1
|
Schulz-Hildebrandt H, Spasic S, Hou F, Ting KC, Batts S, Tearney G, Stankovic KM. Dynamic micro-optical coherence tomography enables structural and metabolic imaging of the mammalian cochlea. Front Mol Neurosci 2024; 17:1436837. [PMID: 39449964 PMCID: PMC11499234 DOI: 10.3389/fnmol.2024.1436837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is caused by damage to the mechanosensory hair cells and auditory neurons of the cochlea. The development of imaging tools that can directly visualize or provide functional information about a patient's cochlear cells is critical to identify the pathobiological defect and determine the cells' receptiveness to emerging SNHL treatments. However, the cochlea's small size, embedded location within dense bone, and sensitivity to perturbation have historically precluded high-resolution clinical imaging. Previously, we developed micro-optical coherence tomography (μOCT) as a platform for otologic imaging in animal models and human cochleae. Here we report on advancing μOCT technology to obtain simultaneously acquired and co-localized images of cell viability/metabolic activity through dynamic μOCT (DμOCT) imaging of intracellular motion. DμOCT obtains cross-sectional images of ATP-dependent movement of intracellular organelles and cytoskeletal polymerization by acquiring sequential μOCT images and computing intensity fluctuation frequency metrics on a pixel-wise basis. Using a customized benchtop DμOCT system, we demonstrate the detailed resolution of anatomical and metabolic features of cells within the organ of Corti, via an apical cochleostomy, in freshly-excised adult mouse cochleae. Further, we show that DμOCT is capable of capturing rapid changes in cochlear cell metabolism following an ototoxic insult to induce cell death and actin stabilization. Notably, as few as 6 frames can be used to reconstruct cochlear DμOCT images with sufficient detail to discern individual cells and their metabolic state. Taken together, these results motivate future development of a DμOCT imaging probe for cellular and metabolic diagnosis of SNHL in humans.
Collapse
Affiliation(s)
- Hinnerk Schulz-Hildebrandt
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Svetolik Spasic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Fang Hou
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kuan-Chung Ting
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Guillermo Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Science and Technology, Cambridge, MA, United States
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
2
|
Zhou H, Bi GQ, Liu G. Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity. Nat Commun 2024; 15:3406. [PMID: 38649706 PMCID: PMC11035601 DOI: 10.1038/s41467-024-47571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Synapses at dendritic branches exhibit specific properties for information processing. However, how the synapses are orchestrated to dynamically modify their properties, thus optimizing information processing, remains elusive. Here, we observed at hippocampal dendritic branches diverse configurations of synaptic connectivity, two extremes of which are characterized by low transmission efficiency, high plasticity and coding capacity, or inversely. The former favors information encoding, pertinent to learning, while the latter prefers information storage, relevant to memory. Presynaptic intracellular Mg2+ crucially mediates the dynamic transition continuously between the two extreme configurations. Consequently, varying intracellular Mg2+ levels endow individual branches with diverse synaptic computations, thus modulating their ability to process information. Notably, elevating brain Mg2+ levels in aging animals restores synaptic configuration resembling that of young animals, coincident with improved learning and memory. These findings establish intracellular Mg2+ as a crucial factor reconfiguring synaptic connectivity at dendrites, thus optimizing their branch-specific properties in information processing.
Collapse
Affiliation(s)
- Hang Zhou
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China.
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Guo-Qiang Bi
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230031, China
| | - Guosong Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- NeuroCentria Inc., Walnut Creek, CA, 94596, USA.
| |
Collapse
|
3
|
Bao L, Chen K, Kong D, Ying S, Zeng T. Time multiscale regularization for nonlinear image registration. Comput Med Imaging Graph 2024; 112:102331. [PMID: 38199126 DOI: 10.1016/j.compmedimag.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Regularization-based methods are commonly used for image registration. However, fixed regularizers have limitations in capturing details and describing the dynamic registration process. To address this issue, we propose a time multiscale registration framework for nonlinear image registration in this paper. Our approach replaces the fixed regularizer with a monotone decreasing sequence, and iteratively uses the residual of the previous step as the input for registration. Particularly, first, we introduce a dynamically varying regularization strategy that updates regularizers at each iteration and incorporates them with a multiscale framework. This approach guarantees an overall smooth deformation field in the initial stage of registration and fine-tunes local details as the images become more similar. We then deduce convergence analysis under certain conditions on the regularizers and parameters. Further, we introduce a TV-like regularizer to demonstrate the efficiency of our method. Finally, we compare our proposed multiscale algorithm with some existing methods on both synthetic images and pulmonary computed tomography (CT) images. The experimental results validate that our proposed algorithm outperforms the compared methods, especially in preserving details during image registration with sharp structures.
Collapse
Affiliation(s)
- Lili Bao
- Department of Mathematics, Shanghai University, Shanghai 200444, PR China
| | - Ke Chen
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK.
| | - Dexing Kong
- School of Mathematical Science, Zhejiang University, Hangzhou 310027, PR China
| | - Shihui Ying
- Department of Mathematics, Shanghai University, Shanghai 200444, PR China.
| | - Tieyong Zeng
- Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
4
|
Lindemann MC, Glänzer L, Roeth AA, Schmitz-Rode T, Slabu I. Towards Realistic 3D Models of Tumor Vascular Networks. Cancers (Basel) 2023; 15:5352. [PMID: 38001612 PMCID: PMC10670125 DOI: 10.3390/cancers15225352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
For reliable in silico or in vitro investigations in, for example, biosensing and drug delivery applications, accurate models of tumor vascular networks down to the capillary size are essential. Compared to images acquired with conventional medical imaging techniques, digitalized histological tumor slices have a higher resolution, enabling the delineation of capillaries. Volume rendering procedures can then be used to generate a 3D model. However, the preparation of such slices leads to misalignments in relative slice orientation between consecutive slices. Thus, image registration algorithms are necessary to re-align the slices. Here, we present an algorithm for the registration and reconstruction of a vascular network from histologic slices applied to 169 tumor slices. The registration includes two steps. First, consecutive images are incrementally pre-aligned using feature- and area-based transformations. Second, using the previous transformations, parallel registration for all images is enabled. Combining intensity- and color-based thresholds along with heuristic analysis, vascular structures are segmented. A 3D interpolation technique is used for volume rendering. This results in a 3D vascular network with approximately 400-450 vessels with diameters down to 25-30 µm. A delineation of vessel structures with close distance was limited in areas of high structural density. Improvement can be achieved by using images with higher resolution and or machine learning techniques.
Collapse
Affiliation(s)
- Max C. Lindemann
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany (L.G.); (T.S.-R.)
| | - Lukas Glänzer
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany (L.G.); (T.S.-R.)
| | - Anjali A. Roeth
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
- Department of Surgery, Maastricht University, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany (L.G.); (T.S.-R.)
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany (L.G.); (T.S.-R.)
| |
Collapse
|
5
|
Hamzehei S, Bai J, Raimondi G, Tripp R, Ostroff L, Nabavi S. 3D Biological/Biomedical Image Registration with enhanced Feature Extraction and Outlier Detection. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2023; 2023:1. [PMID: 39006863 PMCID: PMC11246549 DOI: 10.1145/3584371.3612965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In various applications, such as computer vision, medical imaging and robotics, three-dimensional (3D) image registration is a significant step. It enables the alignment of various datasets into a single coordinate system, consequently providing a consistent perspective that allows further analysis. By precisely aligning images we can compare, analyze, and combine data collected in different situations. This paper presents a novel approach for 3D or z-stack microscopy and medical image registration, utilizing a combination of conventional and deep learning techniques for feature extraction and adaptive likelihood-based methods for outlier detection. The proposed method uses the Scale-invariant Feature Transform (SIFT) and the Residual Network (ResNet50) deep neural learning network to extract effective features and obtain precise and exhaustive representations of image contents. The registration approach also employs the adaptive Maximum Likelihood Estimation SAmple Consensus (MLESAC) method that optimizes outlier detection and increases noise and distortion resistance to improve the efficacy of these combined extracted features. This integrated approach demonstrates robustness, flexibility, and adaptability across a variety of imaging modalities, enabling the registration of complex images with higher precision. Experimental results show that the proposed algorithm outperforms state-of-the-art image registration methods, including conventional SIFT, SIFT with Random Sample Consensus (RANSAC), and Oriented FAST and Rotated BRIEF (ORB) methods, as well as registration software packages such as bUnwrapJ and TurboReg, in terms of Mutual Information (MI), Phase Congruency-Based (PCB) metrics, and Gradiant-based metrics (GBM), using 3D MRI and 3D serial sections of multiplex microscopy images.
Collapse
Affiliation(s)
- Sahand Hamzehei
- University of Connecticut, Department of Computer Science & Engineering, Storrs, Connecticut, USA
| | - Jun Bai
- University of Connecticut, Department of Computer Science & Engineering, Storrs, Connecticut, USA
| | - Gianna Raimondi
- University of Connecticut, Department of Physiology & Neurobiology, Storrs, Connecticut, USA
| | - Rebecca Tripp
- University of Connecticut, Department of Physiology & Neurobiology, Storrs, Connecticut, USA
| | - Linnaea Ostroff
- University of Connecticut, Department of Physiology & Neurobiology, Storrs, Connecticut, USA
| | - Sheida Nabavi
- University of Connecticut, Department of Computer Science & Engineering Department, Storrs, CT, USA
| |
Collapse
|
6
|
Rico-Jimenez JJ, Jovanovic J, Nolen SL, Malone JD, Rao G, Levine EM, Tao YK. MURIN: Multimodal Retinal Imaging and Navigated-laser-delivery for dynamic and longitudinal tracking of photodamage in murine models. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1141070. [PMID: 37275441 PMCID: PMC10238074 DOI: 10.3389/fopht.2023.1141070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Laser-induced photodamage is a robust method for investigating retinal pathologies in small animals. However, aiming of the photocoagulation laser is often limited by manual alignment and lacks real-time feedback on lesion location and severity. Here, we demonstrate a multimodality OCT and SLO ophthalmic imaging system with an image-guided scanning laser lesioning module optimized for the murine retina. The proposed system enables targeting of focal and extended area lesions under OCT guidance to benefit visualization of photodamage response and the precision and repeatability of laser lesion models of retinal injury.
