1
|
Vaselli M, Gabriels RY, Schmidt I, Sterkenburg AJ, Kats-Ugurlu G, Nagengast WB, de Boer JF. Ex vivo optical coherence tomography combined with near infrared targeted fluorescence: towards in-vivo esophageal cancer detection. BIOMEDICAL OPTICS EXPRESS 2024; 15:5706-5722. [PMID: 39421768 PMCID: PMC11482167 DOI: 10.1364/boe.537828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024]
Abstract
Early detection of (pre)malignant esophageal lesions is critical to improve esophageal cancer morbidity and mortality rates. In patients with advanced esophageal adenocarcinoma (EAC) who undergo neoadjuvant chemoradiation therapy, the efficacy of therapy could be optimized and unnecessary surgery prevented by the reliable assessment of residual tumors after therapy. Optical coherence tomography (OCT) provides structural images at a (sub)-cellular level and has the potential to visualize morphological changes in tissue. However, OCT lacks molecular imaging contrast, a feature that enables the study of biological processes at a cellular level and can enhance esophageal cancer diagnostic accuracy. We combined OCT with near-infrared fluorescence molecular imaging using fluorescently labelled antibodies (immuno-OCT). The main goal of this proof of principle study is to investigate the feasibility of immuno-OCT for esophageal cancer imaging. We aim to assess whether the sensitivity of our immuno-OCT device is sufficient to detect the tracer uptake using an imaging dose (∼100 times smaller than a dose with therapeutic effects) of a targeted fluorescent agent. The feasibility of immuno-OCT was demonstrated ex-vivo on dysplastic lesions resected from Barrett's patients and on esophageal specimens resected from patients with advanced EAC, who were respectively topically and intravenously administrated with the tracer bevacizumab-800CW. The detection sensitivity of our system (0.3 nM) is sufficient to detect increased tracer uptake with micrometer resolution using an imaging dose of labelled antibodies. Moreover, the absence of layered structures that are typical of normal esophageal tissue observed in OCT images of dysplastic/malignant esophageal lesions may further aid their detection. Based on our preliminary results, immuno-OCT could improve the detection of dysplastic esophageal lesions.
Collapse
Affiliation(s)
- Margherita Vaselli
- Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan 1081,, Amsterdam, The Netherlands
| | - Ruben Y. Gabriels
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Iris Schmidt
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrea J. Sterkenburg
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gursah Kats-Ugurlu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes F. de Boer
- Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan 1081,, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Su Y, Huang C, Yang C, Lin Q, Chen Z. Prediction of Survival in Patients With Esophageal Cancer After Immunotherapy Based on Small-Size Follow-Up Data. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:769-782. [PMID: 39464488 PMCID: PMC11505867 DOI: 10.1109/ojemb.2024.3452983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 08/26/2024] [Indexed: 10/29/2024] Open
Abstract
Esophageal cancer (EC) poses a significant health concern, particularly among the elderly, warranting effective treatment strategies. While immunotherapy holds promise in activating the immune response against tumors, its specific impact and associated reactions in EC patients remain uncertain. Precise prognosis prediction becomes crucial for guiding appropriate interventions. This study, based on data from the First Affiliated Hospital of Xiamen University (January 2017 to May 2021), focuses on 113 EC patients undergoing immunotherapy. The primary objectives are to elucidate the effectiveness of immunotherapy in EC treatment and to introduce a stacking ensemble learning method for predicting the survival of EC patients who have undergone immunotherapy, in the context of small sample sizes, addressing the imperative of supporting clinical decision-making for healthcare professionals. Our method incorporates five sub-learners and one meta-learner. Leveraging optimal features from the training dataset, this approach achieved compelling accuracy (89.13%) and AUC (88.83%) in predicting three-year survival status, surpassing conventional techniques. The model proves efficient in guiding clinical decisions, especially in scenarios with small-size follow-up data.
Collapse
Affiliation(s)
- Yuhan Su
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005China
- Shenzhen Research Institute of Xiamen UniversityShenzhen518057China
| | - Chaofeng Huang
- Institute of Artificial IntelligenceXiamen UniversityXiamen361005China
| | - Chen Yang
- First Affiliated Hospital of Xiamen UniversityXiamen361000China
| | - Qin Lin
- First Affiliated Hospital of Xiamen UniversityXiamen361000China
| | - Zhong Chen
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005China
- Institute of Artificial IntelligenceXiamen UniversityXiamen361005China
| |
Collapse
|
3
|
Xu Y, Zhang P, Wang L, Li Y, Luo B, Yu Y, Chen R. Performance evaluation and future prospects of capsule robot localization technology. GEO-SPATIAL INFORMATION SCIENCE 2024:1-31. [DOI: 10.1080/10095020.2024.2354239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 05/07/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Yan Xu
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
| | - Peng Zhang
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
- Institute of Medical Informatics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
| | - You Li
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
- Institute of Medical Informatics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Luo
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
- Institute of Medical Informatics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yue Yu
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
| | - Ruizhi Chen
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
- Institute of Medical Informatics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Park HC, Li D, Liang R, Adrales G, Li X. Multifunctional Ablative Gastrointestinal Imaging Capsule (MAGIC) for Esophagus Surveillance and Interventions. BME FRONTIERS 2024; 5:0041. [PMID: 38577399 PMCID: PMC10993155 DOI: 10.34133/bmef.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Objective and Impact Statement: A clinically viable technology for comprehensive esophagus surveillance and potential treatment is lacking. Here, we report a novel multifunctional ablative gastrointestinal imaging capsule (MAGIC) technology platform to address this clinical need. The MAGIC technology could also facilitate the clinical translation and adoption of the tethered capsule endomicroscopy (TCE) technology. Introduction: Recently developed optical coherence tomography (OCT) TCE technologies have shown a promising potential for surveillance of Barrett's esophagus and esophageal cancer in awake patients without the need for sedation. However, it remains challenging with the current TCE technology for detecting early lesions and clinical adoption due to its suboptimal resolution, imaging contrast, and lack of visual guidance during imaging. Methods: Our technology reported here integrates dual-wavelength OCT imaging (operating at 800 and 1300 nm), an ultracompact endoscope camera, and an ablation laser, aiming to enable comprehensive surveillance, guidance, and potential ablative treatment of the esophagus. Results: The MAGIC has been successfully developed with its multimodality imaging and ablation capabilities demonstrated by imaging swine esophagus ex vivo and in vivo. The 800-nm OCT imaging offers exceptional resolution and contrast for the superficial layers, well suited for detecting subtle changes associated with early neoplasia. The 1300-nm OCT imaging provides deeper penetration, essential for assessing lesion invasion. The built-in miniature camera affords a conventional endoscopic view for assisting capsule deployment and laser ablation. Conclusion: By offering complementary and clinically viable functions in a single device, the reported technology represents an effective solution for endoscopic screening, diagnosis, and potential ablation treatment of the esophagus of a patient in an office setting.
