1
|
Abdolkarimzadeh F, Ashory MR, Ghasemi-Ghalebahman A, Karimi A. A position- and time-dependent pressure profile to model viscoelastic mechanical behavior of the brain tissue due to tumor growth. Comput Methods Biomech Biomed Engin 2023; 26:660-672. [PMID: 35638726 PMCID: PMC9708950 DOI: 10.1080/10255842.2022.2082245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
This study proposed a computational framework to calculate the resultant position- and time-dependent pressure profile on the brain tissue due to tumor growth. A finite element (FE) patch of the brain tissue was constructed and an inverse dynamic FE-optimization algorithm was used to calculate its viscoelastic mechanical properties under compressive uniaxial loading. Two patient-specific post-tumor resection FE models were input to the FE-optimization algorithm to calculate the optimized 3rd-order position-dependent and normal distribution time-dependent pressure profile parameters. The optimized viscoelastic material properties, the most suitable simulation time, and the optimized 3rd-order position- and -time-dependent pressure profiles were calculated.
Collapse
Affiliation(s)
| | | | | | - Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Abdolkarimzadeh F, Ashory MR, Ghasemi-Ghalebahman A, Karimi A. Inverse dynamic finite element-optimization modeling of the brain tumor mass-effect using a variable pressure boundary. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 212:106476. [PMID: 34715517 DOI: 10.1016/j.cmpb.2021.106476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Statistical atlases of brain structure can potentially contribute in the surgical and radiotherapeutic treatment planning for the brain tumor patients. However, the current brain image-registration methods lack of accuracy when it comes to the mass-effect caused by tumor growth. Numerical simulations, such as finite element method (FEM), allow us to calculate the resultant pressure and deformation in the brain tissue due to tumor growth, and to predict the mass-effect. To date, however, the pressure boundary in the brain tissue due to tumor growth has been simply presented as a constant profile throughout the entire tumor outer surface that resulted in discrepancy between the patient imaging data and brain atlases. METHODS In this study, we employed a fully-coupled inverse dynamic FE-optimization method to estimate the resultant variable pressure boundary due to tumor resection surgery. To do that, magnetic resonance imaging data of two patients' pre- and post-tumor resection surgery were registered, segmented, volume-meshed, and prepared for fully-coupled inverse dynamic FE-optimization simulations. Two different pressure boundaries were defined on the brain cavity after tumor resection including: a) a constant pressure boundary and b) a variable pressure boundary. The inverse FE-optimization algorithm was used to find the optimum constant and variable pressure boundaries that result in the least distance between the surface-nodes of the post-surgery brain cavity and pre-surgery tumor. RESULTS The results revealed that a variable pressure boundary causes a considerably lower mean percentage error compared to a constant pressure one; hence, it can more effectively address the realistic boundary in tumor resection surgery and predict the mass-effect. CONCLUSIONS The proposed variable pressure boundary can be a robust tool that allows batch processing to register the brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. This approach is also computationally inexpensive and can be coupled to any FE software to run. The findings of this study have implications for not only predicting the accurate pressure boundary and mass-effect before tumor resection surgery, but also for predicting some clinical symptoms of brain cancers and presenting useful tools for APPLICATIONs in image-guided neurosurgery.
Collapse
Affiliation(s)
| | | | | | - Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
3
|
Lesage AC, Simmons A, Sen A, Singh S, Chen M, Cazoulat G, Weinberg JS, Brock KK. Viscoelastic biomechanical models to predict inward brain-shift using public benchmark data. Phys Med Biol 2021; 66. [PMID: 34469879 DOI: 10.1088/1361-6560/ac22dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2021] [Indexed: 11/11/2022]
Abstract
Brain-shift during neurosurgery compromises the accuracy of tracking the boundaries of the tumor to be resected. Although several studies have used various finite element models (FEMs) to predict inward brain-shift, evaluation of their accuracy and efficiency based on public benchmark data has been limited. This study evaluates several FEMs proposed in the literature (various boundary conditions, mesh sizes, and material properties) by using intraoperative imaging data (the public REtroSpective Evaluation of Cerebral Tumors [RESECT] database). Four patients with low-grade gliomas were identified as having inward brain-shifts. We computed the accuracy (using target registration error) of several FEM-based brain-shift predictions and compared our findings. Since information on head orientation during craniotomy is not included in this database, we tested various plausible angles of head rotation. We analyzed the effects of brain tissue viscoelastic properties, mesh size, craniotomy position, CSF drainage level, and rigidity of meninges and then quantitatively evaluated the trade-off between accuracy and central processing unit time in predicting inward brain-shift across all models with second-order tetrahedral FEMs. The mean initial target registration error (TRE) was 5.78 ± 3.78 mm with rigid registration. FEM prediction (edge-length, 5 mm) with non-rigid meninges led to a mean TRE correction of 1.84 ± 0.83 mm assuming heterogeneous material. Results show that, for the low-grade glioma patients in the study, including non-rigid modeling of the meninges was significant statistically. In contrast including heterogeneity was not significant. To estimate the optimal head orientation and CSF drainage, an angle step of 5° and an CSF height step of 5 mm were enough leading to <0.26 mm TRE fluctuation.