Collapse
Affiliation(s)
- Jose J. Rico-Jimenez
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN 37208, USA
| | - Joel Jovanovic
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN 37208, USA
- Vanderbilt University, Dept. of Ophthalmology and Visual Sciences, Nashville, TN 37208, USA
- Vanderbilt University, Dept. of Cell and Developmental Biology, Nashville, TN 37208, USA
| | - Stephanie L. Nolen
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN 37208, USA
| | - Joseph D. Malone
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN 37208, USA
| | - Gopikrishna Rao
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN 37208, USA
| | - Edward M. Levine
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN 37208, USA
- Vanderbilt University, Dept. of Ophthalmology and Visual Sciences, Nashville, TN 37208, USA
- Vanderbilt University, Dept. of Cell and Developmental Biology, Nashville, TN 37208, USA
| | - Yuankai K. Tao
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN 37208, USA
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN 37208, USA
- Vanderbilt University, Dept. of Ophthalmology and Visual Sciences, Nashville, TN 37208, USA
| |
Collapse
|
7
|
Öfverstedt J, Lindblad J, Sladoje N. INSPIRE: Intensity and spatial information-based deformable image registration. PLoS One 2023; 18:e0282432. [PMID: 36867617 PMCID: PMC9983883 DOI: 10.1371/journal.pone.0282432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
We present INSPIRE, a top-performing general-purpose method for deformable image registration. INSPIRE brings distance measures which combine intensity and spatial information into an elastic B-splines-based transformation model and incorporates an inverse inconsistency penalization supporting symmetric registration performance. We introduce several theoretical and algorithmic solutions which provide high computational efficiency and thereby applicability of the proposed framework in a wide range of real scenarios. We show that INSPIRE delivers highly accurate, as well as stable and robust registration results. We evaluate the method on a 2D dataset created from retinal images, characterized by presence of networks of thin structures. Here INSPIRE exhibits excellent performance, substantially outperforming the widely used reference methods. We also evaluate INSPIRE on the Fundus Image Registration Dataset (FIRE), which consists of 134 pairs of separately acquired retinal images. INSPIRE exhibits excellent performance on the FIRE dataset, substantially outperforming several domain-specific methods. We also evaluate the method on four benchmark datasets of 3D magnetic resonance images of brains, for a total of 2088 pairwise registrations. A comparison with 17 other state-of-the-art methods reveals that INSPIRE provides the best overall performance. Code is available at github.com/MIDA-group/inspire.
Collapse
Affiliation(s)
- Johan Öfverstedt
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Joakim Lindblad
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Nataša Sladoje
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Yang J, Chang S, Chen IA, Kura S, Rosen GA, Saltiel NA, Huber BR, Varadarajan D, Balbastre Y, Magnain C, Chen SC, Fischl B, McKee AC, Boas DA, Wang H. Volumetric Characterization of Microvasculature in Ex Vivo Human Brain Samples By Serial Sectioning Optical Coherence Tomography. IEEE Trans Biomed Eng 2022; 69:3645-3656. [PMID: 35560084 PMCID: PMC9888394 DOI: 10.1109/tbme.2022.3175072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Serial sectioning optical coherence tomography (OCT) enables accurate volumetric reconstruction of several cubic centimeters of human brain samples. We aimed to identify anatomical features of the ex vivo human brain, such as intraparenchymal blood vessels and axonal fiber bundles, from the OCT data in 3D, using intrinsic optical contrast. METHODS We developed an automatic processing pipeline to enable characterization of the intraparenchymal microvascular network in human brain samples. RESULTS We demonstrated the automatic extraction of the vessels down to a 20 μm in diameter using a filtering strategy followed by a graphing representation and characterization of the geometrical properties of microvascular network in 3D. We also showed the ability to extend this processing strategy to extract axonal fiber bundles from the volumetric OCT image. CONCLUSION This method provides a viable tool for quantitative characterization of volumetric microvascular network as well as the axonal bundle properties in normal and pathological tissues of the ex vivo human brain.
Collapse
|
9
|
Nolte P, Dullin C, Svetlove A, Brettmacher M, Rußmann C, Schilling AF, Alves F, Stock B. Current Approaches for Image Fusion of Histological Data with Computed Tomography and Magnetic Resonance Imaging. Radiol Res Pract 2022; 2022:6765895. [PMID: 36408297 PMCID: PMC9668453 DOI: 10.1155/2022/6765895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 10/30/2023] Open
Abstract
Classical analysis of biological samples requires the destruction of the tissue's integrity by cutting or grinding it down to thin slices for (Immuno)-histochemical staining and microscopic analysis. Despite high specificity, encoded in the stained 2D section of the whole tissue, the structural information, especially 3D information, is limited. Computed tomography (CT) or magnetic resonance imaging (MRI) scans performed prior to sectioning in combination with image registration algorithms provide an opportunity to regain access to morphological characteristics as well as to relate histological findings to the 3D structure of the local tissue environment. This review provides a summary of prevalent literature addressing the problem of multimodal coregistration of hard- and soft-tissue in microscopy and tomography. Grouped according to the complexity of the dimensions, including image-to-volume (2D ⟶ 3D), image-to-image (2D ⟶ 2D), and volume-to-volume (3D ⟶ 3D), selected currently applied approaches are investigated by comparing the method accuracy with respect to the limiting resolution of the tomography. Correlation of multimodal imaging could position itself as a useful tool allowing for precise histological diagnostic and allow the a priori planning of tissue extraction like biopsies.
Collapse
Affiliation(s)
- Philipp Nolte
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Goettingen 37085, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen 37075, Germany
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Gottingen 37075, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen 37075, Germany
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, City Campus, 37075 Goettingen, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Angelika Svetlove
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen 37075, Germany
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, City Campus, 37075 Goettingen, Germany
| | - Marcel Brettmacher
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Goettingen 37085, Germany
| | - Christoph Rußmann
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Goettingen 37085, Germany
- Brigham and Women's Hospital, Harvard Medical School, Boston 02155, MA, USA
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Gottingen 37075, Germany
| | - Frauke Alves
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen 37075, Germany
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, City Campus, 37075 Goettingen, Germany
| | - Bernd Stock
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Goettingen 37085, Germany
| |
Collapse
|
10
|
Khodanovich MY, Anan’ina TV, Krutenkova EP, Akulov AE, Kudabaeva MS, Svetlik MV, Tumentceva YA, Shadrina MM, Naumova AV. Challenges and Practical Solutions to MRI and Histology Matching and Measurements Using Available ImageJ Software Tools. Biomedicines 2022; 10:1556. [PMID: 35884861 PMCID: PMC9313422 DOI: 10.3390/biomedicines10071556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Traditionally histology is the gold standard for the validation of imaging experiments. Matching imaging slices and histological sections and the precise outlining of corresponding tissue structures are difficult. Challenges are based on differences in imaging and histological slice thickness as well as tissue shrinkage and alterations after processing. Here we describe step-by-step instructions that might be used as a universal pathway to overlay MRI and histological images and for a correlation of measurements between imaging modalities. The free available (Fiji is just) ImageJ software tools were used for regions of interest transformation (ROIT) and alignment using a rat brain MRI as an example. The developed ROIT procedure was compared to a manual delineation of rat brain structures. The ROIT plugin was developed for ImageJ to enable an automatization of the image processing and structural analysis of the rodent brain.
Collapse
Affiliation(s)
- Marina Y. Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Tatyana V. Anan’ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Elena P. Krutenkova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Andrey E. Akulov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 10 Lavrentyeva Avenue, 630090 Novosibirsk, Russia;
| | - Marina S. Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Mikhail V. Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Yana A. Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Maria M. Shadrina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Anna V. Naumova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
- Department of Radiology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
11
|
Taguchi N, Uchida T, Ikita K, Tanaka A, Ikeo N, Yokouchi K, Tsutsumi K. Spectrum imaging measurements with semi-parallel detection using an AES apparatus. Ultramicroscopy 2022; 233:113450. [PMID: 34929559 DOI: 10.1016/j.ultramic.2021.113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/05/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022]
Abstract
We have developed a method to obtain a data cube using a semi-parallel detection scheme and an electrostatic hemispherical analyzer (HSA) with multi-channel detection. By improving the Auger intensity map measurement scheme, the number of detector energy sweeps is reduced, and faster measurement is achieved. The gain differences among the detection channel are corrected by post-processing, and a data cube of Auger electron spectra is constructed. A data cube was obtained for an example of a sample with a non-flat surface, lead-free solder. It was demonstrated to be possible to extract spectra from any position within the measurement area and create the elemental distribution maps.
Collapse
Affiliation(s)
- Noboru Taguchi
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Tatsuya Uchida
- JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Konomi Ikita
- JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Akihiro Tanaka
- JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Nobuyuki Ikeo
- JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | | | | |
Collapse
|
12
|
Haddad F, Boudet S, Peyrodie L, Vandenbroucke N, Poupart J, Hautecoeur P, Chieux V, Forzy G. Oligoclonal Band Straightening Based on Optimized Hierarchical Warping for Multiple Sclerosis Diagnosis. SENSORS 2022; 22:s22030724. [PMID: 35161470 PMCID: PMC8839259 DOI: 10.3390/s22030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 02/04/2023]
Abstract
The detection of immunoglobulin G (IgG) oligoclonal bands (OCB) in cerebrospinal fluid (CSF) by isoelectric focusing (IEF) is a valuable tool for the diagnosis of multiple sclerosis. Over the last decade, the results of our clinical research have suggested that tears are a non-invasive alternative to CSF. However, since tear samples have a lower IgG concentration than CSF, a sensitive OCB detection is therefore required. We are developing the first automatic tool for IEF analysis, with a view to speeding up the current visual inspection method, removing user variability, reducing misinterpretation, and facilitating OCB quantification and follow-up studies. The removal of band distortion is a key image enhancement step in increasing the reliability of automatic OCB detection. Here, we describe a novel, fully automatic band-straightening algorithm. The algorithm is based on a correlation directional warping function, estimated using an energy minimization procedure. The approach was optimized via an innovative coupling of a hierarchy of image resolutions to a hierarchy of transformation, in which band misalignment is corrected at successively finer scales. The algorithm’s performance was assessed in terms of the bands’ standard deviation before and after straightening, using a synthetic dataset and a set of 200 lanes of CSF, tear, serum and control samples on which experts had manually delineated the bands. The number of distorted bands was divided by almost 16 for the synthetic lanes and by 7 for the test dataset of real lanes. This method can be applied effectively to different sample types. It can realign minimal contrast bands and is robust for non-uniform deformations.
Collapse
Affiliation(s)
- Farah Haddad
- Biomedical Signal Processing Unit (UTSB), Lille Catholic University, F-59000 Lille, France;
- Faculty of Medicine and Midwifery (FMM), Lille Catholic Institute (ICL), F-59800 Lille, France; (P.H.); (G.F.)
- Laboratoire d’Informatique Signal et Image de la Côte d’Opale (LISIC), Université du Littoral Côte d’Opale (ULCO), F-62228 Calais, France;
- Correspondence: (F.H.); (S.B.)
| | - Samuel Boudet
- Biomedical Signal Processing Unit (UTSB), Lille Catholic University, F-59000 Lille, France;
- Faculty of Medicine and Midwifery (FMM), Lille Catholic Institute (ICL), F-59800 Lille, France; (P.H.); (G.F.)
- Correspondence: (F.H.); (S.B.)
| | - Laurent Peyrodie
- Biomedical Signal Processing Unit (UTSB), Lille Catholic University, F-59000 Lille, France;
- JUNIA-HEI (Hautes Études d’Ingénieur), F-59000 Lille, France
- Imagerie Multimodale Multiéchelle et Modélisation du Tissu Osseux et articulaire (I3MTO), Université d’Orléans, F-45067 Orléans, France
| | - Nicolas Vandenbroucke
- Laboratoire d’Informatique Signal et Image de la Côte d’Opale (LISIC), Université du Littoral Côte d’Opale (ULCO), F-62228 Calais, France;
| | - Julien Poupart
- Lille Catholic Hospital (GHICL), F-59160 Lomme, France; (J.P.); (V.C.)
| | - Patrick Hautecoeur
- Faculty of Medicine and Midwifery (FMM), Lille Catholic Institute (ICL), F-59800 Lille, France; (P.H.); (G.F.)