Collapse
Affiliation(s)
- Hyeon-Cheol Park
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dawei Li
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD 21205, USA
- Department of College of Future Technology,
Peking University, Beijing, 100871, China
| | - Rongguang Liang
- College of Optical Sciences,
University of Arizona, Tucson, AZ 85721, USA
| | - Gina Adrales
- Department of Surgery,
Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xingde Li
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Hanscom M, Cave DR. Endoscopic capsule robot-based diagnosis, navigation and localization in the gastrointestinal tract. Front Robot AI 2022; 9:896028. [PMID: 36119725 PMCID: PMC9479458 DOI: 10.3389/frobt.2022.896028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/08/2022] [Indexed: 01/10/2023] Open
Abstract
The proliferation of video capsule endoscopy (VCE) would not have been possible without continued technological improvements in imaging and locomotion. Advancements in imaging include both software and hardware improvements but perhaps the greatest software advancement in imaging comes in the form of artificial intelligence (AI). Current research into AI in VCE includes the diagnosis of tumors, gastrointestinal bleeding, Crohn’s disease, and celiac disease. Other advancements have focused on the improvement of both camera technologies and alternative forms of imaging. Comparatively, advancements in locomotion have just started to approach clinical use and include onboard controlled locomotion, which involves miniaturizing a motor to incorporate into the video capsule, and externally controlled locomotion, which involves using an outside power source to maneuver the capsule itself. Advancements in locomotion hold promise to remove one of the major disadvantages of VCE, namely, its inability to obtain targeted diagnoses. Active capsule control could in turn unlock additional diagnostic and therapeutic potential, such as the ability to obtain targeted tissue biopsies or drug delivery. With both advancements in imaging and locomotion has come a corresponding need to be better able to process generated images and localize the capsule’s position within the gastrointestinal tract. Technological advancements in computation performance have led to improvements in image compression and transfer, as well as advancements in sensor detection and alternative methods of capsule localization. Together, these advancements have led to the expansion of VCE across a number of indications, including the evaluation of esophageal and colon pathologies including esophagitis, esophageal varices, Crohn’s disease, and polyps after incomplete colonoscopy. Current research has also suggested a role for VCE in acute gastrointestinal bleeding throughout the gastrointestinal tract, as well as in urgent settings such as the emergency department, and in resource-constrained settings, such as during the COVID-19 pandemic. VCE has solidified its role in the evaluation of small bowel bleeding and earned an important place in the practicing gastroenterologist’s armamentarium. In the next few decades, further improvements in imaging and locomotion promise to open up even more clinical roles for the video capsule as a tool for non-invasive diagnosis of lumenal gastrointestinal pathologies.
Collapse
|
6
|
Nam JH, Lee KH, Lim YJ. Examination of Entire Gastrointestinal Tract: A Perspective of Mouth to Anus (M2A) Capsule Endoscopy. Diagnostics (Basel) 2021; 11:diagnostics11081367. [PMID: 34441301 PMCID: PMC8394372 DOI: 10.3390/diagnostics11081367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Capsule endoscopy (CE) is the only non-invasive diagnostic tool that enables the direct visualization of the gastrointestinal (GI) tract. Even though CE was initially developed for small-bowel investigation, its clinical application is expanding, and technological advances continue. The final iteration of CE will be a mouth to anus (M2A) capsule that investigates the entire GI tract by the ingestion of a single capsule. This narrative review describes the current developmental status of CE and discusses the possibility of realizing an M2A capsule and what needs to be overcome in the future.
Collapse
Affiliation(s)
- Ji Hyung Nam
- Division of Gastroenterology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Korea;
| | - Kwang Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Korea;
| | - Yun Jeong Lim
- Division of Gastroenterology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Korea;
- Correspondence: ; Tel.: +82-31-961-7133
| |
Collapse
|
7
|
Wartak A, Kelada AK, Leon Alarcon PA, Bablouzian AL, Ahsen OO, Gregg AL, Wei Y, Bollavaram K, Sheil CJ, Farewell E, VanTol S, Smith R, Grahmann P, Baillargeon AR, Gardecki JA, Tearney GJ. Dual-modality optical coherence tomography and fluorescence tethered capsule endomicroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4308-4323. [PMID: 34457416 PMCID: PMC8367220 DOI: 10.1364/boe.422453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
OCT tethered capsule endomicroscopy (TCE) is an emerging noninvasive diagnostic imaging technology for gastrointestinal (GI) tract disorders. OCT measures tissue reflectivity that provides morphologic image contrast, and thus is incapable of ascertaining molecular information that can be useful for improving diagnostic accuracy. Here, we introduce an extension to OCT TCE that includes a fluorescence (FL) imaging channel for attaining complementary, co-registered molecular contrast. We present the development of an OCT-FL TCE capsule and a portable, plug-and-play OCT-FL imaging system. The technology is validated in phantom experiments and feasibility is demonstrated in a methylene blue (MB)-stained swine esophageal injury model, ex vivo and in vivo.
Collapse
Affiliation(s)
- Andreas Wartak
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Alfred K. Kelada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Paola A. Leon Alarcon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ara L. Bablouzian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Osman O. Ahsen
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Abigail L. Gregg
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yuxiao Wei
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Keval Bollavaram
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Conor J. Sheil
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Edward Farewell
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Schuyler VanTol
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel Smith
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Patricia Grahmann
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aaron R. Baillargeon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Novel Clinical Applications and Technical Developments in Video Capsule Endoscopy. Gastrointest Endosc Clin N Am 2021; 31:399-412. [PMID: 33743934 DOI: 10.1016/j.giec.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Video capsule endoscopy is entering its third decade. After slow acceptance, it has become the gold standard in diagnosing small intestinal disorders. This article summarizes new practical applications for capsule endoscopy outside the small intestine. From 2 randomized controlled trials, it is becoming clear that it has a role in the management of patients with hematemesis and nonhematemesis bleeding. Under active investigation are novel applications of capsule technology, including the potential ability to sample luminal contents or tissue, self-propelled capsules, incorporation of other imaging techniques beyond white light, such as ultrasound and fluorescents, and the possibility of drug delivery.
Collapse
|
9
|
Sharma G, Thoma OM, Blessing K, Gal R, Waldner M, Singh K. Smartphone-based multimodal tethered capsule endoscopic platform for white-light, narrow-band, and fluorescence/autofluorescence imaging. JOURNAL OF BIOPHOTONICS 2021; 14:e202000324. [PMID: 33131174 DOI: 10.1002/jbio.202000324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 05/28/2023]
Abstract
Multimodal low-cost endoscopy is highly desirable in poor resource settings such as in developing nations. In this work, we developed a smartphone-based low-cost, reusable tethered capsule endoscopic platform that allows white-light, narrowband, and fluorescence/autofluorescence imaging of the esophagus. The ex-vivo studies of swine esophagus were performed and compared with a commercial endoscope to test the white-light imaging capabilities of the endoscope. The efficacy of the capsule for narrow-band imaging was tested by imaging the vascularization of the tongue. To determine the autofluorescence/fluorescence capability of the endoscope, fluorescein dye with different concentrations was imaged. Furthermore, swine esophagus injected with fluorescein dye was imaged using the fluorescence/autofluorescence and the white-light imaging modules, ex-vivo. The overall cost of the capsules is approximately 12 €, 15 €, and 42 € for the white light imaging, the narrow-band imaging, and the fluorescence/autofluorescence imaging respectively. In addition, the cost of the laser source module required for the narrow-band imaging and the fluorescence/autofluorescence imaging is approximately 218 €. This device will open the possibility of imaging the esophagus in underprivileged areas.
Collapse
Affiliation(s)
- Gargi Sharma
- Research Group Singh, Max-Planck Institute for the Physics of Light, Erlangen, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School of Advanced Optical Technologies (SAOT), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Blessing
- Research Group Singh, Max-Planck Institute for the Physics of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Gal
- Research Group Singh, Max-Planck Institute for the Physics of Light, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School of Advanced Optical Technologies (SAOT), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kanwarpal Singh
- Research Group Singh, Max-Planck Institute for the Physics of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Ding J, Lin J, Li Q, Chen X, Chen W, Zhang Q, He S, Wu T, Wang C, Zhong S, Li D. Optical coherent tomography to evaluate the degree of inflammation in a mouse model of colitis. Quant Imaging Med Surg 2020; 10:945-957. [PMID: 32489919 DOI: 10.21037/qims.2020.04.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background There is an urgent need to develop a noninvasive imaging technique for the diagnosis of early inflammatory lesions or early and real-time microscopic assessment before selecting the most representative biopsy sites. Methods In this study, a dextran sulfate sodium colitis model was developed, and intestinal histological damage scores measured the degree of inflammation in colitis. According to these scores, 6 parameters were designed for hematoxylin and eosin (HE) sections based on morphological changes, and 2 parameters were designed for optical coherence tomography (OCT) images to measure submucosal edema by morphological changes to evaluate inflammation degrees in the colon. Spearman's rank correlation method was used to compare the correlation between the submucosal morphological changes and the different degrees of inflammation. One-way analysis of variance (ANOVA) was used for comparisons among groups, while receiver operating characteristic (ROC) curves of the indicators in HE sections and OCT images were plotted. Results In HE sections, angle of mucosal folds (r=0.853, P<0.01), length of basilar parts (r=0.915, P<0.01), submucosal area (r=0.819, P<0.01), and height between submucosal and muscular layers (r=0.451, P=0.001) were correlated with the degree of inflammation in colitis. In OCT images, length of basilar parts (r=0.800, P<0.01) and height of submucosa + thickness of muscularis (r=0.648, P=0.001) were correlated with the degree of inflammation and aided the measurement of inflammation in the colon. Conclusions Parameters based on morphological changes in OCT images and HE sections were significant indexes for evaluating the degree of inflammation in colitis. OCT images have advantages for future clinical applications in situ, including noninvasiveness and real-time imaging.
