imaging using the latest gradient hardware. We have recently developed a simulation framework to predict PNS thresholds and stimulation locations in the body for arbitrary coil geometries to inform the gradient coil optimization process. Our approach couples electromagnetic field simulations in realistic body models to a neurodynamic model of peripheral nerve fibers. In this work, we systematically analyze the impact of key parameters on the predicted PNS thresholds to assess the robustness of the simulation results. We analyze the sensitivity of the simulated thresholds to variations of the most important simulation parameters, including parameters of the electromagnetic field simulations (dielectric tissue properties, body model size, position, spatial resolution, and coil model discretization) and parameters of the neurodynamic simulation (length of the simulated nerves, position of the nerve model relative to the extracellular potential, temporal resolution of the nerve membrane dynamics). We found that for the investigated setup, the subject-dependent parameters (e.g. tissue properties or body size) can affect PNS prediction by up to ~26% when varied in a natural range. This is in accordance with the standard deviation of ~30% reported in human subject studies. Parameters related to numerical aspects can cause significant simulation errors (>30%), if not chosen cautiously. However, these perturbations can be controlled to yield errors below 5% for all investigated parameters without an excessive increase in computation time. Our sensitivity analysis shows that patient-specific parameter fluctuations yield PNS threshold variations similar to the variations observed in experimental PNS studies. This may become useful to estimate population-average PNS thresholds and understand their standard deviation. Our analysis indicates that the simulated PNS thresholds are numerically robust, which is important for ranking different MRI gradient coil designs or assessing different PNS mitigation strategies.
Collapse
Affiliation(s)
- Valerie Klein
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
24
|
Davids M, Guérin B, Vom Endt A, Schad LR, Wald LL. Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations. Magn Reson Med 2018; 81:686-701. [PMID: 30094874 DOI: 10.1002/mrm.27382] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils. METHODS We first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient. RESULTS There was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root-mean-square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation. CONCLUSIONS Our simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and "next nerve" thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils.
Collapse
Affiliation(s)
- Mathias Davids
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, BW, Germany.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Bastien Guérin
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, BW, Germany
| | - Lawrence L Wald
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts
| |
Collapse
|
25
|
Freschi F, Giaccone L, Cirimele V, Canova A. Numerical assessment of low-frequency dosimetry from sampled magnetic fields. Phys Med Biol 2017; 63:015029. [PMID: 29116057 DOI: 10.1088/1361-6560/aa9915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.
Collapse
Affiliation(s)
- Fabio Freschi
- Department of Energy 'G. Ferraris', Politecnico di Torino, Torino, Italy. School of Information Technology and Electrical Engineering, The University of Queensland, Australia. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
26
|
Predicting Magnetostimulation Thresholds in the Peripheral Nervous System using Realistic Body Models. Sci Rep 2017; 7:5316. [PMID: 28706244 PMCID: PMC5509681 DOI: 10.1038/s41598-017-05493-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/30/2017] [Indexed: 12/01/2022] Open
Abstract
Rapid switching of applied magnetic fields in the kilohertz frequency range in the human body induces electric fields powerful enough to cause Peripheral Nerve Stimulation (PNS). PNS has become one of the main constraints on the use of high gradient fields for fast imaging with the latest MRI gradient technology. In recent MRI gradients, the applied fields are powerful enough that PNS limits their application in fast imaging sequences like echo-planar imaging. Application of Magnetic Particle Imaging (MPI) to humans is similarly PNS constrained. Despite its role as a major constraint, PNS considerations are only indirectly incorporated in the coil design process, mainly through using the size of the linear region as a proxy for PNS thresholds or by conducting human experiments after constructing coil prototypes. We present for the first time, a framework to simulate PNS thresholds for realistic coil geometries to directly address PNS in the design process. Our PNS model consists of an accurate body model for electromagnetic field simulations, an atlas of peripheral nerves, and a neurodynamic model to predict the nerve responses to imposed electric fields. With this model, we were able to reproduce measured PNS thresholds of two leg/arm solenoid coils with good agreement.