- Lille Catholic Hospital (GHICL), F-59160 Lomme, France; (J.P.); (V.C.)
| | - Vincent Chieux
- Lille Catholic Hospital (GHICL), F-59160 Lomme, France; (J.P.); (V.C.)
| | - Gérard Forzy
- Faculty of Medicine and Midwifery (FMM), Lille Catholic Institute (ICL), F-59800 Lille, France; (P.H.); (G.F.)
- Lille Catholic Hospital (GHICL), F-59160 Lomme, France; (J.P.); (V.C.)
| |
Collapse
|
13
|
Kuhlemann A, Beliu G, Janzen D, Petrini EM, Taban D, Helmerich DA, Doose S, Bruno M, Barberis A, Villmann C, Sauer M, Werner C. Genetic Code Expansion and Click-Chemistry Labeling to Visualize GABA-A Receptors by Super-Resolution Microscopy. Front Synaptic Neurosci 2021; 13:727406. [PMID: 34899260 PMCID: PMC8664562 DOI: 10.3389/fnsyn.2021.727406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
Fluorescence labeling of difficult to access protein sites, e.g., in confined compartments, requires small fluorescent labels that can be covalently tethered at well-defined positions with high efficiency. Here, we report site-specific labeling of the extracellular domain of γ-aminobutyric acid type A (GABA-A) receptor subunits by genetic code expansion (GCE) with unnatural amino acids (ncAA) combined with bioorthogonal click-chemistry labeling with tetrazine dyes in HEK-293-T cells and primary cultured neurons. After optimization of GABA-A receptor expression and labeling efficiency, most effective variants were selected for super-resolution microscopy and functionality testing by whole-cell patch clamp. Our results show that GCE with ncAA and bioorthogonal click labeling with small tetrazine dyes represents a versatile method for highly efficient site-specific fluorescence labeling of proteins in a crowded environment, e.g., extracellular protein domains in confined compartments such as the synaptic cleft.
Collapse
Affiliation(s)
- Alexander Kuhlemann
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Würzburg, Germany
| | - Dieter Janzen
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Enrica Maria Petrini
- Neuroscience and Brain Technologies Department, Istituto Italiano Di Tecnologia, Genova, Italy
| | - Danush Taban
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Dominic A Helmerich
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Martina Bruno
- Neuroscience and Brain Technologies Department, Istituto Italiano Di Tecnologia, Genova, Italy
| | - Andrea Barberis
- Neuroscience and Brain Technologies Department, Istituto Italiano Di Tecnologia, Genova, Italy
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| |
Collapse
|
14
|
The effect of beta-amyloid and tau protein aggregations on magnetic susceptibility of anterior hippocampal laminae in Alzheimer's diseases. Neuroimage 2021; 244:118584. [PMID: 34537383 DOI: 10.1016/j.neuroimage.2021.118584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Previous studies have reported the changes of magnetic susceptibility induced by iron deposition in hippocampus of Alzheimer's disease (AD) brains. It is well-known that hippocampus is divided into well-defined laminar architecture, which, however, is difficult to be resolved with in-vivo MRI due to the limited imaging resolution. The present study aims to investigate layer-specific magnetic susceptibility in the hippocampus of AD patients using high-resolution ex-vivo MRI, and elucidate its relationship with beta amyloid (Aβ) and tau protein histology. We performed quantitative susceptibility mapping (QSM) and T2* mapping on postmortem anterior hippocampus samples from four AD, four Primary Age-Related Tauopathy (PART), and three control brains. We manually segmented each sample into seven layers, including four layers in the cornu ammonis1 (CA1) and three layers in the dentate gyrus (DG), and then evaluated AD-related alterations of susceptibility and T2* values and their correlations with Aβ and tau in each hippocampal layer. Specifically, we found (1) layer-specific variations of susceptibility and T2* measurements in all samples; (2) the heterogeneity of susceptibility were higher in all layers of AD patients compared with the age- and gender-matched PART cases while the heterogeneity of T2* values were lower in four layers of CA1; and (3) voxel-wise MRI-histological correlation revealed both susceptibility and T2* values in the stratum molecular (SM) and stratum lacunosum (SL) layers were correlated with the Aβ content in AD, while the T2* values in the stratum radiatum (SR) layer were correlated with the tau content in the PART but not AD. These findings suggest a selective effect of the Aβ- and tau-pathology on the susceptibility and T2* values in the different layers of anterior hippocampus. Particularly, the alterations of magnetic susceptibility in the SM and SL layers may be associated with Aβ aggregation, while those in the SR layermay reflect the age-related tau protein aggregation.
Collapse
|
15
|
Flouri D, Lesnic D, Chrysochou C, Parikh J, Thelwall P, Sheerin N, Kalra PA, Buckley DL, Sourbron SP. Motion correction of free-breathing magnetic resonance renography using model-driven registration. MAGMA (NEW YORK, N.Y.) 2021; 34:805-822. [PMID: 34160718 PMCID: PMC8578117 DOI: 10.1007/s10334-021-00936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Model-driven registration (MDR) is a general approach to remove patient motion in quantitative imaging. In this study, we investigate whether MDR can effectively correct the motion in free-breathing MR renography (MRR). MATERIALS AND METHODS MDR was generalised to linear tracer-kinetic models and implemented using 2D or 3D free-form deformations (FFD) with multi-resolution and gradient descent optimization. MDR was evaluated using a kidney-mimicking digital reference object (DRO) and free-breathing patient data acquired at high temporal resolution in multi-slice 2D (5 patients) and 3D acquisitions (8 patients). Registration accuracy was assessed using comparison to ground truth DRO, calculating the Hausdorff distance (HD) between ground truth masks with segmentations and visual evaluation of dynamic images, signal-time courses and parametric maps (all data). RESULTS DRO data showed that the bias and precision of parameter maps after MDR are indistinguishable from motion-free data. MDR led to reduction in HD (HDunregistered = 9.98 ± 9.76, HDregistered = 1.63 ± 0.49). Visual inspection showed that MDR effectively removed motion effects in the dynamic data, leading to a clear improvement in anatomical delineation on parametric maps and a reduction in motion-induced oscillations on signal-time courses. DISCUSSION MDR provides effective motion correction of MRR in synthetic and patient data. Future work is needed to compare the performance against other more established methods.
Collapse
Affiliation(s)
- Dimitra Flouri
- Department of Applied Mathematics, University of Leeds, Leeds, UK.
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK.
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK.
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Daniel Lesnic
- Department of Applied Mathematics, University of Leeds, Leeds, UK
| | - Constantina Chrysochou
- Department of Renal Medicine, Salford Royal National Health Service Foundation Trust, Salford, UK
| | - Jehill Parikh
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, University of Newcastle, Newcastle upon Tyne, UK
| | - Peter Thelwall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, University of Newcastle, Newcastle upon Tyne, UK
| | - Neil Sheerin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philip A Kalra
- Department of Renal Medicine, Salford Royal National Health Service Foundation Trust, Salford, UK
| | - David L Buckley
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Steven P Sourbron
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Ong JX, Zandi R, Fawzi AA. Early-stage macular telangiectasia type 2 vascular abnormalities are associated with interdigitation zone disruption. PLoS One 2021; 16:e0259811. [PMID: 34767582 PMCID: PMC8589180 DOI: 10.1371/journal.pone.0259811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To investigate the relationship between disruption in different photoreceptor layers and deep capillary plexus (DCP) telangiectasias in eyes with macular telangiectasia type 2 (MacTel). METHODS 35 eyes (21 patients) with MacTel imaged with optical coherence tomography angiography (OCTA) were included. Circumscribed areas of DCP telangiectasia were traced from OCTA slabs and the corresponding spectral-domain OCT (SD-OCT) slabs were used to visualize the photoreceptor layer interdigitation zone (IZ) and ellipsoid zone (EZ). IZ attenuation, IZ loss, and EZ loss were graded by reviewing en face SD-OCT slabs for hypo-reflective areas and confirming their status on cross-sectional views. Total area of photoreceptor disruption and overlap with DCP telangiectasia were evaluated with respect to OCT-based MacTel stage. Longitudinal changes were evaluated in a subset of patients with follow-up imaging. RESULTS Overlap of DCP telangiectasia with IZ attenuation significantly decreased with MacTel severity, while overlap with IZ and EZ loss significantly increased. Overlap with IZ loss peaked in moderate MacTel (Stages 3-5). Longitudinal imaging showed that new EZ loss at 6 months was largely predicted by baseline IZ loss. CONCLUSIONS Worsening MacTel severity is characterized by greater overlap between DCP telangiectasia and zones of increasing severity of photoreceptor disruption, with EZ loss enlarging over time within areas of preexisting IZ disruption. We suggest that IZ disruption may indicate early photoreceptor dysfunction that eventually progresses to EZ loss, with IZ loss being a more reliable metric than IZ attenuation. Additional studies will be necessary to further explore long-term photoreceptor changes and evaluate their relationship with visual function in MacTel.
Collapse
Affiliation(s)
- Janice X. Ong
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Roya Zandi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
17
|
Krishna S, Arrojo E Drigo R, Capitanio JS, Ramachandra R, Ellisman M, Hetzer MW. Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Dev Cell 2021; 56:2952-2965.e9. [PMID: 34715012 DOI: 10.1016/j.devcel.2021.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/28/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
In order to combat molecular damage, most cellular proteins undergo rapid turnover. We have previously identified large nuclear protein assemblies that can persist for years in post-mitotic tissues and are subject to age-related decline. Here, we report that mitochondria can be long lived in the mouse brain and reveal that specific mitochondrial proteins have half-lives longer than the average proteome. These mitochondrial long-lived proteins (mitoLLPs) are core components of the electron transport chain (ETC) and display increased longevity in respiratory supercomplexes. We find that COX7C, a mitoLLP that forms a stable contact site between complexes I and IV, is required for complex IV and supercomplex assembly. Remarkably, even upon depletion of COX7C transcripts, ETC function is maintained for days, effectively uncoupling mitochondrial function from ongoing transcription of its mitoLLPs. Our results suggest that modulating protein longevity within the ETC is critical for mitochondrial proteome maintenance and the robustness of mitochondrial function.
Collapse
Affiliation(s)
- Shefali Krishna
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rafael Arrojo E Drigo
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA; National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Juliana S Capitanio
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Shafique A, Babaie M, Sajadi M, Batten A, Skdar S, Tizhoosh HR. Automatic Multi-Stain Registration of Whole Slide Images in Histopathology. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3622-3625. [PMID: 34892022 DOI: 10.1109/embc46164.2021.9629970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Joint analysis of multiple biomarker images and tissue morphology is important for disease diagnosis, treatment planning and drug development. It requires cross-staining comparison among Whole Slide Images (WSIs) of immune-histochemical and hematoxylin and eosin (H&E) microscopic slides. However, automatic, and fast cross-staining alignment of enormous gigapixel WSIs at single-cell precision is challenging. In addition to morphological deformations introduced during slide preparation, there are large variations in cell appearance and tissue morphology across different staining. In this paper, we propose a two-step automatic feature-based cross-staining WSI alignment to assist localization of even tiny metastatic foci in the assessment of lymph node. Image pairs were aligned allowing for translation, rotation, and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale-invariant image transform (SIFT), followed by the fast sample consensus (FSC) protocol for finding point correspondences and finally aligned the images. The Registration results were evaluated using both visual and quantitative criteria using the Jaccard index. The average Jaccard similarity index of the results produced by the proposed system is 0.942 when compared with the manual registration.