Collapse
Affiliation(s)
- Anne-Cecile Lesage
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Alexis Simmons
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Anando Sen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Simran Singh
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Melissa Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Guillaume Cazoulat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
4
|
Narasimhan S, Weis JA, Luo M, Simpson AL, Thompson RC, Miga MI. Accounting for intraoperative brain shift ascribable to cavity collapse during intracranial tumor resection. J Med Imaging (Bellingham) 2020; 7:031506. [PMID: 32613027 DOI: 10.1117/1.jmi.7.3.031506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/05/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: For many patients with intracranial tumors, accurate surgical resection is a mainstay of their treatment paradigm. During surgical resection, image guidance is used to aid in localization and resection. Intraoperative brain shift can invalidate these guidance systems. One cause of intraoperative brain shift is cavity collapse due to tumor resection, which will be referred to as "debulking." We developed an imaging-driven finite element model of debulking to create a comprehensive simulation data set to reflect possible intraoperative changes. The objective was to create a method to account for brain shift due to debulking for applications in image-guided neurosurgery. We hypothesized that accounting for tumor debulking in a deformation atlas data framework would improve brain shift predictions, which would enhance image-based surgical guidance. Approach: This was evaluated in a six-patient intracranial tumor resection intraoperative data set. The brain shift deformation atlas data framework consisted of n = 756 simulated deformations to account for effects due to gravity-induced and hyperosmotic drug-induced brain shift, which reflects previous developments. An additional complement of n = 84 deformations involving simulated tumor growth followed by debulking was created to capture observed intraoperative effects not previously included. Results: In five of six patient cases evaluated, inclusion of debulking mechanics improved brain shift correction by capturing global mass effects resulting from the resected tumor. Conclusions: These findings suggest imaging-driven brain shift models used to create a deformation simulation data framework of observed intraoperative events can be used to assist in more accurate image-guided surgical navigation in the brain.
Collapse
Affiliation(s)
- Saramati Narasimhan
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, Tennessee, United States
| | - Jared A Weis
- Wake Forest School of Medicine, Department of Biomedical Engineering, Winston-Salem, North Carolina, United States
| | - Ma Luo
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Amber L Simpson
- Queen's University, Department of Biomedical and Molecular Sciences, Ontario, Canada
| | - Reid C Thompson
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, Tennessee, United States
| | - Michael I Miga
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Luo M, Larson PS, Martin AJ, Miga MI. Accounting for Deformation in Deep Brain Stimulation Surgery With Models: Comparison to Interventional Magnetic Resonance Imaging. IEEE Trans Biomed Eng 2020; 67:2934-2944. [PMID: 32078527 DOI: 10.1109/tbme.2020.2974102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The efficacy of deep brain stimulation (DBS) depends on electrode placement accuracy, which can be jeopardized by brain shift due to burr hole and dura opening during surgery. Brain shift violates assumed rigid alignment between preoperative image and intraoperative anatomy, negatively impacting therapy. OBJECTIVE This study presents a deformation-atlas biomechanical model-based approach to address shift. METHODS Six patients, who underwent interventional magnetic resonance (iMR) image-guided DBS burr hole surgery, were studied. A patient-specific model was employed under varying surgical conditions, generating a collection of possible intraoperative shift estimations or a 'deformation atlas.' An inverse problem was driven by sparse measurements derived from iMR to determine an optimal fit of solutions of the atlas. This fit was then used to obtain a volumetric deformation field, which was utilized to update preoperative MR and estimate shift at surgical target region localized on iMR. Model performance was examined by quantitatively comparing intraoperative subsurface measurements to their model-predicted counterparts, and qualitatively comparing iMR, preoperative MR, and model updated MR. A nonrigid image registration was introduced as a comparator. RESULTS Model-based approach reduced general parenchyma shift from 8.2 ± 2.2 to 2.7 ± 1.1 mm (∼66.8% correction), and produced updated MR with better agreement to iMR than that of preoperative MR. The average model estimated shift at target region was 1.2 mm. CONCLUSIONS This study demonstrates the feasibility of a model-based shift correction strategy in DBS surgery with only sparse data. SIGNIFICANCE The developed strategy has the potential to complement and/or enhance current clinical approaches in addressing shift.