Collapse
|
27
|
Oster J, Clifford GD. Acquisition of electrocardiogram signals during magnetic resonance imaging. Physiol Meas 2017; 38:R119-R142. [PMID: 28430109 DOI: 10.1088/1361-6579/aa6e8c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The recording of the electrocardiogram (ECG) during magnetic resonance imaging (MRI) acquisition is of great interest and importance. Firstly, MRI acquisition is a relatively slow process, which therefore complicates the imaging of moving organs. Cardiac MRI requires the development of strategies for acquiring high quality images, which is mainly achieved by synchronising the image acquisition with a specific time during the cardiac cycle. The ECG is used to monitor the heart's activity, and the detection of the largest and steepest peak in the cardiac cycle (the QRS complex) triggers the acquisition of slices of the k-space. Secondly, patients undergoing an MRI examination need to be monitored for safety during the procedure, and therefore ECG signals are used to track their cardiovascular state in real time. However, there are significant barriers to the accurate observation and processing of the ECG during MRI acquisition. In particular, the flow of charged blood particles through the large applied magnetic field leads to an extra current source, known as the magnetohdrodymanic (MHD) effect. This review article discusses these barriers and state-of-the-art solutions. An overview of the relevant technology including hardware and applications are described. The development of new software tools for the processing of the ECG signals acquired during MRI is also detailed. These developments include the design of specific QRS detection algorithms, which are able to distinguish QRS complexes from the MHD effect but also the gradient artefacts. Different techniques for the suppression of the gradient artefacts are also presented as well as the most challenging problem to-date-the problem of separating the MHD effect from the ECG. The article concludes by summarising the advantages of using ECG signals during MRI, but also presents the current limitations of modern analysis techniques in this domain. The most promising avenues of research are also discussed and suggestions for new methodological analyses for the development of this field are given.
Collapse
Affiliation(s)
- Julien Oster
- IADI, U947, INSERM, Université de Lorraine, CHRU Nancy, Vandoeuvre-les-Nancy, France
| | | |
Collapse
|
28
|
Gajda GB, Bly SH. Magnetic Field Reference Levels for Arbitrary Periodic Waveforms for Prevention of Peripheral Nerve Stimulation. HEALTH PHYSICS 2017; 112:501-511. [PMID: 28441282 DOI: 10.1097/hp.0000000000000663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Guidelines for prevention of peripheral nerve stimulation from exposure to low frequency magnetic fields have been developed by standard-setting bodies. Exposure limits or reference levels (RLs) are typically set in terms of the maximum root-mean-square amplitude of a sinusoidal waveform; however, environmental flux densities are often periodic, non-sinusoidal waveforms. This work presents a procedure for deriving RLs for any generalized periodic waveform using the empirical nerve-stimulation threshold data obtained from human volunteer MRI experiments. For this purpose, the "Law of Electrostimulation" (LOE), which sets forth conditions of a waveform necessary to trigger the action potential required to depolarize cell membranes, is applied to various waveforms. The results of the LOE analysis are waveform-specific, amplitude thresholds of stimulation that are found in terms of the empirically-derived rheobase threshold time-rate-of-change flux density and chronaxie from trapezoidal pulse MRI experiments. The thresholds are converted to amplitude RLs in two asymptotic frequency regimes as per the usual practice in standard setting. The resulting RLs have the same frequency dependence as in existing standards (i.e., inverse-frequency below a transition frequency and flat above). It is shown that the transition frequency is dependent only on the shape of the waveform. Both sinusoidal and non-sinusoidal waveforms have identical peak-to-peak amplitude RLs above their respective transition frequencies. Below these frequencies, all peak-to-peak amplitude RLs have the same functional dependence on frequency when the frequency is normalized to the waveform-specific transition frequency. This results in simple criteria for testing the amplitude of any arbitrary periodic waveform against potential for stimulation. These criteria are compared to guidance given for non-sinusoidal waveforms in the ICNIRP 1 Hz-100 kHz exposure standard.
