1
|
Mancino F, Nouri H, Moccaldi N, Arpaia P, Kanoun O. Equivalent Electrical Circuit Approach to Enhance a Transducer for Insulin Bioavailability Assessment. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:533-541. [PMID: 39155919 PMCID: PMC11329217 DOI: 10.1109/jtehm.2024.3425269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024]
Abstract
The equivalent electrical circuit approach is explored to improve a bioimpedance-based transducer for measuring the bioavailability of synthetic insulin already presented in previous studies. In particular, the electrical parameter most sensitive to the variation of insulin amount injected was identified. Eggplants were used to emulate human electrical behavior under a quasi-static assumption guaranteed by a very low measurement time compared to the estimated insulin absorption time. Measurements were conducted with the EVAL-AD5940BIOZ by applying a sinusoidal voltage signal with an amplitude of 100 mV and acquiring impedance spectra in the range [1-100] kHz. 14 units of insulin were gradually administered using a Lilly's Insulin Pen having a 0.4 cm long needle. Modified Hayden's model was adopted as a reference circuit and the electrical component modeling the extracellular fluids was found to be the most insulin-sensitive parameter. The trnasducer achieves a state-of-the-art sensitivity of 225.90 ml1. An improvement of 223 % in sensitivity, 44 % in deterministic error, 7 % in nonlinearity, and 42 % in reproducibility was achieved compared to previous experimental studies. The clinical impact of the transducer was evaluated by projecting its impact on a Smart Insulin Pen for real-time measurement of insulin bioavailability. The wide gain in sensitivity of the bioimpedance-based transducer results in a significant reduction of the uncertainty of the Smart Insulin Pen. Considering the same improvement in in-vivo applications, the uncertainty of the Smart Insulin Pen is decreased from [Formula: see text]l to [Formula: see text]l.Clinical and Translational Impact Statement: A Smart Insulin Pen based on impedance spectroscopy and equivalent electrical circuit approach could be an effective solution for the non-invasive and real-time measurement of synthetic insulin uptake after subcutaneous administration.
Collapse
Affiliation(s)
- Francesca Mancino
- Department of Electrical Engineering and Information Technology (DIETI)University of Naples Federico IINaples80125Italy
| | - Hanen Nouri
- Department of Electrical Engineering and Information TechnologyChemnitz University of TechnologyChemnitz09107Germany
| | - Nicola Moccaldi
- Department of Electrical Engineering and Information Technology (DIETI)University of Naples Federico IINaples80125Italy
| | - Pasquale Arpaia
- Department of Electrical Engineering and Information Technology (DIETI)University of Naples Federico IINaples80125Italy
| | - Olfa Kanoun
- Department of Electrical Engineering and Information TechnologyChemnitz University of TechnologyChemnitz09107Germany
| |
Collapse
|
2
|
Cappon G, Facchinetti A. Digital Twins in Type 1 Diabetes: A Systematic Review. J Diabetes Sci Technol 2024:19322968241262112. [PMID: 38887022 DOI: 10.1177/19322968241262112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Digital twin is a new concept that is rapidly gaining recognition especially in the medical field. Indeed, being a virtual representation of real-world entities and processes, a digital twin can be used to accurately represent the patients' disease, clarify the treatment target, and realize personalized and precise therapies. However, despite being a revolutionary concept, the diffusion of digital twins in type 1 diabetes (T1D) is still limited. In this systematic review, we analyzed structure, operating conditions, and characteristics of digital twins being developed for T1D. Our search covered published documents until March 2024: 220 publications were identified, 37 of which were duplicated entries; in addition, 173 publications were removed after inspection of titles, abstracts, and keywords; and finally, 11 publications were fully reviewed, of which 8 were deemed eligible for inclusion. We found that all eight methodologies are not comprehensive multi-scale virtual replicas of the individual with T1D, but they all focus on describing glucose-insulin metabolism, aiming to simulate glucose concentration resultant from therapeutic interventions. In this review, we will compare and analyze different factors characterizing these digital twins, such as operating principles (mathematical model, twinning procedure, validation and assessment) and the key aspects for practical adoption (inclusion of physical activity, data required for twinning, open-source availability). We will conclude the paper listing which, in our opinion, are the current limitations and future directives of digital twins in T1D, hoping that this article can be helpful to researchers working on diabetes technologies to further develop the use of such an important instrument.