Collapse
|
6
|
Luo M, Frisken SF, Weis JA, Clements LW, Unadkat P, Thompson RC, Golby AJ, Miga MI. Retrospective study comparing model-based deformation correction to intraoperative magnetic resonance imaging for image-guided neurosurgery. J Med Imaging (Bellingham) 2017; 4:035003. [PMID: 28924573 PMCID: PMC5596210 DOI: 10.1117/1.jmi.4.3.035003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/21/2017] [Indexed: 11/14/2022] Open
Abstract
Brain shift during tumor resection compromises the spatial validity of registered preoperative imaging data that is critical to image-guided procedures. One current clinical solution to mitigate the effects is to reimage using intraoperative magnetic resonance (iMR) imaging. Although iMR has demonstrated benefits in accounting for preoperative-to-intraoperative tissue changes, its cost and encumbrance have limited its widespread adoption. While iMR will likely continue to be employed for challenging cases, a cost-effective model-based brain shift compensation strategy is desirable as a complementary technology for standard resections. We performed a retrospective study of [Formula: see text] tumor resection cases, comparing iMR measurements with intraoperative brain shift compensation predicted by our model-based strategy, driven by sparse intraoperative cortical surface data. For quantitative assessment, homologous subsurface targets near the tumors were selected on preoperative MR and iMR images. Once rigidly registered, intraoperative shift measurements were determined and subsequently compared to model-predicted counterparts as estimated by the brain shift correction framework. When considering moderate and high shift ([Formula: see text], [Formula: see text] measurements per case), the alignment error due to brain shift reduced from [Formula: see text] to [Formula: see text], representing [Formula: see text] correction. These first steps toward validation are promising for model-based strategies.
Collapse
Affiliation(s)
- Ma Luo
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Sarah F. Frisken
- Brigham and Women’s Hospital, Department of Radiology, Boston, Massachusetts, United States
| | - Jared A. Weis
- Wake Forest School of Medicine, Department of Biomedical Engineering, Winston-Salem, North Carolina, United States
| | - Logan W. Clements
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Prashin Unadkat
- Brigham and Women’s Hospital, Department of Radiology, Boston, Massachusetts, United States
| | - Reid C. Thompson
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, Tennessee, United States
| | - Alexandra J. Golby
- Brigham and Women’s Hospital, Department of Radiology, Boston, Massachusetts, United States
| | - Michael I. Miga
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States
- Vanderbilt University, Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, United States
| |
Collapse
|
7
|
Bayer S, Maier A, Ostermeier M, Fahrig R. Intraoperative Imaging Modalities and Compensation for Brain Shift in Tumor Resection Surgery. Int J Biomed Imaging 2017; 2017:6028645. [PMID: 28676821 PMCID: PMC5476838 DOI: 10.1155/2017/6028645] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/03/2017] [Indexed: 11/26/2022] Open
Abstract
Intraoperative brain shift during neurosurgical procedures is a well-known phenomenon caused by gravity, tissue manipulation, tumor size, loss of cerebrospinal fluid (CSF), and use of medication. For the use of image-guided systems, this phenomenon greatly affects the accuracy of the guidance. During the last several decades, researchers have investigated how to overcome this problem. The purpose of this paper is to present a review of publications concerning different aspects of intraoperative brain shift especially in a tumor resection surgery such as intraoperative imaging systems, quantification, measurement, modeling, and registration techniques. Clinical experience of using intraoperative imaging modalities, details about registration, and modeling methods in connection with brain shift in tumor resection surgery are the focuses of this review. In total, 126 papers regarding this topic are analyzed in a comprehensive summary and are categorized according to fourteen criteria. The result of the categorization is presented in an interactive web tool. The consequences from the categorization and trends in the future are discussed at the end of this work.
Collapse
Affiliation(s)
- Siming Bayer
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | | |
Collapse
|
8
|
Gerard IJ, Kersten-Oertel M, Petrecca K, Sirhan D, Hall JA, Collins DL. Brain shift in neuronavigation of brain tumors: A review. Med Image Anal 2016; 35:403-420. [PMID: 27585837 DOI: 10.1016/j.media.2016.08.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Neuronavigation based on preoperative imaging data is a ubiquitous tool for image guidance in neurosurgery. However, it is rendered unreliable when brain shift invalidates the patient-to-image registration. Many investigators have tried to explain, quantify, and compensate for this phenomenon to allow extended use of neuronavigation systems for the duration of surgery. The purpose of this paper is to present an overview of the work that has been done investigating brain shift. METHODS A review of the literature dealing with the explanation, quantification and compensation of brain shift is presented. The review is based on a systematic search using relevant keywords and phrases in PubMed. The review is organized based on a developed taxonomy that classifies brain shift as occurring due to physical, surgical or biological factors. RESULTS This paper gives an overview of the work investigating, quantifying, and compensating for brain shift in neuronavigation while describing the successes, setbacks, and additional needs in the field. An analysis of the literature demonstrates a high variability in the methods used to quantify brain shift as well as a wide range in the measured magnitude of the brain shift, depending on the specifics of the intervention. The analysis indicates the need for additional research to be done in quantifying independent effects of brain shift in order for some of the state of the art compensation methods to become useful. CONCLUSION This review allows for a thorough understanding of the work investigating brain shift and introduces the needs for future avenues of investigation of the phenomenon.