Collapse
|
29
|
Chen X, Steckner M. Electromagnetic computation and modeling in MRI. Med Phys 2017; 44:1186-1203. [PMID: 28079264 DOI: 10.1002/mp.12103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/26/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022] Open
Abstract
Electromagnetic (EM) computational modeling is used extensively during the development of a Magnetic Resonance Imaging (MRI) scanner, its installation, and use. MRI, which relies on interactions between nuclear magnetic moments and the applied magnetic fields, uses a range of EM tools to optimize all of the magnetic fields required to produce the image. The main field magnet is designed to exacting specifications but challenges in manufacturing, installation, and use require additional tools to maintain target operational performance. The gradient magnetic fields, which provide the primary signal localization mechanism, are designed under another set of complex design trade-offs which include conflicting imaging performance specifications and patient physiology. Gradients are largely impervious to external influences, but are also used to enhance main field operational performance. The radiofrequency (RF) magnetic fields, which are used to elicit the signals fundamental to the MR image, are a challenge to optimize for a host of reasons that include patient safety, image quality, cost optimization, and secondary signal localization capabilities. This review outlines these issues and the EM modeling used to optimize MRI system performance.
Collapse
Affiliation(s)
- Xin Chen
- Toshiba Medical Research Institute USA, Inc. 777 Beta Drive, Mayfield Village, OH, 44143, USA
| | - Michael Steckner
- Toshiba Medical Research Institute USA, Inc. 777 Beta Drive, Mayfield Village, OH, 44143, USA
| |
Collapse
|
30
|
Schmid G, Hirtl R. Inconsistency of a recently proposed method for assessing magnetic field exposure for protection against peripheral nerve stimulation in occupational situations. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:N77-N88. [PMID: 27893442 DOI: 10.1088/0952-4746/36/4/n77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A non-binding guide to practical implementation of European Directive 2013/35/EU concerning the limitation of occupational exposure against electromagnetic fields has been published recently. With regard to exposure assessment this guide proposes practically applicable assessment methods for non-uniform and non-sinusoidal environmental electric and magnetic fields, respectively. For non-sinusoidal magnetic fields in the low frequency range this guide proposes a time domain assessment (TDA) method, claimed to reduce the overestimation of exposure inherent to other assessment methods while being based on fundamental physiological principles regarding nerve stimulation. In the present paper we demonstrate that the proposed TDA method is not consistent with the obvious underlying principles of directive 2013/35/EU. Based on practically relevant waveforms and general considerations it can be shown that external magnetic fields may be deemed compliant by the TDA method although the underlying exposure limit values defined in 2013/35/EU may be exceeded. We therefore strongly recommend that the TDA method is removed from the guide for implementing 2013/35/EU as soon as possible.
Collapse
Affiliation(s)
- Gernot Schmid
- Seibersdorf Laboratories, EMC & Optics, A-2444 Seibersdorf, Austria
| | | |
Collapse
|
31
|
Reilly JP, Hirata A. Low-frequency electrical dosimetry: research agenda of the IEEE International Committee on Electromagnetic Safety. Phys Med Biol 2016; 61:R138-49. [PMID: 27223463 DOI: 10.1088/0031-9155/61/12/r138] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article treats unsettled issues in the use of numerical models of electrical dosimetry as applied to international limits on human exposure to low-frequency (typically < 100 kHz) electromagnetic fields and contact current. The perspective in this publication is that of Subcommittee 6 of IEEE-ICES (International Committee on Electromagnetic Safety) Technical Committee 95. The paper discusses 25 issues needing attention, fitting into three general categories: induction models; electrostimulation models; and human exposure limits. Of these, 9 were voted as 'high priority' by members of Subcommittee 6. The list is presented as a research agenda for refinements in numerical modeling with applications to human exposure limits. It is likely that such issues are also important in medical and electrical product safety design applications.