Collapse
Affiliation(s)
- Giacomo Cappon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Colmegna P, Diaz C. JL, Garcia-Tirado J, DeBoer MD, Breton MD. Adjusting Therapy Profiles When Switching to Ultra-Rapid Lispro in an Advanced Hybrid Closed-Loop System: An in Silico Study. J Diabetes Sci Technol 2024; 18:676-685. [PMID: 36424765 PMCID: PMC11089876 DOI: 10.1177/19322968221140401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND It has been shown that insulin acceleration by itself might not be sufficient to see clear improvements in glycemic metrics, and insulin therapy may need to be adjusted to fully leverage the extra safety margin provided by faster pharmacokinetic (PK) and pharmacodynamic (PD) profiles. The objective of this work is to explore how to perform such adjustments on a commercially available automated insulin delivery (AID) system. METHODS Ultra-rapid lispro (URLi) is modeled within the UVA/Padova simulation platform using data from previously published clamp studies. The Control-IQ AID algorithm is selected as it leverages carbohydrate-to-insulin ratio (CR in g/U), correction factor (CF in mg/dL/U), and basal rate (BR in U/h) daily profiles that are fully customizable. An experiment roadmap is proposed to understand how to safely modify these profiles when switching from lispro to URLi. RESULTS Simulations show that a 7% decrease in CR (approximately an 8% increase in prandial insulin) and a 7.5% increase in BR lead to cumulative improvements in glucose control with URLi. Comparing with baseline metrics using lispro, a clinically significant increase in time in the range of 70 to 180 mg/dL (overall: 70.2%-75.2%, P < .001; 6 am-12 am: 62.4%-68.5%, P < .001) and a reduction in time below 70 mg/dL (overall: 1.8%-1.2%, P < .001; 6 am-12 am: 1.8%-1.3%, P < .001) were observed. CONCLUSION Properly adjusting therapy parameters allows to fully leverage glucose control benefits provided by faster insulin analogues, opening opportunities to take another step forward into a next generation of more effective AID solutions.
Collapse
Affiliation(s)
- Patricio Colmegna
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Jenny L. Diaz C.
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Jose Garcia-Tirado
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Mark D. DeBoer
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Marc D. Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Visentin R, Cobelli C, Sieber J, Dalla Man C. Short- and Long-Term Effects on Glucose Control of Nonadherence to Insulin Therapy in People With Type 2 Diabetes An In Silico Study. J Diabetes Sci Technol 2024; 18:309-317. [PMID: 38284154 DOI: 10.1177/19322968231223936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
BACKGROUND Strict adherence to multiple daily insulin (MDI) therapy is a cornerstone for the achievement of good glucose control in people with advanced type 2 diabetes (T2D). Here, we aim to in silico assess glucose control in T2D subjects with poor adherence to MDI therapy. METHODS We tuned the Padova T2D Simulator, originally describing early-stage T2D physiology, around advanced T2D people. One hundred in silico advanced T2D subjects were generated and equipped with optimal MDI therapy: specifically, basal and bolus insulin amounts and injection times were individualized for each subject by applying titration algorithms that iteratively update insulin dose based on glucose deviation from its target. Then, the effect of nonadhering to MDI therapy was assessed using standard glucose control metrics calculated in two 6-month 3-meal/day in silico scenarios: in Scenario 1, subjects received the optimal basal and prandial insulin bolus at each meal; in Scenario 2, subjects received optimal basal insulin and randomly delayed or skipped the prandial insulin bolus in 3 lunches during working days and 1 dinner during weekends. RESULTS A statistically significant degradation was found in all glucose control outcome metrics in Scenario 2 versus Scenario 1: e.g., percent time above 180 mg/dL increased by 22.2% and glucose management index by 0.2%. CONCLUSIONS Impaired adherence to MDI therapy in T2D leads to glucose control deteriorations in both short and long terms. Interestingly, short-term hyperglycemia seems being contrasted by residual endogenous insulin secretion, which statistically increased by 3-fold after delayed/skipped insulin boluses compared with optimal ones.
Collapse
Affiliation(s)
- Roberto Visentin
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Claudio Cobelli
- Department of Woman and Child's Health, University of Padua, Padua, Italy
| | | | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Pellizzari E, Prendin F, Cappon G, Sparacino G, Facchinetti A. drCORRECT: An Algorithm for the Preventive Administration of Postprandial Corrective Insulin Boluses in Type 1 Diabetes Management. J Diabetes Sci Technol 2023:19322968231221768. [PMID: 38158565 DOI: 10.1177/19322968231221768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND In type 1 diabetes therapy, precise tuning of postprandial corrective insulin boluses (CIBs) is crucial to mitigate hyperglycemia without inducing dangerous hypoglycemic events. Several heuristic formulas accounting for continuous glucose monitoring (CGM) trend have been proposed in the literature. However, these formulas suggest a lot of quantized CIB adjustments, and they lack personalization. METHOD drCORRECT algorithm proposed in this work employs a patient-specific time parameter and the "dynamic risk" (DR) measure to determine postprandial CIB suggestion. The expected benefits include the reduction of time in hyperglycemia, thanks to the preventive action exploited through DR. drCORRECT has been assessed retrospectively vs the literature methods proposed by Aleppo et al (AL), Bruttomesso et al (BR), and Ziegler et al (ZI) using a data set of 49 CGM daily traces recorded in free-living conditions. Retrospective evaluation of the algorithms is made possible by the use of ReplayBG, a digital twin-based tool that allows assessing alternative insulin therapies on already collected glucose data. Efficacy in terms of glucose control was measured by temporal, risk indicators, and dedicated hyperglycemic/hypoglycemic events metrics. RESULTS drCORRECT significantly reduces time spent in hyperglycemia when compared with AL and BR (33.52 [24.16, 39.89]% vs 39.76 [22.54, 48.15]% and 36.32 [26.91, 45.93]%, respectively); significantly reduces daily injected insulin (5.97 [3.80, 8.06] U vs 7.5 [5.21, 10.34] U), glycemia risk index (38.78 [26.58, 55.39] vs 40.78 [27.95, 70.30]), and time spent in hypoglycemia (0.00 [0.00, 1.74]% vs 0.00 [0.00, 10.23]%) when compared with ZI, resulting overall in a safer strategy. CONCLUSIONS The proposed drCORRECT algorithm allows preventive actions thanks to the personalized timing configuration and the introduction of the innovative DR-based CIB threshold, proving to be a valid alternative to the available heuristic literature methods.