Collapse
Affiliation(s)
- Ian J Gerard
- McConnell Brain Imaging Center, MNI, McGill University, Montreal, Canada.
| | | | - Kevin Petrecca
- Department of Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Denis Sirhan
- Department of Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jeffery A Hall
- Department of Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - D Louis Collins
- McConnell Brain Imaging Center, MNI, McGill University, Montreal, Canada; Department of Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Kumar AN, Miga MI, Pheiffer TS, Chambless LB, Thompson RC, Dawant BM. Automatic tracking of intraoperative brain surface displacements in brain tumor surgery. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:1509-12. [PMID: 25570256 DOI: 10.1109/embc.2014.6943888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In brain tumor surgery, soft-tissue deformation, known as brain shift, introduces inaccuracies in the application of the preoperative surgical plan and impedes the advancement of image-guided surgical (IGS) systems. Considerable progress in using patient-specific biomechanical models to update the preoperative images intraoperatively has been made. These model-update methods rely on accurate intraoperative 3D brain surface displacements. In this work, we investigate and develop a fully automatic method to compute these 3D displacements for lengthy (~15 minutes) stereo-pair video sequences acquired during neurosurgery. The first part of the method finds homologous points temporally in the video and the second part computes the nonrigid transformation between these homologous points. Our results, based on parts of 2 clinical cases, show that this speedy and promising method can robustly provide 3D brain surface measurements for use with model-based updating frameworks.
Collapse
|
10
|
Meng X, Jiang R, Lin D, Bustillo J, Jones T, Chen J, Yu Q, Du Y, Zhang Y, Jiang T, Sui J, Calhoun VD. Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data. Neuroimage 2016; 145:218-229. [PMID: 27177764 DOI: 10.1016/j.neuroimage.2016.05.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/13/2016] [Accepted: 05/07/2016] [Indexed: 12/24/2022] Open
Abstract
Neuroimaging techniques have greatly enhanced the understanding of neurodiversity (human brain variation across individuals) in both health and disease. The ultimate goal of using brain imaging biomarkers is to perform individualized predictions. Here we proposed a generalized framework that can predict explicit values of the targeted measures by taking advantage of joint information from multiple modalities. This framework also enables whole brain voxel-wise searching by combining multivariate techniques such as ReliefF, clustering, correlation-based feature selection and multiple regression models, which is more flexible and can achieve better prediction performance than alternative atlas-based methods. For 50 healthy controls and 47 schizophrenia patients, three kinds of features derived from resting-state fMRI (fALFF), sMRI (gray matter) and DTI (fractional anisotropy) were extracted and fed into a regression model, achieving high prediction for both cognitive scores (MCCB composite r=0.7033, MCCB social cognition r=0.7084) and symptomatic scores (positive and negative syndrome scale [PANSS] positive r=0.7785, PANSS negative r=0.7804). Moreover, the brain areas likely responsible for cognitive deficits of schizophrenia, including middle temporal gyrus, dorsolateral prefrontal cortex, striatum, cuneus and cerebellum, were located with different weights, as well as regions predicting PANSS symptoms, including thalamus, striatum and inferior parietal lobule, pinpointing the potential neuromarkers. Finally, compared to a single modality, multimodal combination achieves higher prediction accuracy and enables individualized prediction on multiple clinical measures. There is more work to be done, but the current results highlight the potential utility of multimodal brain imaging biomarkers to eventually inform clinical decision-making.
Collapse
Affiliation(s)
- Xing Meng
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Rongtao Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongdong Lin
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Juan Bustillo
- Dept. of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
| | - Thomas Jones
- Dept. of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jiayu Chen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Qingbao Yu
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Yuhui Du
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Yu Zhang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA; CAS Center for Excellence in Brain Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA; Dept. of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA; Dept. of Electronic and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
Afzali M, Ghaffari A, Fatemizadeh E, Soltanian-Zadeh H. Medical image registration using sparse coding of image patches. Comput Biol Med 2016; 73:56-70. [PMID: 27085311 DOI: 10.1016/j.compbiomed.2016.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/27/2016] [Accepted: 03/28/2016] [Indexed: 11/16/2022]
Abstract
Image registration is a basic task in medical image processing applications like group analysis and atlas construction. Similarity measure is a critical ingredient of image registration. Intensity distortion of medical images is not considered in most previous similarity measures. Therefore, in the presence of bias field distortions, they do not generate an acceptable registration. In this paper, we propose a sparse based similarity measure for mono-modal images that considers non-stationary intensity and spatially-varying distortions. The main idea behind this measure is that the aligned image is constructed by an analysis dictionary trained using the image patches. For this purpose, we use "Analysis K-SVD" to train the dictionary and find the sparse coefficients. We utilize image patches to construct the analysis dictionary and then we employ the proposed sparse similarity measure to find a non-rigid transformation using free form deformation (FFD). Experimental results show that the proposed approach is able to robustly register 2D and 3D images in both simulated and real cases. The proposed method outperforms other state-of-the-art similarity measures and decreases the transformation error compared to the previous methods. Even in the presence of bias field distortion, the proposed method aligns images without any preprocessing.