Collapse
Affiliation(s)
- Jian Ding
- Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jiewen Lin
- Laboratory of Optics, Terahertz and Nondestructive Testing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Qiu Li
- Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xiaoping Chen
- Department of Statistics, College of Mathematics and Informatics & FJKLMAA, Fujian Normal University, Fuzhou 350117, China
| | - Weiqiang Chen
- Laboratory of Optics, Terahertz and Nondestructive Testing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Qiukun Zhang
- Laboratory of Optics, Terahertz and Nondestructive Testing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Shanshan He
- Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Ting Wu
- Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Chengdang Wang
- Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Shuncong Zhong
- Laboratory of Optics, Terahertz and Nondestructive Testing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Dan Li
- Department of Gastroenterology, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
11
|
Beardslee LA, Banis GE, Chu S, Liu S, Chapin AA, Stine JM, Pasricha PJ, Ghodssi R. Ingestible Sensors and Sensing Systems for Minimally Invasive Diagnosis and Monitoring: The Next Frontier in Minimally Invasive Screening. ACS Sens 2020; 5:891-910. [PMID: 32157868 DOI: 10.1021/acssensors.9b02263] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ingestible electronic systems that are capable of embedded sensing, particularly within the gastrointestinal (GI) tract and its accessory organs, have the potential to screen for diseases that are difficult if not impossible to detect at an early stage using other means. Furthermore, these devices have the potential to (1) reduce labor and facility costs for a variety of procedures, (2) promote research for discovering new biomarker targets for associated pathologies, (3) promote the development of autonomous or semiautonomous diagnostic aids for consumers, and (4) provide a foundation for epithelially targeted therapeutic interventions. These technological advances have the potential to make disease surveillance and treatment far more effective for a variety of conditions, allowing patients to lead longer and more productive lives. This review will examine the conventional techniques, as well as ingestible sensors and sensing systems that are currently under development for use in disease screening and diagnosis for GI disorders. Design considerations, fabrication, and applications will be discussed.
Collapse
Affiliation(s)
- Luke A. Beardslee
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, United States
| | - George E. Banis
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sangwook Chu
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, United States
| | - Sanwei Liu
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, United States
| | - Ashley A. Chapin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Justin M. Stine
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Pankaj Jay Pasricha
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Gordon GSD, Joseph J, Sawyer T, Macfaden AJ, Williams C, Wilkinson TD, Bohndiek SE. Full-field quantitative phase and polarisation-resolved imaging through an optical fibre bundle. OPTICS EXPRESS 2019; 27:23929-23947. [PMID: 31510290 PMCID: PMC6825613 DOI: 10.1364/oe.27.023929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 05/06/2023]
Abstract
Flexible optical fibres, used in conventional medical endoscopy and industrial inspection, scramble phase and polarisation information, restricting users to amplitude-only imaging. Here, we exploit the near-diagonality of the multi-core fibre (MCF) transmission matrix in a parallelised fibre characterisation architecture, enabling accurate imaging of quantitative phase (error <0.3 rad) and polarisation-resolved (errors <10%) properties. We first demonstrate accurate recovery of optical amplitude and phase in two polarisations through the MCF by measuring and inverting the transmission matrix, and then present a robust Bayesian inference approach to resolving 5 polarimetric properties of samples. Our method produces high-resolution (9.0±2.6μm amplitude, phase; 36.0±10.4μm polarimetric) full-field images at working distances up to 1mm over a field-of-view up to 750×750μm 2 using an MCF with potential for flexible operation. We demonstrate the potential of using quantitative phase for computational image focusing and polarisation-resolved properties in imaging birefringence.
Collapse
Affiliation(s)
- George S. D. Gordon
- Now at: Department of Electrical and Electronic Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - James Joseph
- Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Travis Sawyer
- Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Alexander J. Macfaden
- Now at: Department of Electrical and Electronic Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Calum Williams
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
- Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Timothy D. Wilkinson
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Sarah E. Bohndiek
- Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
13
|
McGoran JJ, McAlindon ME, Iyer PG, Seibel EJ, Haidry R, Lovat LB, Sami SS. Miniature gastrointestinal endoscopy: Now and the future. World J Gastroenterol 2019; 25:4051-4060. [PMID: 31435163 PMCID: PMC6700702 DOI: 10.3748/wjg.v25.i30.4051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/22/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Since its original application, gastrointestinal (GI) endoscopy has undergone many innovative transformations aimed at expanding the scope, safety, accuracy, acceptability and cost-effectiveness of this area of clinical practice. One method of achieving this has been to reduce the caliber of endoscopic devices. We propose the collective term “Miniature GI Endoscopy”. In this Opinion Review, the innovations in this field are explored and discussed. The progress and clinical use of the three main areas of miniature GI endoscopy (ultrathin endoscopy, wireless endoscopy and scanning fiber endoscopy) are described. The opportunities presented by these technologies are set out in a clinical context, as are their current limitations. Many of the positive aspects of miniature endoscopy are clear, in that smaller devices provide access to potentially all of the alimentary canal, while conferring high patient acceptability. This must be balanced with the costs of new technologies and recognition of device specific challenges. Perspectives on future application are also considered and the efforts being made to bring new innovations to a clinical platform are outlined. Current devices demonstrate that miniature GI endoscopy has a valuable place in investigation of symptoms, therapeutic intervention and screening. Newer technologies give promise that the potential for enhancing the investigation and management of GI complaints is significant.
Collapse
Affiliation(s)
- John J McGoran
- Digestive Diseases Centre, Leicester Royal Infirmary, Leicester LE1 5WW, United Kingdom
| | - Mark E McAlindon
- Department of Gastroenterology, Royal Hallamshire Hospital, Sheffield S10 2JF, United Kingdom
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, MN 55905, United States
| | - Eric J Seibel
- Department of Mechanical Engineering, University of Washington, 4000 Mason St, Seattle, WA 98195, United States
| | - Rehan Haidry
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - Laurence B Lovat
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - Sarmed S Sami
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
14
|
López-Marín A, Springeling G, Beurskens R, van Beusekom H, van der Steen AFW, Koch AD, Bouma BE, Huber R, van Soest G, Wang T. Motorized capsule for shadow-free OCT imaging and synchronous beam control. OPTICS LETTERS 2019; 44:3641-3644. [PMID: 31368932 DOI: 10.1364/ol.44.003641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We demonstrate a tethered motorized capsule for unobstructed optical coherence tomography (OCT) imaging of the esophagus. By using a distal reflector design, we avoided the common shadow artifact induced by the motor wires. A synchronous driving technique features three types of beam-scanning modes of the capsule, i.e., circumferential beam scanning, localized beam scanning, and accurate beam positioning. We characterized these three modes and carried out ex vivo imaging experiments using the capsule. The results show that the capsule can potentially be a useful tool for diagnostic OCT imaging and OCT-guided biopsy and therapy of the esophagus.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW There has been an exponential increase in the incidence of esophageal adenocarcinoma (EAC) over the last half century. Barrett's esophagus (BE) is the only known precursor lesion of EAC. Screening for BE in high-risk populations has been advocated with the aim of identifying BE, followed by endoscopic surveillance to detect dysplasia and early stage cancer, with the intent that treatment can improve outcomes. We aimed to review BE screening methodologies currently recommended and in development. RECENT FINDINGS Unsedated transnasal endoscopy allows for visualization of the distal esophagus, with potential for biopsy acquisition, and can be done in the office setting. Non-endoscopic screening methods being developed couple the use of swallowable esophageal cell sampling devices with BE specific biomarkers, as well as trefoil factor 3, methylated DNA markers, and microRNAs. This approach has promising accuracy. Circulating and exhaled volatile organic compounds and the foregut microbiome are also being explored as means of detecting EAC and BE in a non-invasive manner. Non-invasive diagnostic techniques have shown promise in the detection of BE and may be effective methods of screening high-risk patients.