Collapse
Affiliation(s)
- Elisa Pellizzari
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Francesco Prendin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giacomo Cappon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Aiello EM, Laffel LM, Patti ME, Doyle FJ. Ketone-Based Alert System for Insulin Pump Failures. J Diabetes Sci Technol 2023:19322968231209339. [PMID: 37946403 DOI: 10.1177/19322968231209339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND An increasing number of individuals with type 1 diabetes (T1D) manage glycemia with insulin pumps containing short-acting insulin. If insulin delivery is interrupted for even a few hours due to pump or infusion site malfunction, the resulting insulin deficiency can rapidly initiate ketogenesis and diabetic ketoacidosis (DKA). METHODS To detect an event of accidental cessation of insulin delivery, we propose the design of ketone-based alert system (K-AS). This system relies on an extended Kalman filter based on plasma 3-beta-hydroxybutyrate (BOHB) measurements to estimate the disturbance acting on the insulin infusion/injection input. The alert system is based on a novel physiological model capable of simulating the ketone body turnover in response to a change in plasma insulin levels. Simulated plasma BOHB levels were compared with plasma BOHB levels available in the literature. We evaluated the performance of the K-AS on 10 in silico subjects using the S2014 UVA/Padova simulator for two different scenarios. RESULTS The K-AS achieves an average detection time of 84 and 55.5 minutes in fasting and postprandial conditions, respectively, which compares favorably and improves against a detection time of 193 and 120 minutes, respectively, based on the current guidelines. CONCLUSIONS The K-AS leverages the rapid rate of increase of plasma BOHB to achieve short detection time in order to prevent BOHB levels from rising to dangerous levels, without any false-positive alarms. Moreover, the proposed novel insulin-BOHB model will allow us to understand the efficacy of treatment without compromising patient safety.
Collapse
Affiliation(s)
- Eleonora M Aiello
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
- Sansum Diabetes Research Institute, Santa Barbara, CA, USA
| | - Lori M Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
- Sansum Diabetes Research Institute, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Cappon G, Prendin F, Facchinetti A, Sparacino G, Favero SD. Individualized Models for Glucose Prediction in Type 1 Diabetes: Comparing Black-Box Approaches to a Physiological White-Box One. IEEE Trans Biomed Eng 2023; 70:3105-3115. [PMID: 37195837 DOI: 10.1109/tbme.2023.3276193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Accurate blood glucose (BG) prediction are key in next-generation tools for type 1 diabetes (T1D) management, such as improved decision support systems and advanced closed-loop control. Glucose prediction algorithms commonly rely on black-box models. Large physiological models, successfully adopted for simulation, were little explored for glucose prediction, mostly because their parameters are hard to individualize. In this work, we develop a BG prediction algorithm based on a personalized physiological model inspired by the UVA/Padova T1D Simulator. Then we compare white-box and advanced black-box personalized prediction techniques. METHODS A personalized nonlinear physiological model is identified from patient data through a Bayesian approach based on Markov Chain Monte Carlo technique. The individualized model was integrated within a particle filter (PF) to predict future BG concentrations. The black-box methodologies considered are non-parametric models estimated via gaussian regression (NP), three deep learning methods: long-short-term-memory (LSTM), gated recurrent unit (GRU), temporal convolutional networks (TCN), and a recursive autoregressive with exogenous input model (rARX). BG forecasting performances are assessed for several prediction horizons (PH) on 12 individuals with T1D, monitored in free-living conditions under open-loop therapy for 10 weeks. RESULTS NP models provide the most effective BG predictions by achieving a root mean square error (RMSE), RMSE = 18.99 mg/dL, RMSE = 25.72 mg/dL and RMSE = 31.60 mg/dL, significantly outperforming: LSTM, GRU (for PH = 30 minutes), TCN, rARX, and the proposed physiological model for PH=30, 45 and 60 minutes. CONCLUSIONS Black-box strategies remain preferable for glucose prediction even when compared to a white-box model with sound physiological structure and individualized parameters.
Collapse
|
8
|
Cappon G, Vettoretti M, Sparacino G, Favero SD, Facchinetti A. ReplayBG: A Digital Twin-Based Methodology to Identify a Personalized Model From Type 1 Diabetes Data and Simulate Glucose Concentrations to Assess Alternative Therapies. IEEE Trans Biomed Eng 2023; 70:3227-3238. [PMID: 37368794 DOI: 10.1109/tbme.2023.3286856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Design and assessment of new therapies for type 1 diabetes (T1D) management can be greatly facilitated by in silico simulations. The ReplayBG simulation methodology here proposed allows "replaying" the scenario behind data already collected by simulating the glucose concentration obtained in response to alternative insulin/carbohydrate therapies and evaluate their efficacy leveraging the concept of digital twin. METHODS ReplayBG is based on two steps. First, a personalized model of glucose-insulin dynamics is identified using insulin, carbohydrate, and continuous glucose monitoring (CGM) data. Then, this model is used to simulate the glucose concentration that would have been obtained by "replaying" the same portion of data using a different therapy. The validity of the methodology was evaluated on 100 virtual subjects using the UVa/Padova T1D Simulator (T1DS). In particular, the glucose concentration traces simulated by ReplayBG are compared with those provided by T1DS in five different scenarios of insulin and carbohydrate treatment modifications. Furthermore, we compared ReplayBG with a state-of-the-art methodology for the scope. Finally, two case studies using real data are also presented. RESULTS ReplayBG simulates with high accuracy the effect of the considered insulin and carbohydrate treatment alterations, performing significantly better than state-of-art method in almost all considered situations. CONCLUSION ReplayBG proved to be a reliable and robust tool to retrospectively explore the effect of new treatments for T1D on the glucose dynamics. It is freely available as open source software at https://github.com/gcappon/replay-bg. SIGNIFICANCE ReplayBG offers a new approach to preliminary evaluate new therapies for T1D management before clinical trials.