Collapse
Affiliation(s)
- Maryam Afzali
- Department of Electrical Engineering, Biomedical Signal and Image Processing Laboratory (BiSIPL), Sharif University of Technology, Tehran, Iran.
| | - Aboozar Ghaffari
- Department of Electrical Engineering, Biomedical Signal and Image Processing Laboratory (BiSIPL), Sharif University of Technology, Tehran, Iran.
| | - Emad Fatemizadeh
- Department of Electrical Engineering, Biomedical Signal and Image Processing Laboratory (BiSIPL), Sharif University of Technology, Tehran, Iran.
| | - Hamid Soltanian-Zadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Image Analysis Laboratory, Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
12
|
Onofrey JA, Staib LH, Papademetris X. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients. Neuroimage Clin 2015; 10:291-301. [PMID: 26900569 PMCID: PMC4724039 DOI: 10.1016/j.nicl.2015.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/08/2015] [Accepted: 12/03/2015] [Indexed: 11/02/2022]
Abstract
This paper describes a framework for learning a statistical model of non-rigid deformations induced by interventional procedures. We make use of this learned model to perform constrained non-rigid registration of pre-procedural and post-procedural imaging. We demonstrate results applying this framework to non-rigidly register post-surgical computed tomography (CT) brain images to pre-surgical magnetic resonance images (MRIs) of epilepsy patients who had intra-cranial electroencephalography electrodes surgically implanted. Deformations caused by this surgical procedure, imaging artifacts caused by the electrodes, and the use of multi-modal imaging data make non-rigid registration challenging. Our results show that the use of our proposed framework to constrain the non-rigid registration process results in significantly improved and more robust registration performance compared to using standard rigid and non-rigid registration methods.
Collapse
Affiliation(s)
- John A. Onofrey
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Lawrence H. Staib
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Electrical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xenophon Papademetris
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases. Int J Comput Assist Radiol Surg 2015; 11:1467-74. [PMID: 26476637 DOI: 10.1007/s11548-015-1295-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/10/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Brain shift during neurosurgical procedures must be corrected for in order to reestablish accurate alignment for successful image-guided tumor resection. Sparse-data-driven biomechanical models that predict physiological brain shift by accounting for typical deformation-inducing events such as cerebrospinal fluid drainage, hyperosmotic drugs, swelling, retraction, resection, and tumor cavity collapse are an inexpensive solution. This study evaluated the robustness and accuracy of a biomechanical model-based brain shift correction system to assist with tumor resection surgery in 16 clinical cases. METHODS Preoperative computation involved the generation of a patient-specific finite element model of the brain and creation of an atlas of brain deformation solutions calculated using a distribution of boundary and deformation-inducing forcing conditions (e.g., sag, tissue contraction, and tissue swelling). The optimum brain shift solution was determined using an inverse problem approach which linearly combines solutions from the atlas to match the cortical surface deformation data collected intraoperatively. The computed deformations were then used to update the preoperative images for all 16 patients. RESULTS The mean brain shift measured ranged on average from 2.5 to 21.3 mm, and the biomechanical model-based correction system managed to account for the bulk of the brain shift, producing a mean corrected error ranging on average from 0.7 to 4.0 mm. CONCLUSIONS Biomechanical models are an inexpensive means to assist intervention via correction for brain deformations that can compromise surgical navigation systems. To our knowledge, this study represents the most comprehensive clinical evaluation of a deformation correction pipeline for image-guided neurosurgery.
Collapse
|
14
|
Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery. Ann Biomed Eng 2015; 44:128-38. [PMID: 26354118 DOI: 10.1007/s10439-015-1433-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/18/2015] [Indexed: 01/14/2023]
Abstract
With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.
Collapse
|
15
|
A method for the assessment of time-varying brain shift during navigated epilepsy surgery. Int J Comput Assist Radiol Surg 2015; 11:473-81. [DOI: 10.1007/s11548-015-1259-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
|
16
|
Simpson AL, Sun K, Pheiffer TS, Rucker DC, Sills AK, Thompson RC, Miga MI. Evaluation of conoscopic holography for estimating tumor resection cavities in model-based image-guided neurosurgery. IEEE Trans Biomed Eng 2015; 61:1833-43. [PMID: 24845293 DOI: 10.1109/tbme.2014.2308299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Surgical navigation relies on accurately mapping the intraoperative state of the patient to models derived from preoperative images. In image-guided neurosurgery, soft tissue deformations are common and have been shown to compromise the accuracy of guidance systems. In lieu of whole-brain intraoperative imaging, some advocate the use of intraoperatively acquired sparse data from laser-range scans, ultrasound imaging, or stereo reconstruction coupled with a computational model to drive subsurface deformations. Some authors have reported on compensating for brain sag, swelling, retraction, and the application of pharmaceuticals such as mannitol with these models. To date, strategies for modeling tissue resection have been limited. In this paper, we report our experiences with a novel digitization approach, called a conoprobe, to document tissue resection cavities and assess the impact of resection on model-based guidance systems. Specifically, the conoprobe was used to digitize the interior of the resection cavity during eight brain tumor resection surgeries and then compared against model prediction results of tumor locations. We should note that no effort was made to incorporate resection into the model but rather the objective was to determine if measurement was possible to study the impact on modeling tissue resection. In addition, the digitized resection cavity was compared with early postoperative MRI scans to determine whether these scans can further inform tissue resection. The results demonstrate benefit in model correction despite not having resection explicitly modeled. However, results also indicate the challenge that resection provides for model-correction approaches. With respect to the digitization technology, it is clear that the conoprobe provides important real-time data regarding resection and adds another dimension to our noncontact instrumentation framework for soft-tissue deformation compensation in guidance systems.