Collapse
|
19
|
Development of a novel detection method for changes in lung conditions during radiotherapy using a temporal subtraction technique. Phys Eng Sci Med 2021; 44:1341-1350. [PMID: 34704221 DOI: 10.1007/s13246-021-01070-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023]
Abstract
We aimed to develop a novel method of detecting changes in lung conditions during radiotherapy using temporal subtraction technique. Twenty patients who underwent radiotherapy were retrospectively assessed by calculating optimal direct similarity error (ODSE) between initial and mid-treatment registered images. Patients were grouped according to region in tumor size and atelectasis for lung of < 20 or ≥ 20 cm3, which analyzed two field regions (1024 × 768 pixels, 512 × 512 pixels). Correlations between ODSE and changes in lung conditions were analyzed based on effect of radiation dose; receiver operating characteristic (ROC) analysis was performed to evaluate whether changes can be detected during treatment period. The ODSE of 1024 × 768 pixels was changed to 1.00 (0.28-3.48) for lung lesion size of < 20 cm3 and 1.86 (0.55-6.58) for the ≥ 20 cm3 lung lesion size. ODSE of 512 × 512 pixels was 1.03 (0.40-2.12) for the region in tumor size and atelectasis of < 20 cm3 and 1.90 (0.39-27.8) for the ≥ 20 cm3 lung lesion size. The region under the curve values from ROC analysis were 0.796 (1024 × 768 pixels) and 0.983 (512 × 512 pixels). A novel method can visually and numerically help to detect changes in lung condition at early treatment stages. Using this method, difference between plan and actual positional relationship for target and risk organs that cannot be predicted at the time of planning can be avoided, ensuring high safety and accuracy in lung radiotherapy.
Collapse
|
20
|
Kobata T, Yamasaki T, Katayama H, Ogawa K. Efficacy of a Nonrigid Image-registration Method in Comparison to Readout-segmented Echo-planar Imaging for Correcting Distortion in Diffusion-weighted Imaging. Magn Reson Med Sci 2021; 20:216-221. [PMID: 32641589 PMCID: PMC8203478 DOI: 10.2463/mrms.tn.2020-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the effectiveness of distortion correction using a nonrigid image registration method in diffusion-weighted imaging, comparing it with readout-segmented echo planar imaging (RS-EPI). Unlike the RS-EPI, the effectiveness of the distortion correction of the nonrigid registration method depended on the slice level, being most accurate at the level of the basal ganglia, lateral ventricle, and centrum semiovale.
Collapse
Affiliation(s)
| | | | | | - Kazuo Ogawa
- Department of Radiology, Kagawa University Hospital
| |
Collapse
|
21
|
Shah KD, Shackleford JA, Kandasamy N, Sharp GC. A generalized framework for analytic regularization of uniform cubic B-spline displacement fields. Biomed Phys Eng Express 2021; 7. [PMID: 33878749 DOI: 10.1088/2057-1976/abf9e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/20/2021] [Indexed: 11/11/2022]
Abstract
Image registration is an inherently ill-posed problem that lacks the constraints needed for a unique mapping between voxels of the two images being registered. As such, one must regularize the registration to achieve physically meaningful transforms. The regularization penalty is usually a function of derivatives of the displacement-vector field and can be calculated either analytically or numerically. The numerical approach, however, is computationally expensive depending on the image size, and therefore a computationally efficient analytical framework has been developed. Using cubic B-splines as the registration transform, we develop a generalized mathematical framework that supports five distinct regularizers: diffusion, curvature, linear elastic, third-order, and total displacement. We validate our approach by comparing each with its numerical counterpart in terms of accuracy. We also provide benchmarking results showing that the analytic solutions run significantly faster-up to two orders of magnitude-than finite differencing based numerical implementations.
Collapse
Affiliation(s)
- Keyur D Shah
- Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA 19104, United States of America
| | - James A Shackleford
- Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA 19104, United States of America
| | - Nagarajan Kandasamy
- Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA 19104, United States of America
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| |
Collapse
|
22
|
Yoon S, Jung HJ, Knowles JC, Lee HH. Digital image correlation in dental materials and related research: A review. Dent Mater 2021; 37:758-771. [PMID: 33715864 DOI: 10.1016/j.dental.2021.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Digital image correlation (DIC) is a non-contact image processing technique for full-field strain measurement. Although DIC has been widely used in engineering and biomechanical fields, it is in the spotlight only recently in dental materials. Therefore, the purpose of this review paper is introducing the working principle of the DIC technique with some modifications and providing further potential applications in various dental materials and related fields. METHODS The accuracy of the algorithm depending on the environmental characteristics of the DIC technique, as well as the advantages and disadvantages of strain measurement using optical measurements, have been elaborated in dental materials and related fields. Applications to those researches have been classified into the following categories: shrinkage behavior of light-cured resin composite, resin-tooth interface, mechanical properties of tooth structure, crack extension and elastic properties of dental materials, and deformation of dental restoration and prosthesis. This classification and discussion were performed using literature survey and review based on numerous papers in the international journals published over the past 20 years. The future directions for predicting the precise deformation of dental materials under various environments, as well as limitations of the DIC technique, was presented in this review. RESULTS The DIC technique was demonstrated as a more effective tool to measure full-field polymerization shrinkage of composite resin, even in a simulated clinical condition over the existing methods. Moreover, the DIC combined with other technologies can be useful to evaluate the mechanical behavior of material-tooth interface, dentine structure and restorative and prosthetic materials with high accuracy. Three-dimensional DIC using two cameras extended the measurement range in-plane to out-of-plane, enabling measure of the strain directly on the surface of dental restorations or prosthesis. SIGNIFICANCE DIC technique is a potential tool for measuring and predicting the full-field deformation/strain of dental materials and actual prostheses in diverse clinical conditions. The versatility of DIC can replace the existing complex sensor devices in those studies.
Collapse
Affiliation(s)
- Sungsik Yoon
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyung-Jo Jung
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - J C Knowles
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandaero, Cheonan, Chungnam 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan, Chungnam 31116, Republic of Korea; Institute of Tissue Regeneration Engineering, Dankook University, 119 Dandaero, Cheonan, Chungnam 31116, Republic of Korea.
| |
Collapse
|
23
|
Borovec J, Kybic J, Arganda-Carreras I, Sorokin DV, Bueno G, Khvostikov AV, Bakas S, Chang EIC, Heldmann S, Kartasalo K, Latonen L, Lotz J, Noga M, Pati S, Punithakumar K, Ruusuvuori P, Skalski A, Tahmasebi N, Valkonen M, Venet L, Wang Y, Weiss N, Wodzinski M, Xiang Y, Xu Y, Yan Y, Yushkevich P, Zhao S, Munoz-Barrutia A. ANHIR: Automatic Non-Rigid Histological Image Registration Challenge. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3042-3052. [PMID: 32275587 PMCID: PMC7584382 DOI: 10.1109/tmi.2020.2986331] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Automatic Non-rigid Histological Image Registration (ANHIR) challenge was organized to compare the performance of image registration algorithms on several kinds of microscopy histology images in a fair and independent manner. We have assembled 8 datasets, containing 355 images with 18 different stains, resulting in 481 image pairs to be registered. Registration accuracy was evaluated using manually placed landmarks. In total, 256 teams registered for the challenge, 10 submitted the results, and 6 participated in the workshop. Here, we present the results of 7 well-performing methods from the challenge together with 6 well-known existing methods. The best methods used coarse but robust initial alignment, followed by non-rigid registration, used multiresolution, and were carefully tuned for the data at hand. They outperformed off-the-shelf methods, mostly by being more robust. The best methods could successfully register over 98% of all landmarks and their mean landmark registration accuracy (TRE) was 0.44% of the image diagonal. The challenge remains open to submissions and all images are available for download.
Collapse
|
24
|
Steib E, Laporte MH, Gambarotto D, Olieric N, Zheng C, Borgers S, Olieric V, Le Guennec M, Koll F, Tassin AM, Steinmetz MO, Guichard P, Hamel V. WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity. eLife 2020; 9:57205. [PMID: 32946374 PMCID: PMC7500955 DOI: 10.7554/elife.57205] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
Centrioles are characterized by a nine-fold arrangement of microtubule triplets held together by an inner protein scaffold. These structurally robust organelles experience strenuous cellular processes such as cell division or ciliary beating while performing their function. However, the molecular mechanisms underlying the stability of microtubule triplets, as well as centriole architectural integrity remain poorly understood. Here, using ultrastructure expansion microscopy for nanoscale protein mapping, we reveal that POC16 and its human homolog WDR90 are components of the microtubule wall along the central core region of the centriole. We further found that WDR90 is an evolutionary microtubule associated protein. Finally, we demonstrate that WDR90 depletion impairs the localization of inner scaffold components, leading to centriole structural abnormalities in human cells. Altogether, this work highlights that WDR90 is an evolutionary conserved molecular player participating in centriole architecture integrity. Cells are made up of compartments called organelles that perform specific roles. A cylindrical organelle called the centriole is important for a number of cellular processes, ranging from cell division to movement and signaling. Each centriole contains nine blades made up of protein filaments called microtubules, which link together to form a cylinder. This well-known structure can be found in a variety of different species. Yet, it is unclear how centrioles are able to maintain this stable architecture whilst carrying out their various different cell roles. In early 2020, a group of researchers discovered a scaffold protein at the center of centrioles that helps keep the microtubule blades stable. Further investigation suggested that another protein called WDR90 may also help centrioles sustain their cylindrical shape. However, the exact role of this protein was poorly understood. To determine the role of WDR90, Steib et al. – including many of the researchers involved in the 2020 study – used a method called Ultrastructure Expansion Microscopy to precisely locate the WDR90 protein in centrioles. This revealed that WDR90 is located on the microtubule wall of centrioles in green algae and human cells grown in the lab. Further experiments showed that the protein binds directly to microtubules and that removing WDR90 from human cells causes centrioles to lose their scaffold proteins and develop structural defects. This investigation provides fundamental insights into the structure and stability of centrioles. It shows that single proteins are key components in supporting the structural integrity of organelles and shaping their overall architecture. Furthermore, these findings demonstrate how ultrastructure expansion microscopy can be used to determine the role of individual proteins within a complex structure.
Collapse
Affiliation(s)
- Emmanuelle Steib
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland
| | - Marine H Laporte
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland
| | - Davide Gambarotto
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Celine Zheng
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Susanne Borgers
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - Maeva Le Guennec
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland.,Biozentrum, University of Basel, Basel, Switzerland
| | - Paul Guichard
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland
| |
Collapse
|
25
|
Sorzano COS, de Isidro-Gómez F, Fernández-Giménez E, Herreros D, Marco S, Carazo JM, Messaoudi C. Improvements on marker-free images alignment for electron tomography. J Struct Biol X 2020; 4:100037. [PMID: 33024955 PMCID: PMC7527754 DOI: 10.1016/j.yjsbx.2020.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Electron tomography is a technique to obtain three-dimensional structural information of samples. However, the technique is limited by shifts occurring during acquisition that need to be corrected before the reconstruction process. In 2009, we proposed an approach for post-acquisition alignment of tilt series images. This approach was marker-free, based on patch tracking and integrated in free software. Here, we present improvements to the method to make it more reliable, stable and accurate. In addition, we modified the image formation model underlying the alignment procedure to include different deformations occurring during acquisition. We propose a new way to correct these computed deformations to obtain reconstructions with reduced artifacts. The new approach has demonstrated to improve the quality of the final 3D reconstruction, giving access to better defined structures for different transmission electron tomography methods: resin embedded STEM-tomography and cryo-TEM tomography. The method is freely available in TomoJ software.