Collapse
|
32
|
Neufeld E, Vogiatzis Oikonomidis I, Ida Iacono M, Angelone LM, Kainz W, Kuster N. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation. Phys Med Biol 2016; 61:4466-78. [PMID: 27223274 DOI: 10.1088/0031-9155/61/12/4466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An intricate network of a variety of nerves is embedded within the complex anatomy of the human body. Although nerves are shielded from unwanted excitation, they can still be stimulated by external electromagnetic sources that induce strongly non-uniform field distributions. Current exposure safety standards designed to limit unwanted nerve stimulation are based on a series of explicit and implicit assumptions and simplifications. This paper demonstrates the applicability of functionalized anatomical phantoms with integrated coupled electromagnetic and neuronal dynamics solvers for investigating the impact of magnetic resonance exposure on nerve excitation within the full complexity of the human anatomy. The impact of neuronal dynamics models, temperature and local hot-spots, nerve trajectory and potential smoothing, anatomical inhomogeneity, and pulse duration on nerve stimulation was evaluated. As a result, multiple assumptions underlying current safety standards are questioned. It is demonstrated that coupled EM-neuronal dynamics modeling involving realistic anatomies is valuable to establish conservative safety criteria.
Collapse
Affiliation(s)
- Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zeughausstr. 43, 8004 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Samoudi AM, Vermeeren G, Tanghe E, Van Holen R, Martens L, Josephs W. Numerically simulated exposure of children and adults to pulsed gradient fields in MRI. J Magn Reson Imaging 2016; 44:1360-1367. [PMID: 27043243 DOI: 10.1002/jmri.25257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/13/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To determine exposure to gradient switching fields of adults and children in a magnetic resonance imaging (MRI) scanner by evaluating internal electric fields within realistic models of adult male, adult female, and child inside transverse and longitudinal gradient coils, and to compare these results with compliance guidelines. MATERIALS AND METHODS Patients inside x-, y-, and z-gradient coils were simulated using anatomically realistic models of adult male, adult female, and child. The induced electric fields were computed for 1 kHz sinusoidal current with a magnitude of 1 A in the gradient coils. Rheobase electric fields were then calculated and compared to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2004 and International Electrotechnical Commission (IEC) 2010 guidelines. The effect of the human body, coil type, and skin conductivity on the induced electric field was also investigated. RESULTS The internal electric fields are within the first level controlled operating mode of the guidelines and range from 2.7V m-1 to 4.5V m-1 , except for the adult male inside the y-gradient coil (induced field reaches 5.4V m-1 ).The induced electric field is sensitive to the coil type (electric field in the skin of adult male: 4V m-1 , 4.6V m-1 , and 3.8V m-1 for x-, y-, and z-gradient coils, respectively), the human body model (electric field in the skin inside y-gradient coil: 4.6V m-1 , 4.2V m-1 , and 3V m-1 for adult male, adult female, and child, respectively), and the skin conductivity (electric field 2.35-4.29% higher for 0.1S m-1 skin conductivity compared to 0.2S m-1 ). CONCLUSION The y-gradient coil induced the largest fields in the patients. The highest levels of internal electric fields occurred for the adult male model. J. Magn. Reson. Imaging 2016;44:1360-1367.
Collapse
Affiliation(s)
- Amine M Samoudi
- Department of Information Technology (INTEC), Ghent University/iMinds, iGent, Ghent, Belgium.