Collapse
|
17
|
von Holst H, Li X. Decompressive craniectomy (DC) at the non-injured side of the brain has the potential to improve patient outcome as measured with computational simulation. Acta Neurochir (Wien) 2014; 156:1961-7; discussion 1967. [PMID: 25100152 DOI: 10.1007/s00701-014-2195-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/23/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Decompressive craniectomy (DC) is efficient in reducing the intracranial pressure in several complicated disorders such as traumatic brain injury (TBI) and stroke. The neurosurgical procedure has indeed reduced the number of deaths. However, parallel with the reduced fatal cases, the number of vegetative patients has increased significantly. Mechanical stretching in axonal fibers has been suggested to contribute to the unfavorable outcome. Thus, there is a need for improving treatment procedures that allow both reduced fatal and vegetative outcomes. The hypothesis is that by performing the DC at the non-injured side of the head, stretching of axonal fibers at the injured brain tissue can be reduced, thereby having the potential to improve patient outcome. METHODS Six patients, one with TBI and five with stroke, were treated with DC and where each patient's pre- and postoperative computerized tomography (CT) were analyzed and transferred to a finite element (FE) model of the human head and brain to simulate DC both at the injured and non-injured sides of the head. Poroelastic material was used to simulate brain tissue. RESULTS The computational simulation showed slightly to substantially increased axonal strain levels over 40 % on the injured side where the actual DC had been performed in the six patients. However, when the simulation DC was performed on the opposite, non-injured side, there was a substantial reduction in axonal strain levels at the injured side of brain tissue. Also, at the opposite, non-injured side, the axonal strain level was substantially lower in the brain tissue. The reduced axonal strain level could be verified by analyzing a number of coronal sections in each patient. Further analysis of axial slices showed that falx may tentatively explain part of the different axonal strain levels between the DC performances at injured and opposite, non-injured sides of the head. CONCLUSIONS By using a FE method it is possible to optimize the DC procedure to a non-injured area of the head thereby having the potential to reduce axonal stretching at the injured brain tissue. The postoperative DC stretching of axonal fibers may be influenced by different anatomical structures including falx. It is suggested that including computational FE simulation images may offer guidance to reduce axonal strain level tailoring the anatomical location of DC performance in each patient.
Collapse
Affiliation(s)
- Hans von Holst
- Division of Neuronic Engineering, School of Technology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden,
| | | |
Collapse
|
18
|
Kumar AN, Miga MI, Pheiffer TS, Chambless LB, Thompson RC, Dawant BM. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope. Med Image Anal 2014; 19:30-45. [PMID: 25189364 DOI: 10.1016/j.media.2014.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022]
Abstract
One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient's preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1 Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (∼1 h) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square errors (surface-to-surface distance) in the 0.28-0.81 mm range on the phantom object and in the 0.54-1.35 mm range on 4 clinical cases. The digitization accuracy of the presented stereovision methods indicate that the operating microscope can be used to deliver the persistent intraoperative input required by computational biomechanical models to update the patient's preoperative images and facilitate active surgical guidance.