Collapse
Affiliation(s)
- Don C Codipilly
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
- Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Maktabi M, Köhler H, Ivanova M, Jansen-Winkeln B, Takoh J, Niebisch S, Rabe SM, Neumuth T, Gockel I, Chalopin C. Tissue classification of oncologic esophageal resectates based on hyperspectral data. Int J Comput Assist Radiol Surg 2019; 14:1651-1661. [PMID: 31222672 DOI: 10.1007/s11548-019-02016-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE Esophageal carcinoma is the eighth most common cancer worldwide. Esophageal resection with gastric pull-up is a potentially curative therapeutic option. After this procedure, the specimen is examined by the pathologist to confirm complete removal of the cancer. An intraoperative analysis of the resectate would be less time-consuming and therefore improve patient safety. METHODS Hyperspectral imaging (HSI) is a relatively new modality, which has shown promising results for the detection of tumors. Automatic approaches could support the surgeon in the visualization of tumor margins. Therefore, we evaluated four supervised classification algorithms: random forest, support vector machines (SVM), multilayer perceptron, and k-nearest neighbors to differentiate malignant from healthy tissue based on HSI recordings of esophago-gastric resectates in 11 patients. RESULTS The best performances were obtained with a cancerous tissue detection of 63% sensitivity and 69% specificity with the SVM. In a leave-one patient-out cross-validation, the classification showed larger performance differences according to the patient data used. In less than 1 s, data classification and visualization was shown. CONCLUSION In this work, we successfully tested several classification algorithms for the automatic detection of esophageal carcinoma in resected tissue. A larger data set and a combination of several methods would probably increase the performance. Moreover, the implementation of software tools for intraoperative tumor boundary visualization will further support the surgeon during oncologic operations.
Collapse
Affiliation(s)
- Marianne Maktabi
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany.
| | - Hannes Köhler
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Margarita Ivanova
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Boris Jansen-Winkeln
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Jonathan Takoh
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Stefan Niebisch
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Sebastian M Rabe
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Thomas Neumuth
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Claire Chalopin
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| |
Collapse
|
17
|
de Souza LA, Afonso LCS, Ebigbo A, Probst A, Messmann H, Mendel R, Hook C, Palm C, Papa JP. Learning visual representations with optimum-path forest and its applications to Barrett’s esophagus and adenocarcinoma diagnosis. Neural Comput Appl 2019. [DOI: 10.1007/s00521-018-03982-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Gora MJ, Quénéhervé L, Carruth RW, Lu W, Rosenberg M, Sauk JS, Fasano A, Lauwers GY, Nishioka NS, Tearney GJ. Tethered capsule endomicroscopy for microscopic imaging of the esophagus, stomach, and duodenum without sedation in humans (with video). Gastrointest Endosc 2018; 88:830-840.e3. [PMID: 30031805 PMCID: PMC8176642 DOI: 10.1016/j.gie.2018.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Patients with many different digestive diseases undergo repeated EGDs throughout their lives. Tethered capsule endomicroscopy (TCE) is a less-invasive method for obtaining high-resolution images of the GI mucosa for diagnosis and treatment planning of GI tract diseases. In this article, we present our results from a single-center study aimed at testing the safety and feasibility of TCE for imaging the esophagus, stomach, and duodenum. METHODS After being swallowed by a participant without sedation, the tethered capsule obtains cross-sectional, 10 μm-resolution, optical coherence tomography images as the device traverses the alimentary tract. After imaging, the device is withdrawn through the mouth, disinfected, and reused. Safety and feasibility of TCE were tested, focusing on imaging the esophagus of healthy volunteers and patients with Barrett's esophagus (BE) and the duodenum of healthy volunteers. Images were compared with endoscopy and histopathology findings when available. RESULTS Thirty-eight patients were enrolled. No adverse effects were reported. The TCE device swallowing rate was 34 of 38 (89%). The appearance of a physiologic upper GI wall, including its microscopic pathology, was visualized with a tissue coverage of 85.4% ± 14.9% and 90.3% ± 6.8% in the esophagus of BE patients with and without endoscopic evidence of a hiatal hernia, respectively, as well as 84.8% ± 7.4% in the duodenum. A blinded comparison of TCE and endoscopic BE measurements showed a strong to very strong correlation (r = 0.7-0.83; P < .05) for circumferential extent and a strong correlation (r = 0.77-0.78; P < .01) for maximum extent (Prague classification). TCE interobserver correlation was very strong, at r = 0.92 and r = 0.84 (P < .01), for Prague classification circumferential (C) and maximal (M) length measurements, respectively. CONCLUSIONS TCE is a safe and feasible procedure for obtaining high-resolution microscopic images of the upper GI tract without endoscopic assistance or sedation.
Collapse
Affiliation(s)
- Michalina J. Gora
- ICube Laboratory, CNRS, Strasbourg University, Strasbourg, France.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lucille Quénéhervé
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Institut des Maladies de l’Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - Robert W. Carruth
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Weina Lu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mireille Rosenberg
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jenny S. Sauk
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Alessio Fasano
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory Y. Lauwers
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Norman S. Nishioka
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard-MIT Division of Health Sciences Technology, Cambridge, MA, USA
| |
Collapse
|
19
|
Screening patients for Barrett esophagus: Why, who, and how. TECHNIQUES IN GASTROINTESTINAL ENDOSCOPY 2018. [DOI: 10.1016/j.tgie.2018.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Liang K, Wang Z, Ahsen OO, Lee HC, Potsaid BM, Jayaraman V, Cable A, Mashimo H, Li X, Fujimoto JG. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo. OPTICA 2018; 5:36-43. [PMID: 29682598 PMCID: PMC5909979 DOI: 10.1364/optica.5.000036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/27/2017] [Indexed: 05/18/2023]
Abstract
Devices that perform wide field-of-view (FOV) precision optical scanning are important for endoscopic assessment and diagnosis of luminal organ disease such as in gastroenterology. Optical scanning for in vivo endoscopic imaging has traditionally relied on one or more proximal mechanical actuators, limiting scan accuracy and imaging speed. There is a need for rapid and precise two-dimensional (2D) microscanning technologies to enable the translation of benchtop scanning microscopies to in vivo endoscopic imaging. We demonstrate a new cycloid scanner in a tethered capsule for ultrahigh speed, side-viewing optical coherence tomography (OCT) endomicroscopy in vivo. The cycloid capsule incorporates two scanners: a piezoelectrically actuated resonant fiber scanner to perform a precision, small FOV, fast scan and a micromotor scanner to perform a wide FOV, slow scan. Together these scanners distally scan the beam circumferentially in a 2D cycloid pattern, generating an unwrapped 1 mm × 38 mm strip FOV. Sequential strip volumes can be acquired with proximal pullback to image centimeter-long regions. Using ultrahigh speed 1.3 μm wavelength swept-source OCT at a 1.17 MHz axial scan rate, we imaged the human rectum at 3 volumes/s. Each OCT strip volume had 166 × 2322 axial scans with 8.5 μm axial and 30 μm transverse resolution. We further demonstrate OCT angiography at 0.5 volumes/s, producing volumetric images of vasculature. In addition to OCT applications, cycloid scanning promises to enable precision 2D optical scanning for other imaging modalities, including fluorescence confocal and nonlinear microscopy.