Collapse
|
9
|
Prendin F, Pavan J, Cappon G, Del Favero S, Sparacino G, Facchinetti A. The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP. Sci Rep 2023; 13:16865. [PMID: 37803177 PMCID: PMC10558434 DOI: 10.1038/s41598-023-44155-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Machine learning has become a popular tool for learning models of complex dynamics from biomedical data. In Type 1 Diabetes (T1D) management, these models are increasingly been integrated in decision support systems (DSS) to forecast glucose levels and provide preventive therapeutic suggestions, like corrective insulin boluses (CIB), accordingly. Typically, models are chosen based on their prediction accuracy. However, since patient safety is a concern in this application, the algorithm should also be physiologically sound and its outcome should be explainable. This paper aims to discuss the importance of using tools to interpret the output of black-box models in T1D management by presenting a case-of-study on the selection of the best prediction algorithm to integrate in a DSS for CIB suggestion. By retrospectively "replaying" real patient data, we show that two long-short term memory neural networks (LSTM) (named p-LSTM and np-LSTM) with similar prediction accuracy could lead to different therapeutic decisions. An analysis with SHAP-a tool for explaining black-box models' output-unambiguously shows that only p-LSTM learnt the physiological relationship between inputs and glucose prediction, and should therefore be preferred. This is verified by showing that, when embedded in the DSS, only p-LSTM can improve patients' glycemic control.
Collapse
Affiliation(s)
- Francesco Prendin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Jacopo Pavan
- Department of Information Engineering, University of Padova, Padova, Italy
- Department of Psychiatry and Neurobehavioral Sciences, Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Giacomo Cappon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Simone Del Favero
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
10
|
Diaz C. JL, Colmegna P, Breton MD. Maximizing Glycemic Benefits of Using Faster Insulin Formulations in Type 1 Diabetes: In Silico Analysis Under Open- and Closed-Loop Conditions. Diabetes Technol Ther 2023; 25:219-230. [PMID: 36595379 PMCID: PMC10066764 DOI: 10.1089/dia.2022.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: Ultrarapid-acting insulin analogs that could improve or even prevent postprandial hyperglycemia are now available for both research and clinical care. However, clear glycemic benefits remain elusive, especially when combined with automated insulin delivery (AID) systems. In this work, we study two insulin formulations in silico and highlight adjustments of both open-loop and closed-loop insulin delivery therapies as a critical step to achieve clinically meaningful improvements. Methods: Subcutaneous insulin transport models for two faster analogs, Fiasp (Novo Nordisk, Bagsværd, Denmark) and AT247 (Arecor, Saffron Walden, United Kingdom), were identified using data collected from prior clamp experiments, and integrated into the UVA/Padova type 1 diabetes simulator (adult cohort, N = 100). Pump therapy parameters and the aggressiveness of our full closed-loop algorithm were adapted to the new insulin pharmacokinetic and pharmacodynamic profiles through a sequence of in silico studies. Finally, we assessed these analogs' glycemic impact with and without modified therapy parameters in simulated conditions designed to match clinical trial data. Results: Simply switching to faster insulin analogs shows limited improvements in glycemic outcomes. However, when insulin acceleration is accompanied by therapy adaptation, clinical significance is found comparing time-in-range (70-180 mg/dL) with Aspart versus AT247 in open-loop (+5.1%); and Aspart versus Fiasp (+5.4%) or AT247 (+10.6%) in full closed-loop with no clinically significant differences in the exposure to hypoglycemia. Conclusion: In silico results suggest that properly adjusting intensive insulin therapy profiles, or AID tuning, to faster insulin analogs is necessary to obtain clinically significant improvements in glucose control.
Collapse
Affiliation(s)
- Jenny L. Diaz C.