Collapse
Affiliation(s)
- Ankur N Kumar
- Vanderbilt University, Department of Electrical Engineering, Nashville, TN 37235, USA
| | - Michael I Miga
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN 37235, USA
| | - Thomas S Pheiffer
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN 37235, USA
| | - Lola B Chambless
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, TN 37232, USA
| | - Reid C Thompson
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, TN 37232, USA
| | - Benoit M Dawant
- Vanderbilt University, Department of Electrical Engineering, Nashville, TN 37235, USA
| |
Collapse
|
19
|
Sun K, Pheiffer TS, Simpson AL, Weis JA, Thompson RC, Miga MI. Near Real-Time Computer Assisted Surgery for Brain Shift Correction Using Biomechanical Models. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2014; 2:2500113. [PMID: 25914864 PMCID: PMC4405800 DOI: 10.1109/jtehm.2014.2327628] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 12/17/2013] [Accepted: 05/05/2014] [Indexed: 11/05/2022]
Abstract
Conventional image-guided neurosurgery relies on preoperative images to provide surgical navigational information and visualization. However, these images are no longer accurate once the skull has been opened and brain shift occurs. To account for changes in the shape of the brain caused by mechanical (e.g., gravity-induced deformations) and physiological effects (e.g., hyperosmotic drug-induced shrinking, or edema-induced swelling), updated images of the brain must be provided to the neuronavigation system in a timely manner for practical use in the operating room. In this paper, a novel preoperative and intraoperative computational processing pipeline for near real-time brain shift correction in the operating room was developed to automate and simplify the processing steps. Preoperatively, a computer model of the patient's brain with a subsequent atlas of potential deformations due to surgery is generated from diagnostic image volumes. In the case of interim gross changes between diagnosis, and surgery when reimaging is necessary, our preoperative pipeline can be generated within one day of surgery. Intraoperatively, sparse data measuring the cortical brain surface is collected using an optically tracked portable laser range scanner. These data are then used to guide an inverse modeling framework whereby full volumetric brain deformations are reconstructed from precomputed atlas solutions to rapidly match intraoperative cortical surface shift measurements. Once complete, the volumetric displacement field is used to update, i.e., deform, preoperative brain images to their intraoperative shifted state. In this paper, five surgical cases were analyzed with respect to the computational pipeline and workflow timing. With respect to postcortical surface data acquisition, the approximate execution time was 4.5 min. The total update process which included positioning the scanner, data acquisition, inverse model processing, and image deforming was ~11-13 min. In addition, easily implemented hardware, software, and workflow processes were identified for improved performance in the near future.
Collapse
Affiliation(s)
- Kay Sun
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Thomas S. Pheiffer
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Amber L. Simpson
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jared A. Weis
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Reid C. Thompson
- Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleTN37232USA
| | - Michael I. Miga
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleTN37232USA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTN37232USA
| |
Collapse
|
20
|
Rucker DC, Wu Y, Clements LW, Ondrake JE, Pheiffer TS, Simpson AL, Jarnagin WR, Miga MI. A Mechanics-Based Nonrigid Registration Method for Liver Surgery Using Sparse Intraoperative Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:147-58. [PMID: 24107926 PMCID: PMC4057359 DOI: 10.1109/tmi.2013.2283016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In open abdominal image-guided liver surgery, sparse measurements of the organ surface can be taken intraoperatively via a laser-range scanning device or a tracked stylus with relatively little impact on surgical workflow. We propose a novel nonrigid registration method which uses sparse surface data to reconstruct a mapping between the preoperative CT volume and the intraoperative patient space. The mapping is generated using a tissue mechanics model subject to boundary conditions consistent with surgical supportive packing during liver resection therapy. Our approach iteratively chooses parameters which define these boundary conditions such that the deformed tissue model best fits the intraoperative surface data. Using two liver phantoms, we gathered a total of five deformation datasets with conditions comparable to open surgery. The proposed nonrigid method achieved a mean target registration error (TRE) of 3.3 mm for targets dispersed throughout the phantom volume, using a limited region of surface data to drive the nonrigid registration algorithm, while rigid registration resulted in a mean TRE of 9.5 mm. In addition, we studied the effect of surface data extent, the inclusion of subsurface data, the trade-offs of using a nonlinear tissue model, robustness to rigid misalignments, and the feasibility in five clinical datasets.
Collapse
Affiliation(s)
- D. Caleb Rucker
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Yifei Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Logan W. Clements
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Janet E. Ondrake
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Thomas S. Pheiffer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Amber L. Simpson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | | | - Michael I. Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
21
|
Chen I, Ong RE, Simpson AL, Sun K, Thompson RC, Miga MI. Integrating Retraction Modeling Into an Atlas-Based Framework for Brain Shift Prediction. IEEE Trans Biomed Eng 2013; 60:3494-504. [PMID: 23864146 DOI: 10.1109/tbme.2013.2272658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent work, an atlas-based statistical model for brain shift prediction, which accounts for uncertainty in the intraoperative environment, has been proposed. Previous work reported in the literature using this technique did not account for local deformation caused by surgical retraction. It is challenging to precisely localize the retractor location prior to surgery and the retractor is often moved in the course of the procedure. This paper proposes a technique that involves computing the retractor-induced brain deformation in the operating room through an active model solve and linearly superposing the solution with the precomputed deformation atlas. As a result, the new method takes advantage of the atlas-based framework's accounting for uncertainties while also incorporating the effects of retraction with minimal intraoperative computing. This new approach was tested using simulation and phantom experiments. The results showed an improvement in average shift correction from 50% (ranging from 14 to 81%) for gravity atlas alone to 80% using the active solve retraction component (ranging from 73 to 85%). This paper presents a novel yet simple way to integrate retraction into the atlas-based brain shift computation framework.