Collapse
Affiliation(s)
- Kaicheng Liang
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zhao Wang
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Osman O. Ahsen
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hsiang-Chieh Lee
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Benjamin M. Potsaid
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Thorlabs, Newton, New Jersey 07860, USA
| | | | | | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
21
|
Eluri S, Shaheen NJ. Barrett's esophagus: diagnosis and management. Gastrointest Endosc 2017; 85:889-903. [PMID: 28109913 PMCID: PMC5392444 DOI: 10.1016/j.gie.2017.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/07/2017] [Indexed: 02/08/2023]
|
22
|
Zeidan A, Yelin D. Spectral imaging using forward-viewing spectrally encoded endoscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:392-8. [PMID: 26977348 PMCID: PMC4771457 DOI: 10.1364/boe.7.000392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 05/24/2023]
Abstract
Spectrally encoded endoscopy (SEE) enables miniature, small-diameter endoscopic probes for minimally invasive imaging; however, using the broadband spectrum to encode space makes color and spectral imaging nontrivial and challenging. By careful registration and analysis of image data acquired by a prototype of a forward-viewing dual channel spectrally encoded rigid probe, we demonstrate spectral and color imaging within a narrow cylindrical lumen. Spectral imaging of calibration cylindrical test targets and an ex-vivo blood vessel demonstrates high-resolution spatial-spectral imaging with short (10 μs/line) exposure times.
Collapse
|
23
|
Abstract
There is substantial interest in identifying patients with premalignant conditions such as Barrett's esophagus (BE), to improve outcomes of subjects with esophageal adenocarcinoma. However, there is limited consensus on the rationale for screening, the appropriate target population, and optimal screening modality. Recent progress in the development and validation of minimally invasive tools for BE screening has reinvigorated interest in BE screening. BE risk scores combining clinical, anthropometric, and laboratory variables are being developed that may allow more precise targeting of screening to high-risk individuals. This article reviews and summarizes data on recent progress and challenges in screening for BE.
Collapse
Affiliation(s)
- Milli Gupta
- Division of Gastroenterology and Hepatology, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
24
|
di Pietro M, Chan D, Fitzgerald RC, Wang KK. Screening for Barrett's Esophagus. Gastroenterology 2015; 148:912-23. [PMID: 25701083 PMCID: PMC4703087 DOI: 10.1053/j.gastro.2015.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
Abstract
The large increase in the incidence of esophageal adenocarcinoma in the West during the past 30 years has stimulated interest in screening for Barrett's esophagus (BE), a precursor to esophageal cancer. Effective endoscopic treatments for dysplasia and intramucosal cancer, coupled with screening programs to detect BE, could help reverse the increase in the incidence of esophageal cancer. However, there are no accurate, cost-effective, minimally invasive techniques available to screen for BE, reducing the enthusiasm of gastroenterologists. Over the past 5 years, there has been significant progress in the development of screening technologies. We review existing and developing technologies, new minimally invasive imaging techniques, nonendoscopic devices for cell collection, and biomarkers that can be measured in blood or stool samples. We discuss the status of these approaches, data from clinical studies of their effects, and their anticipated strengths and weaknesses in screening. The area is rapidly evolving, and new tools will soon be ready for prime time.
Collapse
Affiliation(s)
| | - Daniel Chan
- Barrett's Esophagus Unit, Mayo Clinic, Rochester, Minnesota
| | | | - Kenneth K Wang
- Barrett's Esophagus Unit, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
25
|
Liu J, Wang B, Hu W, Sun P, Li J, Duan H, Si J. Global and Local Panoramic Views for Gastroscopy: An Assisted Method of Gastroscopic Lesion Surveillance. IEEE Trans Biomed Eng 2015; 62:2296-307. [PMID: 25910000 DOI: 10.1109/tbme.2015.2424438] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gastroscopy plays an important role in the diagnosis of gastric disease. In this paper, we develop an image panoramic system to assist endoscopists in improving lesion surveillance and reducing many of the tedious operations associated with gastroscopy. The constructed panoramic view has two categories: 1) the local view broadens the endoscopist's field of view in real time. Combining with the original gastroscopic video, this mosaicking view enables the endoscopist to diagnose the lesion comprehensively; 2) the global view constructs a large-area panoramic scene of the internal gastric surface, which can be used for intraoperative surgical navigation and postoperative scene review. Due to the irregular texture and inconsistent reflection of the gastric internal surface, common registration methods cannot accurately stitch this surface. Thereby, a six degree of freedom position tracking endoscope is devised to accommodate for the accumulated mosaicking error and provide efficient mosaicking results. For the global view, a dual-cube constraint model and a Bundle Adjustment algorithm are incorporated to deal with the mosaicking error caused by the irregular inflation and nonrigid deformation of the stomach. Moreover, texture blending and frame selection schemes are developed to make the mosaicking results feasible in real-clinical applications. The experimental results demonstrate that our system performs with a speed of 7.12 frames/s in a standard computer environment, and the mosaicking mean error is 0.43 mm for local panoramic view and 3.71 mm for global panoramic view.
Collapse
|
26
|
Liang K, Traverso G, Lee HC, Ahsen OO, Wang Z, Potsaid B, Giacomelli M, Jayaraman V, Barman R, Cable A, Mashimo H, Langer R, Fujimoto JG. Ultrahigh speed en face OCT capsule for endoscopic imaging. BIOMEDICAL OPTICS EXPRESS 2015; 6:1146-63. [PMID: 25909001 PMCID: PMC4399656 DOI: 10.1364/boe.6.001146] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 05/18/2023]
Abstract
Depth resolved and en face OCT visualization in vivo may have important clinical applications in endoscopy. We demonstrate a high speed, two-dimensional (2D) distal scanning capsule with a micromotor for fast rotary scanning and a pneumatic actuator for precision longitudinal scanning. Longitudinal position measurement and image registration were performed by optical tracking of the pneumatic scanner. The 2D scanning device enables high resolution imaging over a small field of view and is suitable for OCT as well as other scanning microscopies. Large field of view imaging for screening or surveillance applications can also be achieved by proximally pulling back or advancing the capsule while scanning the distal high-speed micromotor. Circumferential en face OCT was demonstrated in living swine at 250 Hz frame rate and 1 MHz A-scan rate using a MEMS tunable VCSEL light source at 1300 nm. Cross-sectional and en face OCT views of the upper and lower gastrointestinal tract were generated with precision distal pneumatic longitudinal actuation as well as proximal manual longitudinal actuation. These devices could enable clinical studies either as an adjunct to endoscopy, attached to an endoscope, or as a swallowed tethered capsule for non-endoscopic imaging without sedation. The combination of ultrahigh speed imaging and distal scanning capsule technology could enable both screening and surveillance applications.
Collapse
Affiliation(s)
- Kaicheng Liang
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA,
USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA,
USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston MA,
USA
- Harvard Medical School, Boston MA,
USA
| | - Hsiang-Chieh Lee
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA,
USA
| | - Osman Oguz Ahsen
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA,
USA
| | - Zhao Wang
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA,
USA
| | - Benjamin Potsaid
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA,
USA
- Advanced Imaging Group, Thorlabs Inc., Newton NJ,
USA
| | - Michael Giacomelli
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA,
USA
| | | | - Ross Barman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA,
USA
| | - Alex Cable
- Advanced Imaging Group, Thorlabs Inc., Newton NJ,
USA
| | - Hiroshi Mashimo
- Harvard Medical School, Boston MA,
USA
- Veterans Affairs Boston Healthcare System, Boston MA,
USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA,
USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA,
USA
| | - James G. Fujimoto
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA,
USA
| |
Collapse
|
27
|
Bergen T, Wittenberg T. Stitching and Surface Reconstruction From Endoscopic Image Sequences: A Review of Applications and Methods. IEEE J Biomed Health Inform 2014; 20:304-21. [PMID: 25532214 DOI: 10.1109/jbhi.2014.2384134] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Endoscopic procedures form part of routine clinical practice for minimally invasive examinations and interventions. While they are beneficial for the patient, reducing surgical trauma and making convalescence times shorter, they make orientation and manipulation more challenging for the physician, due to the limited field of view through the endoscope. However, this drawback can be reduced by means of medical image processing and computer vision, using image stitching and surface reconstruction methods to expand the field of view. This paper provides a comprehensive overview of the current state of the art in endoscopic image stitching and surface reconstruction. The literature in the relevant fields of application and algorithmic approaches is surveyed. The technological maturity of the methods and current challenges and trends are analyzed.