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Patricio Colmegna
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Marc D. Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Aiello EM, Wolkowicz KL, Pinsker JE, Dassau E, Doyle III FJ. A novel model-based estimator for real-time prediction of insulin-on-board. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Cobelli C, Dalla Man C. Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials. J Diabetes Sci Technol 2022; 16:1270-1298. [PMID: 34032128 PMCID: PMC9445339 DOI: 10.1177/19322968211015268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several models have been proposed to describe the glucose system at whole-body, organ/tissue and cellular level, designed to measure non-accessible parameters (minimal models), to simulate system behavior and run in silico clinical trials (maximal models). Here, we will review the authors' work, by putting it into a concise historical background. We will discuss first the parametric portrait provided by the oral minimal models-building on the classical intravenous glucose tolerance test minimal models-to measure otherwise non-accessible key parameters like insulin sensitivity and beta-cell responsivity from a physiological oral test, the mixed meal or the oral glucose tolerance tests, and what can be gained by adding a tracer to the oral glucose dose. These models were used in various pathophysiological studies, which we will briefly review. A deeper understanding of insulin sensitivity can be gained by measuring insulin action in the skeletal muscle. This requires the use of isotopic tracers: both the classical multiple-tracer dilution and the positron emission tomography techniques are discussed, which quantitate the effect of insulin on the individual steps of glucose metabolism, that is, bidirectional transport plasma-interstitium, and phosphorylation. Finally, we will present a cellular model of insulin secretion that, using a multiscale modeling approach, highlights the relations between minimal model indices and subcellular secretory events. In terms of maximal models, we will move from a parametric to a flux portrait of the system by discussing the triple tracer meal protocol implemented with the tracer-to-tracee clamp technique. This allows to arrive at quasi-model independent measurement of glucose rate of appearance (Ra), endogenous glucose production (EGP), and glucose rate of disappearance (Rd). Both the fast absorbing simple carbs and the slow absorbing complex carbs are discussed. This rich data base has allowed us to build the UVA/Padova Type 1 diabetes and the Padova Type 2 diabetes large scale simulators. In particular, the UVA/Padova Type 1 simulator proved to be a very useful tool to safely and effectively test in silico closed-loop control algorithms for an artificial pancreas (AP). This was the first and unique simulator of the glucose system accepted by the U.S. Food and Drug Administration as a substitute to animal trials for in silico testing AP algorithms. Recent uses of the simulator have looked at glucose sensors for non-adjunctive use and new insulin molecules.
Collapse
Affiliation(s)
- Claudio Cobelli
- Department of Woman and Child’s Health University of Padova, Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Aiello EM, Pinsker JE, Vargas E, Teymourian H, Tehrani F, Church MM, Laffel LM, Doyle FJ, Patti ME, Wang J, Dassau E. Clinical Evaluation of a Novel Insulin Immunosensor. J Diabetes Sci Technol 2022:19322968221074406. [PMID: 35118893 PMCID: PMC10347985 DOI: 10.1177/19322968221074406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The estimation of available active insulin remains a limitation of automated insulin delivery systems. Currently, insulin pumps calculate active insulin using mathematical decay curves, while quantitative measurements of insulin would explicitly provide person-specific PK insulin dynamics to assess remaining active insulin more accurately, permitting more effective glucose control. METHODS We performed the first clinical evaluation of an insulin immunosensor chip, providing near real-time measurements of insulin levels. In this study, we sought to determine the accuracy of the novel insulin sensor and assess its therapeutic risk and benefit by presenting a new tool developed to indicate the potential therapeutic consequences arising from inaccurate insulin measurements. RESULTS Nine adult participants with type-1 diabetes completed the study. The change from baseline in immunosensor-measured insulin levels was compared with values obtained by standard enzyme-linked immunosorbant assay (ELISA) after preprandial injection of insulin. The point-of-care quantification of insulin levels revealed similar temporal trends as those from the laboratory insulin ELISA. The results showed that 70% of the paired immunosensor-reference values were concordant, which suggests that the patient could take action safely based on insulin concentration obtained by the novel sensor. CONCLUSIONS This proposed technology and preliminary feasibility evaluation show encouraging results for near real-time evaluation of insulin levels, with the potential to improve diabetes management. Real-time measurements of insulin provide person-specific insulin dynamics that could be used to make more informed decisions regarding insulin dosing, thus helping to prevent hypoglycemia and improve diabetes outcomes.
Collapse
Affiliation(s)
- Eleonora M Aiello
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
- Sansum Diabetes Research Institute, Santa Barbara, CA, USA
| | | | - Eva Vargas
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Hazhir Teymourian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Farshad Tehrani
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Mei Mei Church
- Sansum Diabetes Research Institute, Santa Barbara, CA, USA
| | - Lori M Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
- Sansum Diabetes Research Institute, Santa Barbara, CA, USA
| | | | - Joseph Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
- Sansum Diabetes Research Institute, Santa Barbara, CA, USA
| |
Collapse
|
14
|
Faggionato E, Schiavon M, Man CD. Modeling Between-Subject Variability in Subcutaneous Absorption of a Long-Acting Insulin Glargine 100 U/mL by a Nonlinear Mixed Effects Approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4226-4229. [PMID: 34892156 DOI: 10.1109/embc46164.2021.9629554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Subcutaneous insulin absorption is well-known to vary significantly both between and within subjects (BSV and WSV, respectively). This variability considerably obstacles the establishing of a reproducible and effective insulin therapy. Some models exist to describe the subcutaneous kinetics of both fast and long-acting insulin analogues; however, none of them account for the BSV. The aim of this study is to develop a nonlinear mixed effects model able to describe the BSV observed in the subcutaneous absorption of a long-acting insulin glargine 100 U/mL. Four stochastic models of the BSV were added to a previously validated model of subcutaneous absorption of insulin glargine 100 U/mL. These were assessed on a database of 47 subjects with type 1 diabetes. The best model was selected based on residual analysis, precision of the estimates and parsimony criteria. The selected model provided good fit of individual data, precise population parameter estimates and allowed quantifying the BSV of the insulin glargine 100 U/mL pharmacokinetics. Future model development will include the description of the WSV of long- acting insulin absorption.