Collapse
Affiliation(s)
- C O S Sorzano
- Biocomputing Unit, National Center for Biotechnology (CSIC), c/Darwin, 3, Campus Universidad Aut'onoma, 28049 Cantoblanco, Madrid, Spain
| | - F de Isidro-Gómez
- Biocomputing Unit, National Center for Biotechnology (CSIC), c/Darwin, 3, Campus Universidad Aut'onoma, 28049 Cantoblanco, Madrid, Spain
| | - E Fernández-Giménez
- Biocomputing Unit, National Center for Biotechnology (CSIC), c/Darwin, 3, Campus Universidad Aut'onoma, 28049 Cantoblanco, Madrid, Spain
| | - D Herreros
- Biocomputing Unit, National Center for Biotechnology (CSIC), c/Darwin, 3, Campus Universidad Aut'onoma, 28049 Cantoblanco, Madrid, Spain
| | - S Marco
- Institite Curie, 110 Avenue de Bures, 91440 Bures-sur-Yvette, France
| | - J M Carazo
- Biocomputing Unit, National Center for Biotechnology (CSIC), c/Darwin, 3, Campus Universidad Aut'onoma, 28049 Cantoblanco, Madrid, Spain
| | - C Messaoudi
- Institite Curie, 110 Avenue de Bures, 91440 Bures-sur-Yvette, France
| |
Collapse
|
26
|
Kwan CC, Lee HE, Schwartz G, Fawzi AA. Acute Hyperglycemia Reverses Neurovascular Coupling During Dark to Light Adaptation in Healthy Subjects on Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2020; 61:38. [PMID: 32340033 PMCID: PMC7401911 DOI: 10.1167/iovs.61.4.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose To test the hypothesis that hyperglycemia perturbs neurovascular\ coupling and compromises retinal vascular response during transition from dark to light in healthy subjects using optical coherence tomography angiography (OCTA). Methods Ten eyes of 10 healthy subjects were tested, first during fasting and then after receiving a 75-g oral glucose solution. In both sessions, OCTA imaging was done in the dark-adapted state and at 50 seconds, 2 minutes, 5 minutes, and 15 minutes of ambient light. Parafoveal vessel density (VD) and adjusted flow index (AFI) were calculated for the superficial capillary plexus (SCP), middle capillary plexus (MCP), and deep capillary plexus (DCP), and vessel length density was calculated for the SCP. These measurements were compared among conditions after adjusting for age, refractive error, and OCTA scan quality. Results Hyperglycemia leads to a complete reversal of dark/light adaptation trends in VD and AFI in all layers of the inner retina. In the dark, there is significantly decreased VD in the DCP in hyperglycemia. With a transition to light in hyperglycemia, we observed decreased VD in the SCP, increased vessel density in the MCP and DCP, and decreased AFI in all three layers. Conclusions Our results show that hyperglycemia significantly disrupts neurovascular coupling in healthy eyes, with potential metabolic deficits affecting photoreceptor oxygen demands during dark adaptation and the inner retina during light exposure. In pathological states, such as diabetic retinopathy, where the vasculature is already attenuated, retinal neurons may be exquisitely vulnerable to intermittent hyperglycemic challenge, which should be the focus of future studies.
Collapse
|
27
|
Leung HM, Wang ML, Osman H, Abouei E, MacAulay C, Follen M, Gardecki JA, Tearney GJ. Imaging intracellular motion with dynamic micro-optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:2768-2778. [PMID: 32499959 PMCID: PMC7249806 DOI: 10.1364/boe.390782] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 05/12/2023]
Abstract
This paper describes a new technology that uses 1-µm-resolution optical coherence tomography (µOCT) to obtain cross-sectional images of intracellular dynamics with dramatically enhanced image contrast. This so-called dynamic µOCT (d-µOCT) is accomplished by acquiring a time series of µOCT images and conducting power frequency analysis of the temporal fluctuations that arise from intracellular motion on a pixel-per-pixel basis. Here, we demonstrate d-µOCT imaging of freshly excised human esophageal and cervical biopsy samples. Depth-resolved d-µOCT images of intact tissue show that intracellular dynamics provides a new contrast mechanism for µOCT that highlights subcellular morphology and activity in epithelial surface maturation patterns.
Collapse
Affiliation(s)
- Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Michelle L. Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Hany Osman
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Elham Abouei
- University of British Columbia, Department of Physics and Astronomy, Vancouver, BC V6 T 1Z1, Canada
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, BC V5Z 1L3, Canada
| | - Calum MacAulay
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, BC V5Z 1L3, Canada
| | - Michele Follen
- NYC Health + Hospitals/Kings County, Cancer Prevention and Cancer Services for Kings County Hospital, 451 Clarkson Avenue, C-Building, Suite 4104, Brooklyn, NY 11203, USA
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
- Harvard-MIT Division of Heath Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
28
|
Port F, Strein C, Stricker M, Rauscher B, Heigwer F, Zhou J, Beyersdörffer C, Frei J, Hess A, Kern K, Lange L, Langner N, Malamud R, Pavlović B, Rädecke K, Schmitt L, Voos L, Valentini E, Boutros M. A large-scale resource for tissue-specific CRISPR mutagenesis in Drosophila. eLife 2020; 9:e53865. [PMID: 32053108 PMCID: PMC7062466 DOI: 10.7554/elife.53865] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic screens are powerful tools for the functional annotation of genomes. In the context of multicellular organisms, interrogation of gene function is greatly facilitated by methods that allow spatial and temporal control of gene abrogation. Here, we describe a large-scale transgenic short guide (sg) RNA library for efficient CRISPR-based disruption of specific target genes in a constitutive or conditional manner. The library consists currently of more than 2600 plasmids and 1700 fly lines with a focus on targeting kinases, phosphatases and transcription factors, each expressing two sgRNAs under control of the Gal4/UAS system. We show that conditional CRISPR mutagenesis is robust across many target genes and can be efficiently employed in various somatic tissues, as well as the germline. In order to prevent artefacts commonly associated with excessive amounts of Cas9 protein, we have developed a series of novel UAS-Cas9 transgenes, which allow fine tuning of Cas9 expression to achieve high gene editing activity without detectable toxicity. Functional assays, as well as direct sequencing of genomic sgRNA target sites, indicates that the vast majority of transgenic sgRNA lines mediate efficient gene disruption. Furthermore, we conducted the so far largest fully transgenic CRISPR screen in any metazoan organism, which further supported the high efficiency and accuracy of our library and revealed many so far uncharacterized genes essential for development.
Collapse
Affiliation(s)
- Fillip Port
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Claudia Strein
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Mona Stricker
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Benedikt Rauscher
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Florian Heigwer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Jun Zhou
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Celine Beyersdörffer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Jana Frei
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Amy Hess
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Katharina Kern
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Laura Lange
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Nora Langner
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Roberta Malamud
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Bojana Pavlović
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Kristin Rädecke
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Lukas Schmitt
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Lukas Voos
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Erica Valentini
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
29
|
Berthoud VM, Gao J, Minogue PJ, Jara O, Mathias RT, Beyer EC. The Connexin50D47A Mutant Causes Cataracts by Calcium Precipitation. Invest Ophthalmol Vis Sci 2019; 60:2336-2346. [PMID: 31117126 PMCID: PMC6534014 DOI: 10.1167/iovs.18-26459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose Mutations in connexin50 (Cx50) and connexin46 (Cx46) cause cataracts. Because the expression of Cx46fs380 leads to decreased gap junctional coupling and formation of calcium precipitates, we studied Cx50D47A lenses to test whether Cx50 mutants also cause cataracts due to calcium precipitation. Methods Connexin levels were determined by immunoblotting. Gap junctional coupling conductance was calculated from intracellular impedance studies of intact lenses. Intracellular hydrostatic pressure was measured using a microelectrode/manometer system. Intracellular free calcium ion concentrations ([Ca2+]i) were measured using Fura-2 and fluorescence imaging. Calcium precipitation was assessed by Alizarin red staining and compared to the distribution of opacities in darkfield images. Results In Cx50D47A lenses, Cx50 levels were 11% (heterozygotes) and 1.2% (homozygotes), and Cx46 levels were 52% (heterozygotes) and 30% (homozygotes) when compared to wild-type at 2.5 months. Gap junctional coupling in differentiating fibers of Cx50D47A lenses was 49% (heterozygotes) and 29% (homozygotes), and in mature fibers, it was 24% (heterozygotes) and 4% (homozygotes) compared to wild-type lenses. Hydrostatic pressure was significantly increased in Cx50D47A lenses. [Ca2+]i was significantly increased in Cx50D47A lenses. Alizarin red-stained calcium precipitates were present in homozygous Cx50D47A lenses with a similar distribution to the cataracts. Conclusions Cx50D47A expression altered the lens internal circulation by decreasing connexin levels and gap junctional coupling. Reduced water and ion outflow through gap junctions increased the gradients of intracellular hydrostatic pressure and concentrations of free calcium ions. In these lenses, calcium ions accumulated, precipitated, and formed cataracts. These results suggest that mutant lens fiber connexins lead to calcium precipitates, which may cause cataracts.
Collapse
Affiliation(s)
- Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| | - Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | - Peter J Minogue
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| | - Oscar Jara
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| | - Richard T Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
30
|
Space Independent Image Registration Using Curve-Based Method with Combination of Multiple Deformable Vector Fields. Symmetry (Basel) 2019. [DOI: 10.3390/sym11101210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper proposes a novel curve-based or edge-based image registration technique that utilizes the curve transformation function and Gaussian function. It enables deformable image registration between images in different spaces, e.g., different color spaces or different medical image modalities. In particular, piecewise polynomial fitting is used to fit a curve and convert it to the global cubic B-spline control points. The transformation between the curves in the reference and source images are performed by using these control points. The image area is segmented with respect to the reference curve for the moving pixels. The Gaussian function, which is symmetric about the coordinates of the points of the reference curve, was used to improve the continuity in the intra- and inter-segmented areas. The overall result on curve transformation by means of the Hausdroff distance was 5.820 ± 1.127 pixels on average on several 512 × 512 synthetic images. The proposed method was compared with an ImageJ plugin, namely bUnwarpJ, and a software suite for deformable image registration and adaptive radiotherapy research, namely DIRART, to evaluate the image registration performance. The experimental result shows that the proposed method yielded better image registration performance than its counterparts. On average, the proposed method could reduce the root mean square error from 2970.66 before registration to 1677.94 after registration and can increase the normalized cross-correlation coefficient from 91.87% before registration to 97.40% after registration.