Collapse
|
22
|
Simpson AL, Burgner J, Glisson CL, Herrell SD, Ma B, Pheiffer TS, Webster RJ, Miga MI. Comparison study of intraoperative surface acquisition methods for surgical navigation. IEEE Trans Biomed Eng 2012; 60:1090-9. [PMID: 22929367 DOI: 10.1109/tbme.2012.2215033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Soft-tissue image-guided interventions often require the digitization of organ surfaces for providing correspondence from medical images to the physical patient in the operating room. In this paper, the effect of several inexpensive surface acquisition techniques on target registration error and surface registration error (SRE) for soft tissue is investigated. A systematic approach is provided to compare image-to-physical registrations using three different methods of organ spatial digitization: 1) a tracked laser-range scanner (LRS), 2) a tracked pointer, and 3) a tracked conoscopic holography sensor (called a conoprobe). For each digitization method, surfaces of phantoms and biological tissues were acquired and registered to CT image volume counterparts. A comparison among these alignments demonstrated that registration errors were statistically smaller with the conoprobe than the tracked pointer and LRS (p<0.01). In all acquisitions, the conoprobe outperformed the LRS and tracked pointer: for example, the arithmetic means of the SRE over all data acquisitions with a porcine liver were 1.73 ± 0.77 mm, 3.25 ± 0.78 mm, and 4.44 ± 1.19 mm for the conoprobe, LRS, and tracked pointer, respectively. In a cadaveric kidney specimen, the arithmetic means of the SRE over all trials of the conoprobe and tracked pointer were 1.50 ± 0.50 mm and 3.51 ± 0.82 mm, respectively. Our results suggest that tissue displacements due to contact force and attempts to maintain contact with tissue, compromise registrations that are dependent on data acquired from a tracked surgical instrument and we provide an alternative method (tracked conoscopic holography) of digitizing surfaces for clinical usage. The tracked conoscopic holography device outperforms LRS acquisitions with respect to registration accuracy.
Collapse
Affiliation(s)
- Amber L Simpson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Toward a preoperative planning tool for brain tumor resection therapies. Int J Comput Assist Radiol Surg 2012; 8:87-97. [PMID: 22622877 DOI: 10.1007/s11548-012-0693-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Neurosurgical procedures involving tumor resection require surgical planning such that the surgical path to the tumor is determined to minimize the impact on healthy tissue and brain function. This work demonstrates a predictive tool to aid neurosurgeons in planning tumor resection therapies by finding an optimal model-selected patient orientation that minimizes lateral brain shift in the field of view. Such orientations may facilitate tumor access and removal, possibly reduce the need for retraction, and could minimize the impact of brain shift on image-guided procedures. METHODS In this study, preoperative magnetic resonance images were utilized in conjunction with pre- and post-resection laser range scans of the craniotomy and cortical surface to produce patient-specific finite element models of intraoperative shift for 6 cases. These cases were used to calibrate a model (i.e., provide general rules for the application of patient positioning parameters) as well as determine the current model-based framework predictive capabilities. Finally, an objective function is proposed that minimizes shift subject to patient position parameters. Patient positioning parameters were then optimized and compared to our neurosurgeon as a preliminary study. RESULTS The proposed model-driven brain shift minimization objective function suggests an overall reduction of brain shift by 23 % over experiential methods. CONCLUSIONS This work recasts surgical simulation from a trial-and-error process to one where options are presented to the surgeon arising from an optimization of surgical goals. To our knowledge, this is the first realization of an evaluative tool for surgical planning that attempts to optimize surgical approach by means of shift minimization in this manner.
Collapse
|
24
|
Simpson AL, Dumpuri P, Jarnagin WR, Miga MI. Model-Assisted Image-Guided Liver Surgery Using Sparse Intraoperative Data. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2012. [DOI: 10.1007/8415_2012_117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Chen I, Coffey AM, Ding S, Dumpuri P, Dawant BM, Thompson RC, Miga MI. Intraoperative brain shift compensation: accounting for dural septa. IEEE Trans Biomed Eng 2010; 58:499-508. [PMID: 21097376 DOI: 10.1109/tbme.2010.2093896] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biomechanical models that describe soft tissue deformation provide a relatively inexpensive way to correct registration errors in image-guided neurosurgical systems caused by nonrigid brain shift. Quantifying the factors that cause this deformation to sufficient precision is a challenging task. To circumvent this difficulty, atlas-based methods have been developed recently that allow for uncertainty, yet still capture the first-order effects associated with deformation. The inverse solution is driven by sparse intraoperative surface measurements, which could bias the reconstruction and affect the subsurface accuracy of the model prediction. Studies using intraoperative MR have shown that the deformation in the midline, tentorium, and contralateral hemisphere is relatively small. The dural septa act as rigid membranes supporting the brain parenchyma and compartmentalizing the brain. Accounting for these structures in models may be an important key to improving subsurface shift accuracy. A novel method to segment the tentorium cerebelli will be described, along with the procedure for modeling the dural septa. Results in seven clinical cases show a qualitative improvement in subsurface shift accuracy making the predicted deformation more congruous with previous observations in the literature. The results also suggest a considerably more important role for hyperosmotic drug modeling for the intraoperative shift correction environment.
Collapse
Affiliation(s)
- Ishita Chen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | |
Collapse
|