Collapse
|
15
|
Schiavon M, Cobelli C, Dalla Man C. Modeling Intraperitoneal Insulin Absorption in Patients with Type 1 Diabetes. Metabolites 2021; 11:metabo11090600. [PMID: 34564415 PMCID: PMC8465342 DOI: 10.3390/metabo11090600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Standard insulin therapy to treat type 1 diabetes (T1D) consists of exogenous insulin administration through the subcutaneous (SC) tissue. Despite recent advances in insulin formulations, the SC route still suffers from delays and large inter/intra-subject variability that limiting optimal glucose control. Intraperitoneal (IP) insulin administration, despite its higher invasiveness, was shown to represent a valid alternative to the SC one. To date, no mathematical model describing the absorption and distribution of insulin after IP administration is available. Here, we aim to fill this gap by using data from eight patients with T1D, treated by implanted IP pump, studied in a hospitalized setting, with frequent measurements of plasma insulin and glucose concentration. A battery of models describing insulin kinetics after IP administration were tested. Model comparison and selection were performed based on model ability to predict the data, precision of parameters and parsimony criteria. The selected model assumed that the insulin absorption from the IP space was described by a linear, two-compartment model, coupled with a two-compartment model of whole-body insulin kinetics with hepatic insulin extraction controlled by hepatic insulin. Future developments include model incorporation into the UVa/Padova T1D Simulator for testing open- and closed-loop therapies with IP insulin administration.
Collapse
Affiliation(s)
- Michele Schiavon
- Department of Information Engineering, University of Padova, 35131 Padova, Italy;
| | - Claudio Cobelli
- Department of Woman and Child’s Health, University of Padova, 35128 Padova, Italy;
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, 35131 Padova, Italy;
- Correspondence:
| |
Collapse
|
16
|
Colmegna P, Cengiz E, Garcia-Tirado J, Kraemer K, Breton MD. Impact of Accelerating Insulin on an Artificial Pancreas System Without Meal Announcement: An In Silico Examination. J Diabetes Sci Technol 2021; 15:833-841. [PMID: 32546001 PMCID: PMC8258534 DOI: 10.1177/1932296820928067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Controlling postprandial blood glucose without the benefit of an appropriately sized premeal insulin bolus has been challenging given the delays in absorption and action of subcutaneously injected insulin during conventional and artificial pancreas (AP) system diabetes treatment. We aim to understand the impact of accelerating insulin and increasing aggressiveness of the AP controller as potential solutions to address the postprandial hyperglycemia challenge posed by unannounced meals through a simulation study. METHODS Accelerated rapid-acting insulin analogue is modeled within the UVA/Padova simulation platform by uniformly reducing its pharmacokinetic time constants (α multiplier) and used with a model predictive control, where the controller's aggressiveness depends on α. Two sets of single-meal simulations were performed: (1) where we only tune the controller's aggressiveness and (2) where we also accelerate insulin absorption and action to assess postprandial glycemic control during each intervention. RESULTS Mean percent of time spent within the 70 to 180 mg/dL postprandial glycemic range is significantly higher in set (2) than in set (1): 79.9, 95% confidence interval [77.0, 82.7] vs 88.8 [86.8, 90.9] ([Note to typesetter: Set all unnecessary math in text format and insert appropriate spaces between operators.] P < .05) for α = 2, and 81.4 [78.6, 84.3] vs 94.1 [92.6, 95.6] (P < .05) for α = 3. A decrease in percent of time below 70 mg/dL is also detected: 0.9 [0.4, 2.2] vs 0.6 [0.2, 1.4] (P = .23) for α = 2 and 1.4 [0.7, 2.8] vs 0.4 [0.1, 1.4] (P < .05) for α = 3. CONCLUSION These proof-of-concept simulations suggest that an AP without prandial insulin boluses combined with significantly faster insulin analogues could match the glycemic performance obtained with an optimal hybrid AP.
Collapse
Affiliation(s)
- Patricio Colmegna
- Center for Diabetes Technology, University of Virginia, Charlottesville, USA
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Patricio Colmegna, PhD, Center for Diabetes Technology, University of Virginia, 560 Ray C Hunt Dr, Charlottesville, VA 22903, USA.
| | - Eda Cengiz
- Division of Pediatric Endocrinology and Diabetes, Yale University School of Medicine, New Haven, CT, USA
- Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Jose Garcia-Tirado
- Center for Diabetes Technology, University of Virginia, Charlottesville, USA
| | - Kristen Kraemer
- Division of Pediatric Endocrinology and Diabetes, Yale University School of Medicine, New Haven, CT, USA
| | - Marc D. Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, USA
| |
Collapse
|
17
|
Modeling Between-Subject Variability in Subcutaneous Absorption of a Fast-Acting Insulin Analogue by a Nonlinear Mixed Effects Approach. Metabolites 2021; 11:metabo11040235. [PMID: 33921274 PMCID: PMC8069884 DOI: 10.3390/metabo11040235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023] Open
Abstract
Despite the great progress made in insulin preparation and titration, many patients with diabetes are still experiencing dangerous fluctuations in their blood glucose levels. This is mainly due to the large between- and within-subject variability, which considerably hampers insulin therapy, leading to defective dosing and timing of the administration process. In this work, we present a nonlinear mixed effects model describing the between-subject variability observed in the subcutaneous absorption of fast-acting insulin. A set of 14 different models was identified on a large and frequently-sampled database of lispro pharmacokinetic data, collected from 116 subjects with type 1 diabetes. The tested models were compared, and the best one was selected on the basis of the ability to fit the data, the precision of the estimated parameters, and parsimony criteria. The selected model was able to accurately describe the typical trend of plasma insulin kinetics, as well as the between-subject variability present in the absorption process, which was found to be related to the subject’s body mass index. The model provided a deeper understanding of the insulin absorption process and can be incorporated into simulation platforms to test and develop new open- and closed-loop treatment strategies, allowing a step forward toward personalized insulin therapy.