Collapse
|
31
|
Dillingham CM, Milczarek MM, Perry JC, Frost BE, Parker GD, Assaf Y, Sengpiel F, O'Mara SM, Vann SD. Mammillothalamic Disconnection Alters Hippocampocortical Oscillatory Activity and Microstructure: Implications for Diencephalic Amnesia. J Neurosci 2019; 39:6696-6713. [PMID: 31235646 PMCID: PMC6703878 DOI: 10.1523/jneurosci.0827-19.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/13/2023] Open
Abstract
Diencephalic amnesia can be as debilitating as the more commonly known temporal lobe amnesia, yet the precise contribution of diencephalic structures to memory processes remains elusive. Across four cohorts of male rats, we used discrete lesions of the mammillothalamic tract to model aspects of diencephalic amnesia and assessed the impact of these lesions on multiple measures of activity and plasticity within the hippocampus and retrosplenial cortex. Lesions of the mammillothalamic tract had widespread indirect effects on hippocampocortical oscillatory activity within both theta and gamma bands. Both within-region oscillatory activity and cross-regional synchrony were altered. The network changes were state-dependent, displaying different profiles during locomotion and paradoxical sleep. Consistent with the associations between oscillatory activity and plasticity, complementary analyses using several convergent approaches revealed microstructural changes, which appeared to reflect a suppression of learning-induced plasticity in lesioned animals. Together, these combined findings suggest a mechanism by which damage to the medial diencephalon can impact upon learning and memory processes, highlighting an important role for the mammillary bodies in the coordination of hippocampocortical activity.SIGNIFICANCE STATEMENT Information flow within the Papez circuit is critical to memory. Damage to ascending mammillothalamic projections has consistently been linked to amnesia in humans and spatial memory deficits in animal models. Here we report on the changes in hippocampocortical oscillatory dynamics that result from chronic lesions of the mammillothalamic tract and demonstrate, for the first time, that the mammillary bodies, independently of the supramammillary region, contribute to frequency modulation of hippocampocortical theta oscillations. Consistent with the associations between oscillatory activity and plasticity, the lesions also result in a suppression of learning-induced plasticity. Together, these data support new functional models whereby mammillary bodies are important for coordinating hippocampocortical activity rather than simply being a relay of hippocampal information as previously assumed.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Michal M Milczarek
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - James C Perry
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Bethany E Frost
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Greg D Parker
- EMRIC, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Yaniv Assaf
- George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801, and
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom,
| |
Collapse
|
32
|
Katsamenis OL, Olding M, Warner JA, Chatelet DS, Jones MG, Sgalla G, Smit B, Larkin OJ, Haig I, Richeldi L, Sinclair I, Lackie PM, Schneider P. X-ray Micro-Computed Tomography for Nondestructive Three-Dimensional (3D) X-ray Histology. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1608-1620. [PMID: 31125553 PMCID: PMC6680277 DOI: 10.1016/j.ajpath.2019.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
Historically, micro-computed tomography (μCT) has been considered unsuitable for histologic analysis of unstained formalin-fixed, paraffin-embedded soft tissue biopsy specimens because of a lack of image contrast between the tissue and the paraffin. However, we recently demonstrated that μCT can successfully resolve microstructural detail in routinely prepared tissue specimens. Herein, we illustrate how μCT imaging of standard formalin-fixed, paraffin-embedded biopsy specimens can be seamlessly integrated into conventional histology workflows, enabling nondestructive three-dimensional (3D) X-ray histology, the use and benefits of which we showcase for the exemplar of human lung biopsy specimens. This technology advancement was achieved through manufacturing a first-of-kind μCT scanner for X-ray histology and developing optimized imaging protocols, which do not require any additional sample preparation. 3D X-ray histology allows for nondestructive 3D imaging of tissue microstructure, resolving structural connectivity and heterogeneity of complex tissue networks, such as the vascular network or the respiratory tract. We also demonstrate that 3D X-ray histology can yield consistent and reproducible image quality, enabling quantitative assessment of a tissue's 3D microstructures, which is inaccessible to conventional two-dimensional histology. Being nondestructive, the technique does not interfere with histology workflows, permitting subsequent tissue characterization by means of conventional light microscopy-based histology, immunohistochemistry, and immunofluorescence. 3D X-ray histology can be readily applied to a plethora of archival materials, yielding unprecedented opportunities in diagnosis and research of disease.
Collapse
Affiliation(s)
- Orestis L Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom.
| | - Michael Olding
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jane A Warner
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - David S Chatelet
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark G Jones
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Giacomo Sgalla
- National Institute for Health Research Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Bennie Smit
- Nikon X-Tek Systems Ltd., Tring, United Kingdom
| | | | - Ian Haig
- Nikon X-Tek Systems Ltd., Tring, United Kingdom
| | - Luca Richeldi
- National Institute for Health Research Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Ian Sinclair
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom; Engineering Materials Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Peter M Lackie
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philipp Schneider
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
33
|
Nesper PL, Lee HE, Fayed AE, Schwartz GW, Yu F, Fawzi AA. Hemodynamic Response of the Three Macular Capillary Plexuses in Dark Adaptation and Flicker Stimulation Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2019; 60:694-703. [PMID: 30786274 PMCID: PMC6383834 DOI: 10.1167/iovs.18-25478] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose To assess retinal microvascular reactivity during dark adaptation and the transition to ambient light and after flicker stimulation using optical coherence tomography angiography (OCTA). Methods Fifteen eyes of 15 healthy participants were dark adapted for 45 minutes followed by OCTA imaging in the dark-adapted state. After 5 minutes of normal lighting, subjects underwent OCTA imaging. Participants were then subjected to a flashing light-emitting diode (LED) light and repeat OCTA. Parafoveal vessel density and adjusted flow index (AFI) were calculated for superficial (SCP), middle (MCP), and deep capillary plexuses (DCP), and then compared between conditions after adjusting for age, refractive error, and scan quality. SCP vessel length density (VLD) was also evaluated. Between-condition capillary images were aligned and subtracted to identify differences. We then analyzed images from 10 healthy subjects during the transition from dark adaptation to ambient light. Results SCP vessel density was significantly higher while SCP VLD was significantly lower during ambient light and flicker compared to dark adaptation. There was a significant positive mean value for DCP “flicker minus dark or light,” suggesting more visible vessels during flicker due to changes in flow, dilation, or vessel recruitment. We found a significant, transient increase in SCP and decrease in both MCP and DCP vessel density during the transition from dark to light. Conclusions We show evidence suggesting constriction of deeper vessels and dilation of large SCP vessels during the transition from dark to light. This contrasts to redistribution of blood flow to deeper layers during dark adaptation and flicker stimulation.
Collapse
Affiliation(s)
- Peter L Nesper
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Hee Eun Lee
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Alaa E Fayed
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States.,Department of Ophthalmology, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, Illinois, United States
| | - Fei Yu
- Department of Biostatistics, Fielding School of Public Health, University of California-Los Angeles, Los Angeles, California, United States
| | - Amani A Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
34
|
Superresolution microscopy reveals distinct localisation of full length IRSp53 and its I-BAR domain protein within filopodia. Sci Rep 2019; 9:2524. [PMID: 30792430 PMCID: PMC6385187 DOI: 10.1038/s41598-019-38851-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022] Open
Abstract
Superresolution microscopy offers the advantage of imaging biological structures within cells at the nano-scale. Here we apply two superresolution microscopy techniques, specifically 3D structured illumination microscopy (3D-SIM) and direct stochastic optical reconstruction microscopy (dSTORM), a type of single molecule localisation microscopy, to localise IRSp53 protein and its I-BAR domain in relation to F-actin within filopodia. IRSp53 generates dynamic (extending and retracting) filopodia 300 nm wide with a distinct gap between IRSp53 and F-actin. By contrast, protrusions induced by the I-BAR domain alone are non-dynamic measuring between 100–200 nm in width and exhibit a comparatively closer localisation of the I-BAR domain with the F-actin. The data suggest that IRSp53 membrane localisation is spatially segregated to the lateral edges of filopodia, in contrast to the I-BAR domain is uniformly distributed throughout the membranes of protrusions. Modeling of fluorescence recovery after photobleaching (FRAP) data suggests that a greater proportion of I-BAR domain is associated with membranes when compared to full length IRSp53. The significance of this new data relates to the role filopodia play in cell migration and its importance to cancer.
Collapse
|
35
|
Arnold TR, Shawky JH, Stephenson RE, Dinshaw KM, Higashi T, Huq F, Davidson LA, Miller AL. Anillin regulates epithelial cell mechanics by structuring the medial-apical actomyosin network. eLife 2019; 8:39065. [PMID: 30702429 PMCID: PMC6424563 DOI: 10.7554/elife.39065] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular forces sculpt organisms during development, while misregulation of cellular mechanics can promote disease. Here, we investigate how the actomyosin scaffold protein anillin contributes to epithelial mechanics in Xenopus laevis embryos. Increased mechanosensitive recruitment of vinculin to cell-cell junctions when anillin is overexpressed suggested that anillin promotes junctional tension. However, junctional laser ablation unexpectedly showed that junctions recoil faster when anillin is depleted and slower when anillin is overexpressed. Unifying these findings, we demonstrate that anillin regulates medial-apical actomyosin. Medial-apical laser ablation supports the conclusion that that tensile forces are stored across the apical surface of epithelial cells, and anillin promotes the tensile forces stored in this network. Finally, we show that anillin's effects on cellular mechanics impact tissue-wide mechanics. These results reveal anillin as a key regulator of epithelial mechanics and lay the groundwork for future studies on how anillin may contribute to mechanical events in development and disease.
Collapse
Affiliation(s)
- Torey R Arnold
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Joseph H Shawky
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, United States.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
| | - Rachel E Stephenson
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Kayla M Dinshaw
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Tomohito Higashi
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Farah Huq
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Lance A Davidson
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, United States.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
| | - Ann L Miller
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
36
|
Baran P, Mayo S, McCormack M, Pacile S, Tromba G, Dullin C, Zanconati F, Arfelli F, Dreossi D, Fox J, Prodanovic Z, Cholewa M, Quiney H, Dimmock M, Nesterets Y, Thompson D, Brennan P, Gureyev T. High-Resolution X-Ray Phase-Contrast 3-D Imaging of Breast Tissue Specimens as a Possible Adjunct to Histopathology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2642-2650. [PMID: 29994112 DOI: 10.1109/tmi.2018.2845905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Histopathological analysis is the current gold standard in breast cancer diagnosis and management, however, as imaging technology improves, the amount of potential diagnostic information that may be demonstrable radiologically should also increase. We aimed to evaluate the potential clinical usefulness of 3-D phase-contrast micro-computed tomography (micro-CT) imaging at high spatial resolutions as an adjunct to conventional histological microscopy. Ten breast tissue specimens, 2 mm in diameter, were scanned at the SYRMEP beamline of the Elettra Synchrotron using the propagation-based phase-contrast micro-tomography method. We obtained pixel size images, which were analyzed and compared with corresponding histological sections examined under light microscopy. To evaluate the effect of spatial resolution on breast cancer diagnosis, scans with four different pixel sizes were also performed. Our comparative analysis revealed that high-resolution images can enable, at a near-histological level, detailed architectural assessment of tissue that may permit increased breast cancer diagnostic sensitivity and specificity when compared with current imaging practices. The potential clinical applications of this method are also discussed.