Collapse
|
28
|
McVeigh PZ, Sacho R, Weersink RA, Pereira VM, Kucharczyk W, Seibel EJ, Wilson BC, Krings T. High-resolution angioscopic imaging during endovascular neurosurgery. Neurosurgery 2014; 75:171-80; discussion 179-80. [PMID: 24762703 PMCID: PMC4086773 DOI: 10.1227/neu.0000000000000383] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endoluminal optical imaging, or angioscopy, has not seen widespread application during neurointerventional procedures, largely as a result of the poor imaging resolution of existing angioscopes. Scanning fiber endoscopes (SFEs) are a novel endoscopic platform that allows high-resolution video imaging in an ultraminiature form factor that is compatible with currently used distal access endoluminal catheters. OBJECTIVE To test the feasibility and potential utility of high-resolution angioscopy with an SFE during common endovascular neurosurgical procedures. METHODS A 3.7-French SFE was used in a porcine model system to image endothelial disruption, ischemic stroke and mechanical thrombectomy, aneurysm coiling, and flow-diverting stent placement. RESULTS High-resolution, video-rate imaging was shown to be possible during all of the common procedures tested and provided information that was complementary to standard fluoroscopic imaging. SFE angioscopy was able to assess novel factors such as aneurysm base coverage fraction and side branch patency, which have previously not been possible to determine with conventional angiography. CONCLUSION Endovascular imaging with an SFE provides important information on factors that cannot be assessed fluoroscopically and is a novel platform on which future neurointerventional techniques may be based because it allows for periprocedural inspection of the integrity of the vascular system and the deployed devices. In addition, it may be of diagnostic use for inspecting the vascular wall and postprocedure device evaluation.
Collapse
Affiliation(s)
- Patrick Z McVeigh
- *Department of Medical Biophysics, University of Toronto; ‡Department of Medical Imaging, Toronto Western Hospital, University Health Network; §Radiation Medicine Program, Princess Margaret Cancer Centre; ¶Techna Institute, University Health Network, Toronto, Ontario, Canada; ‖Department of Medical Imaging, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; #Department of Mechanical Engineering, University of Washington, Seattle, Washington; **Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Yang C, Hou V, Nelson LY, Seibel EJ. Mitigating fluorescence spectral overlap in wide-field endoscopic imaging. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:86012. [PMID: 23966226 PMCID: PMC3767456 DOI: 10.1117/1.jbo.18.8.086012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated.
Collapse
Affiliation(s)
- Chenying Yang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
31
|
Yang C, Hou V, Nelson LY, Seibel EJ. Color-matched and fluorescence-labeled esophagus phantom and its applications. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:26020. [PMID: 23403908 PMCID: PMC3569733 DOI: 10.1117/1.jbo.18.2.026020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We developed a stable, reproducible three-dimensional optical phantom for the evaluation of a wide-field endoscopic molecular imaging system. This phantom mimicked a human esophagus structure with flexibility to demonstrate body movements. At the same time, realistic visual appearance and diffuse spectral reflectance properties of the tissue were simulated by a color matching methodology. A photostable dye-in-polymer technology was applied to represent biomarker probed "hot-spot" locations. Furthermore, fluorescent target quantification of the phantom was demonstrated using a 1.2 mm ultrathin scanning fiber endoscope with concurrent fluorescence-reflectance imaging.
Collapse
Affiliation(s)
- Chenying Yang
- University of Washington, Department of Bioengineering, 204 Fluke Hall, 4000 Mason Road, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
32
|
Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat Med 2013; 19:238-40. [PMID: 23314056 PMCID: PMC3567218 DOI: 10.1038/nm.3052] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022]
Abstract
Here, we introduce “tethered capsule endomicroscopy,” that involves swallowing an optomechanically-engineered pill that captures cross-sectional, 30 μm (lateral) × 7 μm (axial) resolution, microscopic images of the gut wall as it travels through the digestive tract. Results in human subjects show that this technique rapidly provides three-dimensional, microstructural images of the upper gastrointestinal tract in a simple and painless procedure, opening up new opportunities for screening for internal diseases.
Collapse
|
33
|
Erden MS, Rosa B, Szewczyk J, Morel G. Understanding soft-tissue behavior for application to microlaparoscopic surface scan. IEEE Trans Biomed Eng 2012; 60:1059-68. [PMID: 23268380 DOI: 10.1109/tbme.2012.2234748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper presents an approach for understanding the soft-tissue behavior in surface contact with a probe scanning the tissue. The application domain is confocal microlaparoscopy, mostly used for imaging the outer surface of the organs in the abdominal cavity. The probe is swept over the tissue to collect sequential images to obtain a large field of view with mosaicking. The problem we address is that the tissue also moves with the probe due to its softness; therefore, the resulting mosaic is not in the same shape and dimension as traversed by the probe. Our approach is inspired by the finger slip studies and adapts the idea of load-slip phenomenon that explains the movement of the soft part of the finger when dragged on a hard surface. We propose the concept of loading-distance and perform measurements on beef liver and chicken breast tissues. We propose a protocol to determine the loading-distance prior to an automated scan and introduce an approach to compensate the tissue movement in raster scans. Our implementation and experiments show that we can have an image mosaic of the tissue surface in a desired rectangular shape with this approach.
Collapse
Affiliation(s)
- Mustafa Suphi Erden
- Institute of Intelligent Systems and Robotics, University Pierre et Marie Curie, Paris, France.
| | | | | | | |
Collapse
|
34
|
Dhawan AP, D'Alessandro B, Fu X. Optical imaging modalities for biomedical applications. IEEE Rev Biomed Eng 2012; 3:69-92. [PMID: 22275202 DOI: 10.1109/rbme.2010.2081975] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optical photographic imaging is a well known imaging method that has been successfully translated into biomedical applications such as microscopy and endoscopy. Although several advanced medical imaging modalities are used today to acquire anatomical, physiological, metabolic, and functional information from the human body, optical imaging modalities including optical coherence tomography, confocal microscopy, multiphoton microscopy, multispectral endoscopy, and diffuse reflectance imaging have recently emerged with significant potential for non-invasive, portable, and cost-effective imaging for biomedical applications spanning tissue, cellular, and molecular levels. This paper reviews methods for modeling the propagation of light photons in a biological medium, as well as optical imaging from organ to cellular levels using visible and near-infrared wavelengths for biomedical and clinical applications.
Collapse
Affiliation(s)
- Atam P Dhawan
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | | | | |
Collapse
|
35
|
Yoon WJ, Brown MA, Reinhall PG, Park S, Seibel EJ. Design and preliminary study of custom laser scanning cystoscope for automated bladder surveillance. MINIM INVASIV THER 2012; 21:320-8. [DOI: 10.3109/13645706.2011.653374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Miller SJ, Lee CM, Joshi BP, Gaustad A, Seibel EJ, Wang TD. Targeted detection of murine colonic dysplasia in vivo with flexible multispectral scanning fiber endoscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:021103. [PMID: 22463021 PMCID: PMC3380821 DOI: 10.1117/1.jbo.17.2.021103] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/17/2011] [Accepted: 09/21/2011] [Indexed: 05/20/2023]
Abstract
Gastrointestinal cancers are heterogeneous and can overexpress several protein targets that can be imaged simultaneously on endoscopy using multiple molecular probes. We aim to demonstrate a multispectral scanning fiber endoscope for wide-field fluorescence detection of colonic dysplasia. Excitation at 440, 532, and 635 nm is delivered into a single spiral scanning fiber, and fluorescence is collected by a ring of light-collecting optical fibers placed around the instrument periphery. Specific-binding peptides are selected with phage display technology using the CPC;Apc mouse model of spontaneous colonic dysplasia. Validation of peptide specificity is performed on flow cytometry and in vivo endoscopy. The peptides KCCFPAQ, AKPGYLS, and LTTHYKL are selected and labeled with 7-diethylaminocoumarin-3-carboxylic acid (DEAC), 5-carboxytetramethylrhodamine (TAMRA), and CF633, respectively. Separate droplets of KCCFPAQ-DEAC, AKPGYLS-TAMRA, and LTTHYKL-CF633 are distinguished at concentrations of 100 and 1 μM. Separate application of the fluorescent-labeled peptides demonstrate specific binding to colonic adenomas. The average target/background ratios are 1.71 ± 0.19 and 1.67 ± 0.12 for KCCFPAQ-DEAC and AKPGYLS-TAMRA, respectively. Administration of these two peptides together results in distinct binding patterns in the blue and green channels. Specific binding of two or more peptides can be distinguished in vivo using a novel multispectral endoscope to localize colonic dysplasia on real-time wide-field imaging.