| | - Gunter Vermeeren
- Department of Information Technology (INTEC), Ghent University/iMinds, iGent, Ghent, Belgium
| | - Emmeric Tanghe
- Department of Information Technology (INTEC), Ghent University/iMinds, iGent, Ghent, Belgium
| | - Roel Van Holen
- Electronics and Information Systems (ELIS), Ghent University/iMinds, Ghent, Belgium
| | - Luc Martens
- Department of Information Technology (INTEC), Ghent University/iMinds, iGent, Ghent, Belgium
| | - Wout Josephs
- Department of Information Technology (INTEC), Ghent University/iMinds, iGent, Ghent, Belgium
| |
Collapse
|
34
|
Kavet R. Dosimetric Uncertainties: Magnetic Field Coupling to Peripheral Nerve. HEALTH PHYSICS 2015; 109:556-565. [PMID: 26509623 DOI: 10.1097/hp.0000000000000351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The International Commission on Non-ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineers (IEEE) have established magnetic field exposure limits for the general public between 400 Hz (ICNIRP)/759 Hz (IEEE) and 100 kHz to protect against adverse effects associated with peripheral nerve stimulation (PNS). Despite apparent common purpose and similarly stated principles, the two sets of limits diverge between 3.35-100 kHz by a factor of about 7.7 with respect to PNS. To address the basis for this difference and the more general issue of dosimetric uncertainty, this paper combines experimental data of PNS thresholds derived from human subjects exposed to magnetic fields together with published estimates of induced in situ electric field PNS thresholds to evaluate dosimetric relationships of external magnetic fields to induced fields at the threshold of PNS and the uncertainties inherent to such relationships. The analyses indicate that the logarithmic range of magnetic field thresholds constrains the bounds of uncertainty of in situ electric field PNS thresholds and coupling coefficients related to the peripheral nerve (the coupling coefficients define the dosimetric relationship of external field to induced electric field). The general public magnetic field exposure limit adopted by ICNIRP uses a coupling coefficient that falls above the bounds of dosimetric uncertainty, while IEEE's is within the bounds of uncertainty toward the lower end of the distribution. The analyses illustrate that dosimetric estimates can be derived without reliance on computational dosimetry and the associated values of tissue conductivity. With the limits now in place, investigative efforts would be required if a field measurement were to exceed ICNIRP's magnetic field limit (the reference level), even when there is a virtual certainty that the dose limit (the basic restriction) has not been exceeded. The constraints on the range of coupling coefficients described in this paper could facilitate a re-evaluation of ICNIRP and IEEE dose and exposure limits and possibly lead toward harmonization.
Collapse
Affiliation(s)
- Robert Kavet
- *Electric Power Research Institute, 3420 Hillview Avenue, Palo Alto, CA 94304
| |
Collapse
|
35
|
Guidelines for limiting exposure to electric fields induced by movement of the human body in a static magnetic field and by time-varying magnetic fields below 1 Hz. HEALTH PHYSICS 2014; 106:418-425. [PMID: 25208018 DOI: 10.1097/hp.0b013e31829e5580] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
36
|
Liu L, Trakic A, Sanchez-Lopez H, Liu F, Crozier S. An analysis of the gradient-induced electric fields and current densities in human models when situated in a hybrid MRI-LINAC system. Phys Med Biol 2013; 59:233-45. [DOI: 10.1088/0031-9155/59/1/233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Kavet R, Dovan T, Reilly JP. The relationship between anatomically correct electric and magnetic field dosimetry and publishe delectric and magnetic field exposure limits. RADIATION PROTECTION DOSIMETRY 2012; 152:279-295. [PMID: 22619351 DOI: 10.1093/rpd/ncs064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Institute of Electrical and Electronics Engineers are aimed at protection against adverse electrostimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits.
Collapse
Affiliation(s)
- Robert Kavet
- Electric Power Research Institute, 3420 Hillview Avenue, Palo Alto, CA 94304, USA.
| | | | | |
Collapse
|
38
|
Layton KJ, Gallichan D, Testud F, Cocosco CA, Welz AM, Barmet C, Pruessmann KP, Hennig J, Zaitsev M. Single shot trajectory design for region-specific imaging using linear and nonlinear magnetic encoding fields. Magn Reson Med 2012; 70:684-96. [PMID: 23042707 DOI: 10.1002/mrm.24494] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/18/2012] [Accepted: 08/18/2012] [Indexed: 11/10/2022]
Abstract
It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments.