Collapse
|
37
|
Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Borrelli E, Sadda SR. Multiple enface image averaging for enhanced optical coherence tomography angiography imaging. Acta Ophthalmol 2018; 96:e820-e827. [PMID: 29855147 DOI: 10.1111/aos.13740] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/27/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE To investigate the effect of multiple enface image averaging on image quality of the optical coherence tomography angiography (OCTA). METHODS Twenty-one normal volunteers were enrolled in this study. For each subject, one eye was imaged with 3 × 3 mm scan protocol, and another eye was imaged with the 6 × 6 mm scan protocol centred on the fovea using the ZEISS Angioplex™ spectral-domain OCTA device. Eyes were repeatedly imaged to obtain nine OCTA cube scan sets, and nine superficial capillary plexus (SCP) and deep capillary plexus (DCP) were individually averaged after registration. RESULTS Eighteen eyes with a 3 × 3 mm scan field and 14 eyes with a 6 × 6 mm scan field were studied. Averaged images showed more continuous vessels and less background noise in both the SCP and the DCP as the number of frames used for averaging increased, with both 3 × 3 and 6 × 6 mm scan protocols. The intensity histogram of the vessels dramatically changed after averaging. Contrast-to-noise ratio (CNR) and subjectively assessed image quality scores also increased as the number of frames used for averaging increased in all image types. However, the additional benefit in quality diminished when averaging more than five frames. Averaging only three frames achieved significant improvement in CNR and the score assigned by certified grades. CONCLUSION Use of multiple image averaging in OCTA enface images was found to be both objectively and subjectively effective for enhancing image quality. These findings may of value for developing optimal OCTA imaging protocols for future studies.
Collapse
Affiliation(s)
- Akihito Uji
- Doheny Image Reading Center; Doheny Eye Institute; Los Angeles CA USA
- Department of Ophthalmology; David Geffen School of Medicine at the University of California, Los Angeles; Los Angeles CA USA
| | - Siva Balasubramanian
- Doheny Image Reading Center; Doheny Eye Institute; Los Angeles CA USA
- Department of Ophthalmology; David Geffen School of Medicine at the University of California, Los Angeles; Los Angeles CA USA
| | - Jianqin Lei
- Doheny Image Reading Center; Doheny Eye Institute; Los Angeles CA USA
- Department of Ophthalmology; David Geffen School of Medicine at the University of California, Los Angeles; Los Angeles CA USA
| | - Elmira Baghdasaryan
- Doheny Image Reading Center; Doheny Eye Institute; Los Angeles CA USA
- Department of Ophthalmology; David Geffen School of Medicine at the University of California, Los Angeles; Los Angeles CA USA
| | - Mayss Al-Sheikh
- Doheny Image Reading Center; Doheny Eye Institute; Los Angeles CA USA
- Department of Ophthalmology; David Geffen School of Medicine at the University of California, Los Angeles; Los Angeles CA USA
| | - Enrico Borrelli
- Doheny Image Reading Center; Doheny Eye Institute; Los Angeles CA USA
- Department of Ophthalmology; David Geffen School of Medicine at the University of California, Los Angeles; Los Angeles CA USA
| | - SriniVas R. Sadda
- Doheny Image Reading Center; Doheny Eye Institute; Los Angeles CA USA
- Department of Ophthalmology; David Geffen School of Medicine at the University of California, Los Angeles; Los Angeles CA USA
| |
Collapse
|
38
|
Sorzano C, Vargas J, de la Rosa-Trevín J, Jiménez A, Maluenda D, Melero R, Martínez M, Ramírez-Aportela E, Conesa P, Vilas J, Marabini R, Carazo J. A new algorithm for high-resolution reconstruction of single particles by electron microscopy. J Struct Biol 2018; 204:329-337. [DOI: 10.1016/j.jsb.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/19/2018] [Accepted: 08/04/2018] [Indexed: 01/01/2023]
|
39
|
Lia D, Reyes A, de Melo Campos JTA, Piolot T, Baijer J, Radicella JP, Campalans A. Mitochondrial maintenance under oxidative stress depends on mitochondrially localised α-OGG1. J Cell Sci 2018; 131:jcs.213538. [PMID: 29848661 DOI: 10.1242/jcs.213538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
Accumulation of 8-oxoguanine (8-oxoG) in mitochondrial DNA and mitochondrial dysfunction have been observed in cells deficient for the DNA glycosylase OGG1 when exposed to oxidative stress. In human cells, up to eight mRNAs for OGG1 can be generated by alternative splicing and it is still unclear which of them codes for the protein that ensures the repair of 8-oxoG in mitochondria. Here, we show that the α-OGG1 isoform, considered up to now to be exclusively nuclear, has a functional mitochondrial-targeting sequence and is imported into mitochondria. We analyse the sub-mitochondrial localisation of α-OGG1 with unprecedented resolution and show that this DNA glycosylase is associated with DNA in mitochondrial nucleoids. We show that the presence of α-OGG1 inside mitochondria and its enzymatic activity are required to preserve the mitochondrial network in cells exposed to oxidative stress. Altogether, these results unveil a new role of α-OGG1 in the mitochondria and indicate that the same isoform ensures the repair of 8-oxoG in both nuclear and mitochondrial genomes. The activity of α-OGG1 in mitochondria is sufficient for the recovery of organelle function after oxidative stress.
Collapse
Affiliation(s)
- Debora Lia
- Institut de Biologie François Jacob (IBFJ), Institute of Cellular and Molecular Radiobiology, CEA, UMR967 INSERM, 96265 Fontenay aux Roses, France.,Université Paris Diderot/Université Paris-Sud, 96265 Fontenay aux Roses, France
| | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Julliane Tamara Araújo de Melo Campos
- Institut de Biologie François Jacob (IBFJ), Institute of Cellular and Molecular Radiobiology, CEA, UMR967 INSERM, 96265 Fontenay aux Roses, France.,Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | - Tristan Piolot
- Institut Curie, CNRS UMR3215, INSERM U934, 75248 Paris, France
| | - Jan Baijer
- Institut de Biologie François Jacob (IBFJ), Institute of Cellular and Molecular Radiobiology, CEA, UMR967 INSERM, 96265 Fontenay aux Roses, France.,Université Paris Diderot/Université Paris-Sud, 96265 Fontenay aux Roses, France
| | - J Pablo Radicella
- Institut de Biologie François Jacob (IBFJ), Institute of Cellular and Molecular Radiobiology, CEA, UMR967 INSERM, 96265 Fontenay aux Roses, France.,Université Paris Diderot/Université Paris-Sud, 96265 Fontenay aux Roses, France
| | - Anna Campalans
- Institut de Biologie François Jacob (IBFJ), Institute of Cellular and Molecular Radiobiology, CEA, UMR967 INSERM, 96265 Fontenay aux Roses, France .,Université Paris Diderot/Université Paris-Sud, 96265 Fontenay aux Roses, France
| |
Collapse
|
40
|
Abstract
Multi-colour super-resolution localization microscopy is an efficient technique to study a variety of intracellular processes, including protein-protein interactions. This technique requires specific labels that display transition between fluorescent and non-fluorescent states under given conditions. For the most commonly used label types, photoactivatable fluorescent proteins and organic fluorophores, these conditions are different, making experiments that combine both labels difficult. Here, we demonstrate that changing the standard imaging buffer of thiols/oxygen scavenging system, used for organic fluorophores, to the commercial mounting medium Vectashield increased the number of photons emitted by the fluorescent protein mEos2 and enhanced the photoconversion rate between its green and red forms. In addition, the photophysical properties of organic fluorophores remained unaltered with respect to the standard imaging buffer. The use of Vectashield together with our optimized protocol for correction of sample drift and chromatic aberrations enabled us to perform two-colour 3D super-resolution imaging of the nucleolus and resolve its three compartments.
Collapse
|
41
|
Milczarek MM, Vann SD, Sengpiel F. Spatial Memory Engram in the Mouse Retrosplenial Cortex. Curr Biol 2018; 28:1975-1980.e6. [PMID: 29887312 PMCID: PMC6013279 DOI: 10.1016/j.cub.2018.05.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/19/2023]
Abstract
Memory relies on lasting adaptations of neuronal properties elicited by stimulus-driven plastic changes [1]. The strengthening (and weakening) of synapses results in the establishment of functional ensembles. It is presumed that such ensembles (or engrams) are activated during memory acquisition and re-activated upon memory retrieval. The retrosplenial cortex (RSC) has emerged as a key brain area supporting memory [2], including episodic and topographical memory in humans [3, 4, 5], as well as spatial memory in rodents [6, 7]. Dysgranular RSC is densely connected with dorsal stream visual areas [8] and contains place-like and head-direction cells, making it a prime candidate for integrating navigational information [9]. While previous reports [6, 10] describe the recruitment of RSC ensembles during navigational tasks, such ensembles have never been tracked long enough to provide evidence of stable engrams and have not been related to the retention of long-term memory. Here, we used in vivo 2-photon imaging to analyze patterns of activity of over 6,000 neurons within dysgranular RSC. Eight mice were trained on a spatial memory task. Learning was accompanied by the gradual emergence of a context-specific pattern of neuronal activity over a 3-week period, which was re-instated upon retrieval more than 3 weeks later. The stability of this memory engram was predictive of the degree of forgetting; more stable engrams were associated with better performance. This provides direct evidence for the interdependence of spatial memory consolidation and RSC engram formation. Our results demonstrate the participation of RSC in spatial memory storage at the level of neuronal ensembles. Longitudinal C-fos imaging reveals retrosplenial spatial memory engrams in mice Engrams become progressively more stable with learning and are maintained over weeks The degree of memory retention is related to the stability of the engrams
Collapse
|
42
|
Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon JG, Smith KA, Lankerovich M, Bertagnolli D, Bickley K, Boe AF, Brouner K, Butler S, Caldejon S, Chapin M, Datta S, Dee N, Desta T, Dolbeare T, Dotson N, Ebbert A, Feng D, Feng X, Fisher M, Gee G, Goldy J, Gourley L, Gregor BW, Gu G, Hejazinia N, Hohmann J, Hothi P, Howard R, Joines K, Kriedberg A, Kuan L, Lau C, Lee F, Lee H, Lemon T, Long F, Mastan N, Mott E, Murthy C, Ngo K, Olson E, Reding M, Riley Z, Rosen D, Sandman D, Shapovalova N, Slaughterbeck CR, Sodt A, Stockdale G, Szafer A, Wakeman W, Wohnoutka PE, White SJ, Marsh D, Rostomily RC, Ng L, Dang C, Jones A, Keogh B, Gittleman HR, Barnholtz-Sloan JS, Cimino PJ, Uppin MS, Keene CD, Farrokhi FR, Lathia JD, Berens ME, Iavarone A, Bernard A, Lein E, Phillips JW, Rostad SW, Cobbs C, Hawrylycz MJ, Foltz GD. An anatomic transcriptional atlas of human glioblastoma. Science 2018; 360:660-663. [PMID: 29748285 PMCID: PMC6414061 DOI: 10.1126/science.aaf2666] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ralph B Puchalski
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Nameeta Shah
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA.