Collapse
Affiliation(s)
- Sharon J. Miller
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology, 109 Zina Pitcher Pl. BSRB 1522, Ann Arbor, Michigan 48109-2200
| | - Cameron M. Lee
- University of Washington, Department of Mechanical Engineering, Human Photonics Laboratory, Box 352600, Seattle, Washington 98195
| | - Bishnu P. Joshi
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology, 109 Zina Pitcher Pl. BSRB 1522, Ann Arbor, Michigan 48109-2200
| | - Adam Gaustad
- University of Michigan, Department of Biomedical Engineering, Division of Gastroenterology, 109 Zina Pitcher Pl. BSRB 1522, Ann Arbor, Michigan 48109-2200
| | - Eric J. Seibel
- University of Washington, Department of Mechanical Engineering, Human Photonics Laboratory, Box 352600, Seattle, Washington 98195
| | - Thomas D. Wang
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology, 109 Zina Pitcher Pl. BSRB 1522, Ann Arbor, Michigan 48109-2200
- University of Michigan, Department of Biomedical Engineering, Division of Gastroenterology, 109 Zina Pitcher Pl. BSRB 1522, Ann Arbor, Michigan 48109-2200
- Address all correspondence to: Thomas D. Wang, University of Michigan, Department of Biomedical Engineering, Division of Gastroenterology, 109 Zina Pitcher Pl. BSRB 1522, Ann Arbor, Michigan 48109-2200. Tel: +734 936 1228; Fax: +734 647 7950; E-mail:
| |
Collapse
|
37
|
IGARASHI TATSUO, ZENBUTSU SATOKI, NAYA YUKIO, ISHII TAKURO, YU WENWEI, YAMANISHI TOMONORI. ASSESSMENT OF VOIDING FUNCTION BY ENDOSCOPIC IMAGING — A PRELIMINARY REPORT. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519409003164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a novel method of reconstructing the 3D structure of the prostatic urethra and measuring its elasticity using endoscopic video images, and discuss their relation to clinical relevancy. Information regarding pixel color and brightness in the endoscopic video image is converted to relative distance between the object and the light source. An opened, 3D image of the prostatic urethra is obtained from a video image captured by the endoscope as it is slowly pulled through the urethra. The elasticity of the urethra is determined by recording a video image of the endoscope fixed in the prostatic urethra, with and without irrigation under water pressure of approximately 80 cm H 2 O . Angulation of the prostatic urethra is estimated by the number of intersections between the outline of protruded prostate and the midline of the urethra in patients with severe voiding dysfunction scheduled for transurethral resection of prostate, and in those scheduled for transurethral resection of bladder tumor without apparent discomfort during urination. The number of intersections showed a relationship with voiding symptoms. In conclusion, reconstruction of the 3D structure of the prostatic urethra from endoscopic video images is a feasible method that shows promise for estimating the mechanism of voiding dysfunction.
Collapse
Affiliation(s)
- TATSUO IGARASHI
- Research Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba City, Chiba 263-8522, Japan
| | - SATOKI ZENBUTSU
- Research Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba City, Chiba 263-8522, Japan
| | - YUKIO NAYA
- Research Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba City, Chiba 263-8522, Japan
| | - TAKURO ISHII
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba City, Chiba 263-8522, Japan
| | - WEN-WEI YU
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba City, Chiba 263-8522, Japan
| | - TOMONORI YAMANISHI
- Department of Urology, Faculty of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| |
Collapse
|
38
|
Horizon Stabilized—Dynamic View Expansion for Robotic Assisted Surgery (HS-DVE). Int J Comput Assist Radiol Surg 2011; 7:281-8. [DOI: 10.1007/s11548-011-0603-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/02/2011] [Indexed: 01/07/2023]
|
39
|
Wang RCC, Deen MJ, Armstrong D, Fang Q. Development of a catadioptric endoscope objective with forward and side views. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:066015. [PMID: 21721816 DOI: 10.1117/1.3593148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Autofluorescence endoscopy is a promising functional imaging technique to improve screening of pre-cancerous or early cancer lesions in the gastrointestinal (GI) tract. Tissue autofluorescence signal is weak compared to white light reflectance imaging. Conventional forward-viewing endoscopes are inefficient in the collection of light from objects of interest along on the GI luminal wall. A key component of a complete autofluorescence endoscope is the light collection module. In this paper, we report the design, optimization, prototype development, and testing of an endoscope objective that is capable of acquiring simultaneous forward and radial views. The radial-view optical design was optimized for a balance between image quality and light collection. Modulation transfer function (MTF), entrance pupil radius, manufacturability, and field-of-view were parameters used in the lens optimization. In comparison with the typical forward-viewing endoscopes, our nonsequential ray trace simulations suggest the proposed radial-view design is more practical in the light collection. To validate the proposed simulation methods, a 3:1 scaled-up prototype was fabricated. Contrast measurements were taken with the prototype, and then compared with the simulated MTF.
Collapse
Affiliation(s)
- Roy Chih Chung Wang
- McMaster University, Department of Engineering Physics, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | | | | | | |
Collapse
|
40
|
Kundrat MJ, Reinhall PG, Lee CM, Seibel EJ. High Performance Open Loop Control of Scanning with a Small Cylindrical Cantilever Beam. JOURNAL OF SOUND AND VIBRATION 2011; 330:1762-1771. [PMID: 21359102 PMCID: PMC3045204 DOI: 10.1016/j.jsv.2010.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The steady state response motion of a base excited cantilever beam with circular cross-section excited by a unidirectional displacement will fall along a straight line. However, achieving straight-line motion with a real cantilever beam of circular cross-section is difficult to accomplish. This is due to the fact that nonlinear effects, small deviations from circularity, asymmetric boundary conditions, and actuator cross coupling can induce whirling. The vast majority of previous work on cantilever beam whirling has focused on the effects of system nonlinearities. We show that whirling is a much broader problem in the design of resonant beam scanners in that the onset of whirling does not depend on large amplitude of motion. Rather, whirling is the norm in real systems due to small system asymmetries and actuator cross coupling. It is therefore necessary to control the growth of the whirling motion when a unidirectional beam motion is desired. We have developed a novel technique to identify the two eigen directions of the beam. Base excitation generated by virtual electrodes along these orthogonal eigen axes of the cantilever beam system generates tip vibration without whirl. This leads to accurate open loop control of the motion of the beam through the combined actuation of two pairs of orthogonally placed actuator electrodes.
Collapse
Affiliation(s)
- Matthew J Kundrat
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195
| | | | | | | |
Collapse
|
41
|
Abstract
Spectral imaging, i.e. the acquisition of the spectrum emitted from each sample location, is a powerful tool for a wide variety of applications in science and technology. For biomedical applications, spectral imaging is important for accurate analysis of a biological specimen and for assisting clinical diagnosis, however it could be challenging mainly due to the typically low damage thresholds and strict time constraints. Here, we present a fiber-based technique termed spectrally encoded spectral imaging (SESI), in which a fully emitted spectrum is captured from each resolvable point of a specimen using an additional lateral scanning of the spectrally encoded line. The technique is demonstrated by capturing spectral data cubes of a color print and of a green leaf, and its potential advantage in signal-to-noise ratio is theoretically discussed. Using a miniaturized grating-lens configuration, SESI could be conducted endoscopically, allowing minimally invasive color and spectral imaging in remote locations of the body.
Collapse
Affiliation(s)
- Avraham Abramov
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | | | | |
Collapse
|
42
|
Muthusamy VR, Sharma P. Diagnosis and management of Barrett's esophagus: What's next? Gastrointest Endosc Clin N Am 2011; 21:171-81. [PMID: 21112506 DOI: 10.1016/j.giec.2010.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The past decade has led to marked improvements in our understanding regarding the pathogenesis and risk of progression of Barrett's esophagus (BE), enhanced imaging technology to improve dysplasia detection, and the development and refinement of endoscopic techniques, such as mucosal ablation and endoscopic mucosal resection(EMR), to eradicate BE. However, many questions remain including identifying which, if any, candidates are most appropriate for screening for BE; how to improve current surveillance protocols; predicting which patients with BE will develop neoplastic progression; identifying the most appropriate candidates for endoscopic eradication therapy; developing algorithms for appropriate management posteradication; and understanding the potential role of chemoprophylaxis. This article describes potential future advances regarding screening, surveillance, risk stratification, endoscopic eradication therapies, and chemoprevention and provides a potential future management strategy for patients with BE.