Collapse
|
18
|
Noaro G, Cappon G, Vettoretti M, Sparacino G, Favero SD, Facchinetti A. Machine-Learning Based Model to Improve Insulin Bolus Calculation in Type 1 Diabetes Therapy. IEEE Trans Biomed Eng 2021; 68:247-255. [DOI: 10.1109/tbme.2020.3004031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Schiavon M, Visentin R, Giegerich C, Sieber J, Dalla Man C, Cobelli C, Klabunde T. In Silico Head-to-Head Comparison of Insulin Glargine 300 U/mL and Insulin Degludec 100 U/mL in Type 1 Diabetes. Diabetes Technol Ther 2020; 22:553-561. [PMID: 32125178 PMCID: PMC7407002 DOI: 10.1089/dia.2020.0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Second-generation long-acting insulin glargine 300 U/mL (Gla-300) and degludec 100 U/mL (Deg-100) provide novel basal insulin therapies for the treatment of type 1 diabetes (T1D). Both offer a flatter pharmacokinetic (PK) profile than the previous generation of long-acting insulins, thus improving glycemic control while reducing hypoglycemic events. This work describes an in silico head-to-head comparison of the two basal insulins on 24-h glucose profiles and was used to guide the design of a clinical trial. Materials and Methods: The Universities of Virginia (UVA)/Padova T1D simulator describes the intra-/interday variability of glucose-insulin dynamics and thus provides a robust bench-test for assessing glucose control for basal insulin therapies. A PK model describing subcutaneous absorption of Deg-100, in addition to the one already available for Gla-300, has been developed based on T1D clinical data and incorporated into the simulator. One hundred in silico T1D subjects received a basal insulin dose (Gla-300 or Deg-100) for 12 weeks (8 weeks uptitration, 4 weeks stable dosing) by morning or evening administration in a basal/bolus regimen. The virtual patients were uptitrated to their individual doses with two different titration rules. Results: The last 2-week simulated continuous glucose monitoring data were used to calculate various outcome metrics for both basal insulin treatments, with primary outcome being the percent time in glucose target (70-140 mg/dL). The simulations show no statistically significant difference for Gla-300 versus Deg-100 in the main endpoints. Conclusions: This work suggests comparable glucose control using either Gla-300 or Deg-100 and was used to guide the design of a clinical trial intended to compare second-generation long-acting insulin analogues.
Collapse
Affiliation(s)
- Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Clemens Giegerich
- Translational Disease Modeling, R&D Digital and Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Jochen Sieber
- Medical Affairs Diabetes Care EMEA, Becton, Dickinson and Company
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Thomas Klabunde
- Translational Disease Modeling, R&D Digital and Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
- Address correspondence to: Thomas Klabunde, PhD, Translational Disease Modeling, R&D Digital and Data Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Hochst, Frankfurt am Main D-65926, Germany
| |
Collapse
|
20
|
Cappon G, Facchinetti A, Sparacino G, Favero SD. A Bayesian Framework to Identify Type 1 Diabetes Physiological Models Using Easily Accessible Patient Data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6914-6917. [PMID: 31947429 DOI: 10.1109/embc.2019.8856846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mathematical physiological models of type 1 diabetes (T1D) glucose-insulin dynamics have been of great help in designing and preliminary assessing new algorithm for glucose control. Derivation of models at the individual level is however difficult because of identifiability issues. Recently, fitting these models against data of real patients with T1D has been made possible by both the use of Bayesian estimation techniques and the availability of individual datasets including plasma glucose and insulin concentration samples gathered in clinical protocols. The aim of this work is to make a step further and develop a methodology able to estimate the parameters of T1D physiological models using easily accessible data only, i.e. continuous glucose monitoring (CGM) sensor, carbohydrate intakes (CHO), and exogenous insulin infusion (I) data. The methodology is tested on synthetic data of 100 patients generated by a composite model of glucose-insulin dynamics. To solve identifiability problems, a Bayesian approach numerically implemented by Markov Chain Monte Carlo (MCMC) has been used to obtain point estimates and confidence intervals of model unknown parameters exploiting a priori knowledge available from the literature. Results show goodness of model fit and acceptable precision of parameter estimates. The methodology is also successful in reconstructing of "non-accessible" glucose-insulin fluxes, i.e. glucose rate of appearance and plasma insulin. These preliminary results encourage further development of this framework and its assessment in more challenging setups.