Collapse
Affiliation(s)
- Kelvin J Layton
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Australia; National ICT Australia, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Turk EA, Kopanoglu E, Guney S, Bugdayci KE, Ider YZ, Erturk VB, Atalar E. A simple analytical expression for the gradient induced potential on active implants during MRI. IEEE Trans Biomed Eng 2012; 59:2845-51. [PMID: 22893367 DOI: 10.1109/tbme.2012.2212190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During magnetic resonance imaging, there is an interaction between the time-varying magnetic fields and the active implantable medical devices (AIMD). In this study, in order to express the nature of this interaction, simplified analytical expressions for the electric fields induced by time-varying magnetic fields are derived inside a homogeneous cylindrical volume. With these analytical expressions, the gradient induced potential on the electrodes of the AIMD can be approximately calculated if the position of the lead inside the body is known. By utilizing the fact that gradient coils produce linear magnetic field in a volume of interest, the simplified closed form electric field expressions are defined. Using these simplified expressions, the induced potential on an implant electrode has been computed approximately for various lead positions on a cylindrical phantom and verified by comparing with the measured potentials for these sample conditions. In addition, the validity of the method was tested with isolated frog leg stimulation experiments. As a result, these simplified expressions may help in assessing the gradient-induced stimulation risk to the patients with implants.
Collapse
Affiliation(s)
- Esra A Turk
- Department of Electrical and Electronics Engineering and the National Magnetic Resonance Research Center, Bilkent University, Ankara 06800, Turkey.
| | | | | | | | | | | | | |
Collapse
|
40
|
Sánchez CC, Glover P, Power H, Bowtell R. Calculation of the electric field resulting from human body rotation in a magnetic field. Phys Med Biol 2012; 57:4739-53. [DOI: 10.1088/0031-9155/57/15/4739] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Zhu M, Xia L, Liu F, Zhu J, Kang L, Crozier S. A finite difference method for the design of gradient coils in MRI--an initial framework. IEEE Trans Biomed Eng 2012; 59:2412-21. [PMID: 22353392 DOI: 10.1109/tbme.2012.2188290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper proposes a finite-difference (FD)-based method for the design of gradient coils in MRI. The design method first uses the FD approximation to describe the continuous current density of the coil space and then employs the stream function method to extract the coil patterns. During the numerical implementation, a linear equation is constructed and solved using a regularization scheme. The algorithm details have been exemplified through biplanar and cylindrical gradient coil design examples. The design method can be applied to unusual coil designs such as ultrashort or dedicated gradient coils. The proposed gradient coil design scheme can be integrated into a FD-based electromagnetic framework, which can then provide a unified computational framework for gradient and RF design and patient-field interactions.
Collapse
Affiliation(s)
- Minhua Zhu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
42
|
Jokela K, Saunders RD. Physiologic and dosimetric considerations for limiting electric fields induced in the body by movement in a static magnetic field. HEALTH PHYSICS 2011; 100:641-653. [PMID: 22004933 DOI: 10.1097/hp.0b013e318202ec7e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Movement in a strong static magnetic field induces electric fields in a human body, which may result in various sensory perceptions such as vertigo, nausea, magnetic phosphenes, and a metallic taste in the mouth. These sensory perceptions have been observed by patients and medical staff in the vicinity of modern diagnostic magnetic resonance (MR) equipment and may be distracting if they were to affect the balance and eye-hand coordination of, for example, a physician carrying out a medical operation during MR scanning. The stimulation of peripheral nerve tissue by a more intense induced electric field is also theoretically possible but has not been reported to result from such movement. The main objective of this study is to consider generic criteria for limiting the slowly varying broadband (<10 Hz) electric fields induced by the motion of the body in the static magnetic field. In order to find a link between the static magnetic flux density and the time-varying induced electric field, the static magnetic field is converted to the homogeneous equivalent transient and sinusoidal magnetic fields exposing a stationary body. Two cases are considered: a human head moving in a non-uniform magnetic field and a head rotating in a homogeneous magnetic field. Then the electric field is derived from the magnetic flux rate (dB/dt) of the equivalent field by using computational dosimetric data published in the literature for various models of the human body. This conversion allows the plotting of the threshold electric field as a function of frequency for vertigo, phosphenes, and stimulation of peripheral nerves. The main conclusions of the study are: The basic restrictions for limiting exposure to extremely low frequency magnetic fields recommended by the International Commission on Non-Ionizing Radiation Protection ICNIRP in 1998 will prevent most cases of vertigo and other sensory perceptions that result from induced electric fields above 1 Hz, while limiting the static magnetic field below 2 T, as recently recommended by ICNIRP, provides sufficient protection below 1 Hz. People can experience vertigo when moving in static magnetic fields of between 2 and 8 T, but this may be controlled to some extent by slowing down head and/or body movement. In addition, limiting the static magnetic field below 8 T provides good protection against peripheral nerve stimulation.