- Mazumdar Shaw Center for Translational Research, Bangalore 560099, India
| | - Jeremy Miller
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rachel Dalley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Steve R Nomura
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Jae-Guen Yoon
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - Michael Lankerovich
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - Kris Bickley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Andrew F Boe
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Krissy Brouner
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Mike Chapin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Suvro Datta
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tsega Desta
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Amanda Ebbert
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Feng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Xu Feng
- Radia Inc., Lynnwood, WA 98036, USA
| | - Michael Fisher
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Garrett Gee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Guangyu Gu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nika Hejazinia
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - John Hohmann
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Parvinder Hothi
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Robert Howard
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kevin Joines
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ali Kriedberg
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Leonard Kuan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Chris Lau
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Felix Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hwahyung Lee
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Tracy Lemon
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Fuhui Long
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Naveed Mastan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Erika Mott
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Chantal Murthy
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Eric Olson
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Melissa Reding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Zack Riley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Rosen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Sandman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Andrew Sodt
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Wayne Wakeman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Don Marsh
- White Marsh Forests, Seattle, WA 98119, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Chinh Dang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Allan Jones
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Haley R Gittleman
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Patrick J Cimino
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Megha S Uppin
- Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad 500082, India
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | | | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael E Berens
- TGen, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Charles Cobbs
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - Greg D Foltz
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| |
Collapse
|
43
|
Pichat J, Iglesias JE, Yousry T, Ourselin S, Modat M. A Survey of Methods for 3D Histology Reconstruction. Med Image Anal 2018; 46:73-105. [DOI: 10.1016/j.media.2018.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
|
44
|
|
45
|
Keszei AP, Berkels B, Deserno TM. Survey of Non-Rigid Registration Tools in Medicine. J Digit Imaging 2018; 30:102-116. [PMID: 27730414 DOI: 10.1007/s10278-016-9915-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We catalogue available software solutions for non-rigid image registration to support scientists in selecting suitable tools for specific medical registration purposes. Registration tools were identified using non-systematic search in Pubmed, Web of Science, IEEE Xplore® Digital Library, Google Scholar, and through references in identified sources (n = 22). Exclusions are due to unavailability or inappropriateness. The remaining (n = 18) tools were classified by (i) access and technology, (ii) interfaces and application, (iii) living community, (iv) supported file formats, and (v) types of registration methodologies emphasizing the similarity measures implemented. Out of the 18 tools, (i) 12 are open source, 8 are released under a permissive free license, which imposes the least restrictions on the use and further development of the tool, 8 provide graphical processing unit (GPU) support; (ii) 7 are built on software platforms, 5 were developed for brain image registration; (iii) 6 are under active development but only 3 have had their last update in 2015 or 2016; (iv) 16 support the Analyze format, while 7 file formats can be read with only one of the tools; and (v) 6 provide multiple registration methods and 6 provide landmark-based registration methods. Based on open source, licensing, GPU support, active community, several file formats, algorithms, and similarity measures, the tools Elastics and Plastimatch are chosen for the platform ITK and without platform requirements, respectively. Researchers in medical image analysis already have a large choice of registration tools freely available. However, the most recently published algorithms may not be included in the tools, yet.
Collapse
Affiliation(s)
- András P Keszei
- Department of Medical Informatics, RWTH Aachen University, Pauwelsstr. 30, D-52057, Aachen, Germany.
| | - Benjamin Berkels
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen, Schinkelstrasse 2, Aachen, 52062, Germany
| | - Thomas M Deserno
- Department of Medical Informatics, RWTH Aachen University, Pauwelsstr. 30, D-52057, Aachen, Germany
| |
Collapse
|
46
|
Trépout S, Tassin AM, Marco S, Bastin P. STEM tomography analysis of the trypanosome transition zone. J Struct Biol 2017; 202:51-60. [PMID: 29248600 DOI: 10.1016/j.jsb.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023]
Abstract
The protist Trypanosoma brucei is an emerging model for the study of cilia and flagella. Here, we used scanning transmission electron microscopy (STEM) tomography to describe the structure of the trypanosome transition zone (TZ). At the base of the TZ, nine transition fibres irradiate from the B microtubule of each doublet towards the membrane. The TZ adopts a 9 + 0 structure throughout its length of ∼300 nm and its lumen contains an electron-dense structure. The proximal portion of the TZ has an invariant length of 150 nm and is characterised by a collarette surrounding the membrane and the presence of electron-dense material between the membrane and the doublets. The distal portion exhibits more length variation (from 55 to 235 nm) and contains typical Y-links. STEM analysis revealed a more complex organisation of the Y-links compared to what was reported by conventional transmission electron microscopy. Observation of the very early phase of flagellum assembly demonstrated that the proximal portion and the collarette are assembled early during construction. The presence of the flagella connector that maintains the tip of the new flagellum to the side of the old was confirmed and additional filamentous structures making contact with the membrane of the flagellar pocket were also detected. The structure and potential functions of the TZ in trypanosomes are discussed, as well as its mode of assembly.
Collapse
Affiliation(s)
- Sylvain Trépout
- Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, F-91405 Orsay, France; INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Anne-Marie Tassin
- Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, F-91405 Orsay, France; INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Sergio Marco
- Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, F-91405 Orsay, France; INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
47
|
Farthing NE, Findlay RC, Jikeli JF, Walrad PB, Bees MA, Wilson LG. Simultaneous two-color imaging in digital holographic microscopy. OPTICS EXPRESS 2017; 25:28489-28500. [PMID: 31956278 PMCID: PMC6968951 DOI: 10.1364/oe.25.028489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/14/2017] [Indexed: 05/24/2023]
Abstract
We demonstrate the use of two-color digital holographic microscopy (DHM) for imaging microbiological subjects. The use of two wavelengths significantly reduces artifacts present in the reconstructed data, allowing us to image weakly-scattering objects in close proximity to strongly-scattering objects. We demonstrate this by reconstructing the shape of the flagellum of a unicellular eukaryotic parasite Leishmania mexicana in close proximity to a more strongly-scattering cell body. Our approach also yields a reduction of approximately one third in the axial position uncertainty when tracking the motion of swimming cells at low magnification, which we demonstrate with a sample of Escherichia coli bacteria mixed with polystyrene beads. The two-wavelength system that we describe introduces minimal additional complexity into the optical system, and provides significant benefits.
Collapse
Affiliation(s)
- Nicola E. Farthing
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
| | - Rachel C. Findlay
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Jan F. Jikeli
- Biophysical Imaging, Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Pegine B. Walrad
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Martin A. Bees
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
| | - Laurence G. Wilson
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
48
|
Laslandes M, Salas M, Hitzenberger CK, Pircher M. Increasing the field of view of adaptive optics scanning laser ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2017; 8:4811-4826. [PMID: 29188083 PMCID: PMC5695933 DOI: 10.1364/boe.8.004811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 05/03/2023]
Abstract
An adaptive optics scanning laser ophthalmoscope (AO-SLO) set-up with two deformable mirrors (DM) is presented. It allows high resolution imaging of the retina on a 4°×4° field of view (FoV), considering a 7 mm pupil diameter at the entrance of the eye. Imaging on such a FoV, which is larger compared to classical AO-SLO instruments, is allowed by the use of the two DMs. The first DM is located in a plane that is conjugated to the pupil of the eye and corrects for aberrations that are constant in the FoV. The second DM is conjugated to a plane that is located ∼0.7 mm anterior to the retina. This DM corrects for anisoplanatism effects within the FoV. The control of the DMs is performed by combining the classical AO technique, using a Shack-Hartmann wave-front sensor, and sensorless AO, which uses a criterion characterizing the image quality. The retinas of four healthy volunteers were imaged in-vivo with the developed instrument. In order to assess the performance of the set-up and to demonstrate the benefits of the 2 DM configuration, the acquired images were compared with images taken in conventional conditions, on a smaller FoV and with only one DM. Moreover, an image of a larger patch of the retina was obtained by stitching of 9 images acquired with a 4°×4° FoV, resulting in a total FoV of 10°×10°. Finally, different retinal layers were imaged by shifting the focal plane.
Collapse
|
49
|
Byers RA, Fisher M, Brown NJ, Tozer GM, Matcher SJ. Vascular patterning of subcutaneous mouse fibrosarcomas expressing individual VEGF isoforms can be differentiated using angiographic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:4551-4567. [PMID: 29082084 PMCID: PMC5654799 DOI: 10.1364/boe.8.004551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 05/08/2023]
Abstract
Subcutaneously implanted experimental tumors in mice are commonly used in cancer research. Despite their superficial location, they remain a challenge to image non-invasively at sufficient spatial resolution for microvascular studies. Here we evaluate the capabilities of optical coherence tomography (OCT) angiography for imaging such tumors directly through the murine skin in-vivo. Data sets were collected from mouse tumors derived from fibrosarcoma cells genetically engineered to express only single splice variant isoforms of vascular endothelial growth factor A (VEGF); either VEGF120 or VEGF188 (fs120 and fs188 tumors respectively). Measured vessel diameter was found to be significantly (p<0.001) higher for fs120 tumors (60.7 ± 4.9μm) compared to fs188 tumors (45.0 ± 4.0μm). The fs120 tumors also displayed significantly higher vessel tortuosity, fractal dimension and density. The ability to differentiate between tumor types with OCT suggests that the visible abnormal vasculature is representative of the tumor microcirculation, providing a robust, non-invasive method for observing the longitudinal dynamics of the subcutaneous tumor microcirculation.
Collapse
Affiliation(s)
- Robert A. Byers
- Biophotonics Group, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Matthew Fisher
- Department of Oncology & Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Nicola J. Brown
- Department of Oncology & Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Gillian M. Tozer
- Department of Oncology & Metabolism, The Medical School, University of Sheffield, Sheffield, UK
- GT and SM are Joint Senior Authors
| | - Stephen J. Matcher
- Biophotonics Group, Kroto Research Institute, University of Sheffield, Sheffield, UK
- GT and SM are Joint Senior Authors
| |
Collapse
|
50
|
Minogue PJ, Gao J, Zoltoski RK, Novak LA, Mathias RT, Beyer EC, Berthoud VM. Physiological and Optical Alterations Precede the Appearance of Cataracts in Cx46fs380 Mice. Invest Ophthalmol Vis Sci 2017; 58:4366–4374. [PMID: 28810266 PMCID: PMC5558631 DOI: 10.1167/iovs.17-21684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/18/2017] [Indexed: 01/13/2023] Open
Abstract
Purpose Cx46fs380 mice model a human autosomal-dominant cataract caused by a mutant lens connexin46, Cx46. Lenses from Cx46fs380 mice develop cataracts that are first observed at ∼2 months in homozygotes and at ≥4 months in heterozygotes. The present studies were conducted to determine whether Cx46fs380 mouse lenses exhibited abnormalities before there are detectable cataracts. Methods Lenses from wild-type and Cx46fs380 mice were studied at 1 to 3 months of age. Connexin levels were determined by immunoblotting. Gap junctional coupling was calculated from intracellular impedance studies of intact lenses. Optical quality and refractive properties were assessed by laser scanning and by photographing a 200-mesh electron microscopy grid through wild-type and Cx46fs380 mouse lenses. Results Connexin46 and connexin50 levels were severely reduced in mutant lenses. Gap junctional coupling was decreased in differentiating and mature fibers from Cx46fs380 lenses; in homozygotes, the mature fibers had no detectable coupling. Homozygous lenses were slightly smaller and had reduced focal lengths. Heterozygous and homozygous lenses significantly distorted the electron microscopy grid pattern as compared with wild-type lenses. Conclusions Before cataract appearance, Cx46fs380 lenses have decreased gap junctional conductance (at least in heterozygotes) and alterations in refractive properties (heterozygotes and homozygotes). The decreased focal distance of Cx46fs380 homozygous lenses is consistent with an increase in refractive index due to changes in cellular composition. These data suggest that Cx46fs380 lenses undergo a sequence of changes before the appearance of cataracts: low levels of connexins, decreased gap junction coupling, alterations in lens cell homeostasis, and changes in refractive index.
Collapse
Affiliation(s)
- Peter J. Minogue
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| | - Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | | | - Layne A. Novak
- Illinois College of Optometry, Chicago, Illinois, United States
| | - Richard T. Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| | - Viviana M. Berthoud
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
| |
Collapse
|