Collapse
|
21
|
Visentin R, Schiavon M, Giegerich C, Klabunde T, Man CD, Cobelli C. Incorporating Long-Acting Insulin Glargine Into the UVA/Padova Type 1 Diabetes Simulator for In Silico Testing of MDI Therapies. IEEE Trans Biomed Eng 2019; 66:2889-2896. [DOI: 10.1109/tbme.2019.2897851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Schiavon M, Visentin R, Giegerich C, Klabunde T, Cobelli C, Dalla Man C. Modeling Subcutaneous Absorption of Long-Acting Insulin Glargine in Type 1 Diabetes. IEEE Trans Biomed Eng 2019; 67:624-631. [PMID: 31150327 DOI: 10.1109/tbme.2019.2919250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Subcutaneous (sc) administration of long-acting insulin analogs is often employed in multiple daily injection (MDI) therapy of type 1 diabetes (T1D) to cover patient's basal insulin needs. Among these, insulin glargine 100 U/mL (Gla-100) and 300 U/mL (Gla-300) are formulations indicated for once daily sc administration in MDI therapy of T1D. A few semi-mechanistic models of sc absorption of insulin glargine have been proposed in the literature, but were not quantitatively assessed on a large dataset. The aim of this paper is to propose a model of sc absorption of insulin glargine able to describe the data and provide precise model parameters estimates with a clear physiological interpretation. METHODS Three candidate models were identified on a total of 47 and 77 insulin profiles of T1D subjects receiving a single or repeated sc administration of Gla-100 or Gla-300, respectively. Model comparison and selection were performed on the basis of their ability to describe the data and numerical identifiability. RESULTS The most parsimonious model is linear two-compartment and accounts for the insulin distribution between the two compartments after sc administration through parameter k. Between the two formulations, we report a lower fraction of insulin in the first versus second compartment (k = 86% versus 94% in Gla-100 versus Gla-300, p < 0.05), a lower dissolution rate from the first to the second compartment ([Formula: see text] versus 0.0008 min-1 in Gla-100 versus Gla-300, p << 0.001), and a similar rate of insulin absorption from the second compartment to plasma ([Formula: see text] versus 0.0016 min-1 in Gla-100 versus Gla-300, p = NS), in accordance with the mechanisms of insulin glargine protraction. CONCLUSIONS The proposed model is able to both accurately describe plasma insulin data after sc administration and precisely estimate physiologically plausible parameters. SIGNIFICANCE The model can be incorporated in simulation platforms potentially usable for optimizing basal insulin treatment strategies.
Collapse
|
23
|
Visentin R, Schiavon M, Giegerich C, Klabunde T, Man CD, Cobelli C. Long-acting Insulin in Diabetes Therapy: In Silico Clinical Trials with the UVA/Padova Type 1 Diabetes Simulator .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:4905-4908. [PMID: 30441443 DOI: 10.1109/embc.2018.8513234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The University of Virginia /Padova Type 1 Diabetes (TID) simulator has been widely used for testing artificial pancreas controllers, and, recently, novel insulin formulations and glucose sensors. However, a module describing the pharmacokinetics of the new long-acting insulin analogues is not available. The aim of this contribution is to reproduce multiple daily insulin injection (MDI) therapy, with insulin glargine 100 U/mL (Gla-100) as basal insulin, using the TID simulator. This was achieved by developing a model of Gla-100 and by incorporating it into the simulator. The methodology described here can be extended to other insulins, allowing an extensive in silico testing of different long-acting insulin analogues under various settings before starting human trials.
Collapse
|
24
|
Visentin R, Campos-Náñez E, Schiavon M, Lv D, Vettoretti M, Breton M, Kovatchev BP, Dalla Man C, Cobelli C. The UVA/Padova Type 1 Diabetes Simulator Goes From Single Meal to Single Day. J Diabetes Sci Technol 2018; 12:273-281. [PMID: 29451021 PMCID: PMC5851236 DOI: 10.1177/1932296818757747] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND A new version of the UVA/Padova Type 1 Diabetes (T1D) Simulator is presented which provides a more realistic testing scenario. The upgrades to the previous simulator, which was accepted by the Food and Drug Administration in 2013, are described. METHOD Intraday variability of insulin sensitivity (SI) has been modeled, based on clinical T1D data, accounting for both intra- and intersubject variability of daily SI. Thus, time-varying distributions of both subject's basal insulin infusion and insulin-to-carbohydrate ratio were calculated and made available to the user. A model of "dawn" phenomenon based on clinical T1D data has been also included. Moreover, the model of subcutaneous insulin delivery has been updated with a recently developed model of commercially available fast-acting insulin analogs. Models of both intradermal and inhaled insulin pharmacokinetics have been included. Finally, new models of error affecting continuous glucose monitoring and self-monitoring of blood glucose devices have been added. RESULTS One hundred in silico adults, adolescent, and children have been generated according to the above modifications. The new simulator reproduces the intraday glucose variability observed in clinical data, also describing the nocturnal glucose increase, and the simulated insulin profiles reflect real life data. CONCLUSIONS The new modifications introduced in the T1D simulator allow to extend its domain of validity from "single-meal" to "single-day" scenarios, thus enabling a more realistic framework for in silico testing of advanced diabetes technologies including glucose sensors, new insulin molecules and artificial pancreas.
Collapse
Affiliation(s)
- Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Enrique Campos-Náñez
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Dayu Lv
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Martina Vettoretti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Marc Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Boris P. Kovatchev
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
- Chiara Dalla Man, PhD, Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy.
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|