Collapse
Affiliation(s)
- Kari Jokela
- STUK Radiation and Nuclear Safety Authority, Finland.
| | | |
Collapse
|
43
|
Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). HEALTH PHYSICS 2010; 99:818-36. [PMID: 21068601 DOI: 10.1097/hp.0b013e3181f06c86] [Citation(s) in RCA: 596] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
44
|
Abstract
In this review, the effects of low-frequency electromagnetic fields encountered specifically during magnetic resonance imaging (MRI) are examined. The primary biological effect at frequencies of between 100 and 5000 Hz (typical of MRI magnetic field gradient switching) is peripheral nerve stimulation, the result of which can be a mild tingling and muscle twitching to a sensation of pain. The models for nerve stimulation and how they are related to the rate of change of magnetic field are examined. The experimental measurements, and analytic and computational modelling work in this area are reviewed. The review concludes with a discussion of current regulation in this area and current practice as both are applied to MRI.
Collapse
Affiliation(s)
- P M Glover
- The Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
45
|
Kavet R, Bailey WH, Bracken TD, Patterson RM. Recent advances in research relevant to electric and magnetic field exposure guidelines. Bioelectromagnetics 2008; 29:499-526. [DOI: 10.1002/bem.20423] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Wood AW. Extremely low frequency (ELF) electric and magnetic field exposure limits: Rationale for basic restrictions used in the development of an Australian standard. Bioelectromagnetics 2008; 29:414-28. [DOI: 10.1002/bem.20412] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Crozier S, Wang H, Trakic A, Liu F. Exposure of workers to pulsed gradients in MRI. J Magn Reson Imaging 2008; 26:1236-54. [PMID: 17969133 DOI: 10.1002/jmri.21162] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To numerically evaluate the electric field/current density magnitudes and spatial distributions in healthcare workers when they are standing close to the gradient coil windings near the magnetic resonance imaging (MRI) scanner ends. MATERIALS AND METHODS Anatomically realistic, whole-body male and female voxel phantoms are engaged to model the workers at various positions near the ends of three cylindrical gradient coils (x-, y-, and z-axis gradients). The numerical calculations of induced fields are based on an efficient, quasistatic finite-difference method. RESULTS The simulations show that it is possible to induce electric fields/current densities above levels recommended by the International Commission for Non-ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE) standards when the workers are standing close to the gradient coils and when two or three gradients are switched simultaneously, as is often the case. CONCLUSION The longitudinal gradient tends to induce more fields in workers than the transverse coils. The strongest levels of field exposure are observed when all three gradients are operated simultaneously and can be above regulations when the healthcare worker is close to the gradient coils. Other postures such as bending into the magnet shall be investigated in further studies.