Collapse
Affiliation(s)
- V Raman Muthusamy
- Division of Gastroenterology, University of California, 101 The City Drive, City Tower, Suite 400, Zot 4092, Irvine, Orange, CA 92868, USA
| | | |
Collapse
|
43
|
Lee CM, Engelbrecht CJ, Soper TD, Helmchen F, Seibel EJ. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. JOURNAL OF BIOPHOTONICS 2010; 3:385-407. [PMID: 20336702 PMCID: PMC3163080 DOI: 10.1002/jbio.200900087] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In modern endoscopy, wide field of view and full color are considered necessary for navigating inside the body, inspecting tissue for disease and guiding interventions such as biopsy or surgery. Current flexible endoscope technologies suffer from reduced resolution when device diameter shrinks. Endoscopic procedures today, using coherent fiber-bundle technology on the scale of 1 mm, are performed with such poor image quality that the clinician's vision meets the criteria for legal blindness. Here, we review a new and versatile scanning fiber-imaging technology and describe its implementation for ultrathin and flexible endoscopy. This scanning fiber endoscope (SFE) or catheterscope enables high-quality, laser-based, video imaging for ultrathin clinical applications, while also providing new options for in vivo biological research of subsurface tissue and high resolution fluorescence imaging.
Collapse
Affiliation(s)
- Cameron M Lee
- University of Washington, Department of Mechanical Engineering, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
44
|
Soper T, Haynor D, Glenny R, Seibel E. In VivoValidation of a Hybrid Tracking System for Navigation of an Ultrathin Bronchoscope Within Peripheral Airways. IEEE Trans Biomed Eng 2010; 57:736-45. [DOI: 10.1109/tbme.2009.2034733] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Seibel EJ, Brentnall TA, Dominitz JA. New endoscopic and cytologic tools for cancer surveillance in the digestive tract. Gastrointest Endosc Clin N Am 2009; 19:299-307. [PMID: 19423026 PMCID: PMC2679952 DOI: 10.1016/j.giec.2009.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cancer surveillance is an increasing part of everyday practice in gastrointestinal Endoscopy due to the identification of high-risk groups from genetic and biomarker testing, genealogic and epidemiologic studies, and the increasing number of cancer survivors. An efficient surveillance program requires a cost-effective means for image-guided cancer detection and biopsy. A laser-based tethered-capsule endoscope with enhanced spectral imaging is introduced for unsedated surveillance of the lower esophagus. An ultrathin version of this same endoscope technology provides a 1.2-mm guidewire with imaging capability and cannula-style tools are proposed for image-guided biopsy. Advanced three-dimensional cell visualization techniques are described for increasing the sensitivity of early cancer diagnosis from hematoxylin-stained cells sampled from the pancreatic and biliary ducts.
Collapse
Affiliation(s)
- Eric J. Seibel
- Research Associate Professor Mechanical Engineering, Adjunct Bioengineering, Human Photonics Laboratory, University of Washington, Box 352600, Seattle, WA 98195, USA, voice: (206) 616-1486, fax: (206) 685-8047, , http://www.hpl.washington.edu
| | - Teresa A. Brentnall
- Professor, Department of Medicine, University of Washington, 1959 NE Pacific St, Box 356424, Seattle, WA 98115, phone 206-543-3280, fax 206-685-9478,
| | - Jason A. Dominitz
- Associate Professor of Medicine, Assistant Chief for Academic Affairs, Division of Gastroenterology, University of Washington School of Medicine, Director, Northwest Hepatitis C Resource Center, VA Puget Sound Health Care System, 1660 S. Columbian Way (111-Gastro) Seattle, WA 98108, voice: (206) 764-2285, fax (206) 764-2232,
| |
Collapse
|
46
|
Igarashi T, Suzuki H, Naya Y. Computer-based endoscopic image-processing technology for endourology and laparoscopic surgery. Int J Urol 2009; 16:533-43. [DOI: 10.1111/j.1442-2042.2009.02258.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Gan T, Wu JC, Rao NN, Chen T, Liu B. A feasibility trial of computer-aided diagnosis for enteric lesions in capsule endoscopy. World J Gastroenterol 2008; 14:6929-35. [PMID: 19058327 PMCID: PMC2773855 DOI: 10.3748/wjg.14.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate and evaluate the feasibility of the computer-aided screening diagnosis for enteric lesions in the capsule endoscopy (CE).
METHODS: After developing a series of algorithms for the screening diagnosis of the enteric lesions in CE based on their characteristic colors and contours, the normal and abnormal images obtained from 289 patients were respectively scanned and diagnosed by the CE readers and by the computer-aided screening for the enteric lesions with the image-processed software (IPS). The enteric lesions shown by the images included esoenteritis, mucosal ulcer and erosion, bleeding, space-occupying lesions, angioectasia, diverticula, parasites, etc. The images for the lesions or the suspected lesions confirmed by the CE readers and the computers were collected, and the effectiveness rate of the screening and the number of the scanned images were evaluated, respectively.
RESULTS: Compared with the diagnostic results obtained by the CE readers, the total effectiveness rate (sensitivity) in the screening of the commonly-encountered enteric lesions by IPS varied from 42.9% to 91.2%, with a median of 74.2%, though the specificity and the accuracy rates were still low, and the images for the rarely-encountered lesions were difficult to differentiate from the normal images. However, the number of the images screened by IPS was 5000 on average, and only 10%-15% of the original images were left behind. As a result, a large number of normal images were excluded, and the reading time decreased from 5 h to 1 h on average.
CONCLUSION: Though the total accuracy and specificity rates by the computer-aided screening for the enteric lesions with IPS are much lower than those by the CE readers, the computer-aided screening diagnosis can exclude a large number of the normal images and confine the enteric lesions to 5000 images on average, which can reduce the workload of the readers in the scanning of the images. This computer-aided screening technique can make a correct diagnosis as efficiently as possible in most of the patients.
Collapse
|
48
|
Seibel EJ, Brown CM, Dominitz JA, Kimmey MB. Scanning single fiber endoscopy: a new platform technology for integrated laser imaging, diagnosis, and future therapies. Gastrointest Endosc Clin N Am 2008; 18:467-78, viii. [PMID: 18674697 PMCID: PMC2553360 DOI: 10.1016/j.giec.2008.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Remote optical imaging of human tissue in vivo has been the foundation for the growth of minimally invasive medicine. This article describes a new type of endoscopic imaging that has been developed and applied to the human esophagus, pig bile duct, and mouse colon. The technology is based on a single optical fiber that is scanned at the distal tip of an ultrathin and flexible shaft that projects red, green, and blue laser light onto tissue in a spiral pattern. The resulting images are high-quality color video that is expected to produce future endoscopes that are thinner, longer, more flexible, and able to directly integrate the many recent advances of laser diagnostics and therapies.
Collapse
Affiliation(s)
- Eric J. Seibel
- University of Washington, Box 352600, Seattle, WA 98195, USA, voice: (206) 616-1486, fax: (206) 685-8047, , http://www.me.washington.edu/people/faculty/seibel/
| | - Christopher M. Brown
- University of Washington, Box 352600, Seattle, WA 98195, USA, voice: (206) 616-5743, fax: (206) 685-8047,
| | - Jason A. Dominitz
- University of Washington School of Medicine, Director, Northwest Hepatitis C Resource Center, VA Puget Sound Health Care System, 1660 S. Columbian Way (111-Gastro), Seattle, WA 98108, (206) 764-2285, fax (206) 277-4495,
| | - Michael B. Kimmey
- UW Medical Center, Clinical Professor Medicine, University of Washington, Seattle, WA, USA, (206) 543-4404, FAX: 206 685-8684,
| |
Collapse
|