Collapse
Affiliation(s)
- Stuart Crozier
- School of Information Technology and Electric Engineering, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | |
Collapse
|
48
|
Bailey WH, Erdreich LS. Accounting for human variability and sensitivity in setting standards for electromagnetic fields. HEALTH PHYSICS 2007; 92:649-57. [PMID: 17495668 DOI: 10.1097/01.hp.0000249741.31108.ce] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biological sensitivity and variability are key issues for risk assessment and standard setting. Variability encompasses general inter-individual variations in population responses, while sensitivity relates to unusual or extreme responses based on genetic, congenital, medical, or environmental conditions. For risk assessment and standard setting, these factors affect estimates of thresholds for effects and dose-response relationships and inform efforts to protect the more sensitive members of the population, not just the typical or average person. While issues of variability and sensitivity can be addressed by experimental and clinical studies of electromagnetic fields, investigators have paid little attention to these important issues. This paper provides examples that illustrate how default assumptions regarding variability can be incorporated into estimates of 60-Hz magnetic field exposures with no risk of cardiac stimulation and how population thresholds and variability of peripheral nerve stimulation responses at 60-Hz can be estimated from studies of pulsed gradient magnetic fields in magnetic resonance imaging studies. In the setting of standards for radiofrequency exposures, the International Commission for Non-Ionizing Radiation Protection uses inter-individual differences in thermal sensitivity as one of the considerations in the development of "safety factors." However, neither the range of sensitivity nor the sufficiency or excess of the 10-fold and the additional 5-fold safety factors have been assessed quantitatively. Data on the range of responses between median and sensitive individuals regarding heat stress and cognitive function should be evaluated to inform a reassessment of these safety factors and to identify data gaps.
Collapse
|
49
|
Heinrich H. Assessment of non-sinusoidal, pulsed, or intermittent exposure to low frequency electric and magnetic fields. HEALTH PHYSICS 2007; 92:541-6. [PMID: 17495654 DOI: 10.1097/01.hp.0000262628.29600.b4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The correct assessment of non-sinusoidal, pulsed, or intermittent exposure to low frequency electric and magnetic fields already is a key issue in the occupational environment while becoming more and more important in the domain of the general public. The method presented provides a simple and safe solution for the assessment of arbitrary field types--including sinusoidal and continuous-wave signals--with frequencies up to several 100 kHz and has already proven its practicability and usefulness for more than 5 years. The concept is based on fundamental laws of physics and electrostimulation and well-established physiological data. It allows for a seamless and easy integration in any standard or guideline dealing with human safety in electric, magnetic, and electromagnetic fields. A very simple-to-use graphical version allows an easy and fast assessment of the exposure to non-sinusoidal, pulsed, or intermittent low-frequency magnetic fields without introducing a large overestimation of the exposure situation. A computer-based version makes a much more detailed signal analysis possible and can provide useful information for exposure reduction using modifications of the magnetic field's time parameters (e.g., rise/fall times).
Collapse
|
50
|
Bencsik M, Bowtell R, Bowley R. Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis. Phys Med Biol 2007; 52:2337-53. [PMID: 17440238 DOI: 10.1088/0031-9155/52/9/001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The spatial distributions of the electric fields induced in the human body by switched magnetic field gradients in MRI have been calculated numerically using the commercial software package, MAFIA, and the three-dimensional, HUGO body model that comprises 31 different tissue types. The variation of |J|, |E| and |B| resulting from exposure of the body model to magnetic fields generated by typical whole-body x-, y- and z-gradient coils has been analysed for three different body positions (head-, heart- and hips-centred). The magnetic field varied at 1 kHz, so as to produce a rate of change of gradient of 100 T m(-1) s(-1) at the centre of each coil. A highly heterogeneous pattern of induced electric field and current density was found to result from the smoothly varying magnetic field in all cases, with the largest induced electric fields resulting from application of the y-gradient, in agreement with previous studies. By applying simple statistical analysis to electromagnetic quantities within axial planes of the body model, it is shown that the induced electric field is strongly correlated to the local value of resistivity, and the induced current density exhibits even stronger correlation with the local conductivity. The local values of the switched magnetic field are however shown to bear little relation to the local values of the induced electric field or current density.
Collapse
Affiliation(s)
- Martin Bencsik
- School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | | | | |
Collapse
|