1
|
Xing P, Perrot V, Dominguez-Vargas AU, Porée J, Quessy S, Dancause N, Provost J. 3D ultrasound localization microscopy of the nonhuman primate brain. EBioMedicine 2025; 111:105457. [PMID: 39708427 PMCID: PMC11730257 DOI: 10.1016/j.ebiom.2024.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Haemodynamic changes occur in stroke and neurodegenerative diseases. Developing imaging techniques allowing the in vivo visualisation and quantification of cerebral blood flow would help better understand the underlying mechanism of these cerebrovascular diseases. METHODS 3D ultrasound localization microscopy (ULM) is a recently developed technology that can map the microvasculature of the brain at large depth and has been mainly used until now in rodents. In this study, we tested the feasibility of 3D ULM of the nonhuman primate (NHP) brain with a single 256-channel programmable ultrasound scanner. FINDINGS We achieved a highly resolved vascular map of the macaque brain at large depth (down to 3 cm) in presence of craniotomy and durectomy using an 8-MHz multiplexed matrix probe. We were able to distinguish vessels as small as 26.9 μm. We also demonstrated that transcranial imaging of the macaque brain at similar depth was feasible using a 3-MHz probe and achieved a resolution of 60 μm. INTERPRETATION This work paves the way to clinical applications of 3D ULM. In particular, transcranial 3D ULM in humans could become a tool for the non-invasive study and monitoring of the brain cerebrovascular changes occurring in neurological diseases. FUNDING This work was supported by the New Frontier in Research Fund (NFRFE-2022-00590), by the Canada Foundation for Innovation under grant 38095, by the Natural Sciences and Engineering Research Council of Canada (NSERC) under discovery grant RGPIN-2020-06786, by Brain Canada under grant PSG2019, and by the Canadian Institutes of Health Research (CIHR) under grant PJT-156047 and MPI-452530. Computing support was provided by the Digital Research Alliance of Canada.
Collapse
Affiliation(s)
- Paul Xing
- Department of Engineering Physics, Polytechnique Montréal, Montreal, Canada
| | - Vincent Perrot
- Department of Engineering Physics, Polytechnique Montréal, Montreal, Canada
| | | | - Jonathan Porée
- Department of Engineering Physics, Polytechnique Montréal, Montreal, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Canada; Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, Canada
| | - Jean Provost
- Department of Engineering Physics, Polytechnique Montréal, Montreal, Canada; Montreal Heart Institute, Montreal, Canada.
| |
Collapse
|
2
|
Jones RM, DeRuiter RM, Lee HR, Munot S, Belgharbi H, Santibanez F, Favorov OV, Dayton PA, Pinton GF. Non-invasive 4D transcranial functional ultrasound and ultrasound localization microscopy for multimodal imaging of neurovascular response. Sci Rep 2024; 14:30240. [PMID: 39747143 PMCID: PMC11697013 DOI: 10.1038/s41598-024-81243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
A long-standing goal of neuroimaging is the non-invasive volumetric assessment of whole brain function and structure at high spatial and temporal resolutions. Functional ultrasound (fUS) and ultrasound localization microscopy (ULM) are rapidly emerging techniques that promise to bring advanced brain imaging and therapy to the clinic with the safety and low-cost advantages associated with ultrasound. fUS has been used to study cerebral hemodynamics at high temporal resolutions while ULM has been used to study cerebral microvascular structure at high spatial resolutions. These two methods have complementary spatio-temporal characteristics, making them ideally suited for multimodal imaging, but both suffer from limitations associated with transcranial ultrasound imaging. Here, these two methods are combined on the same data acquisition, completely non-invasively, using contrast-enhancements, which solves the dual challenges of sensitivity during transcranial imaging and the ability to implement super-resolution. From this combined approach, the cerebral blood flow, activated brain region, brain connectivity, vessel diameter, and vessel velocity were all calculated from the same data acquisition. During stimulation periods, there was a statistically significant (p<0.0001) increase in cerebral blood flow, diameter, and global velocity, but a decrease in velocity in the activated region. Additionally, the global flow increased (p=0.11) and connectivity decreased (24.7%) when compared to baseline. This multimodal approach allows for the study of the relationship between cerebral hemodynamics (30 ms resolution) and the microvasculature (14.6 μm resolution) using one ultrasound scan.
Collapse
Affiliation(s)
- Rebecca M Jones
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Ryan M DeRuiter
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Hanjoo R Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Saachi Munot
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Hatim Belgharbi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Francisco Santibanez
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Oleg V Favorov
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Qiang Y, Huang W, Liang W, Liu R, Han X, Pan Y, Wang N, Yu Y, Zhang Z, Sun L, Qiu W. An adaptive spatiotemporal filter for ultrasound localization microscopy based on density canopy clustering. ULTRASONICS 2024; 144:107446. [PMID: 39213718 DOI: 10.1016/j.ultras.2024.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Ultrasound Localization Microscopy (ULM) facilitates structural and hemodynamic imaging of microvessels with a resolution of tens of micrometers. In ULM, the extraction of effective microbubble signals is crucial for image quality. Singular Value Decomposition (SVD) is currently the most prevalent method for microbubble signal extraction in ULM. Most existing ULM studies employ a fixed SVD filter threshold using empirical values which will lead to imaging quality degradation due to the insufficient separation of blood signals. In this study, we propose an adaptive and non-threshold SVD filter based on canopy-density clustering, termed DCC-SVD. This filter automatically classifies the components of the SVD based on the density of their spatiotemporal features, eliminating the need for parameter selection. In in vitro tube phantom, DCC-SVD demonstrated its ability to adaptive separation of blood and bubble signal at varying microbubble concentrations and flow rates. We compared the proposed DCC-SVD method with the Block-match 3D (BM3D) filter and a classical adaptive method called spatial similarity matrix (SSM), using concentration-variable in vivo rat brain data, as well as open-source rat kidney and mouse tumor datasets. The proposed DCC-SVD improved the global spatial resolution by approximately 4 μm from 30.39 μm to 26.02 μm. It also captured vessel structure absent in images obtained by other methods and yielded a smoother vessel intensity profile, making it a promising spatiotemporal filter for ULM imaging.
Collapse
Affiliation(s)
- Yu Qiang
- The Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenyue Huang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wenjie Liang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rong Liu
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuan Han
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Pan
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ningyuan Wang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Yu
- Department of Biomedical Engineering, Shenzhen University, Shenzhen, China.
| | - Zhiqiang Zhang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.
| | - Lei Sun
- The Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Weibao Qiu
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Chabouh G, Denis L, Bodard S, Lager F, Renault G, Chavignon A, Couture O. Whole Organ Volumetric Sensing Ultrasound Localization Microscopy for Characterization of Kidney Structure. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4055-4063. [PMID: 38857150 DOI: 10.1109/tmi.2024.3411669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Glomeruli are the filtration units of the kidney and their function relies heavily on their microcirculation. Despite its obvious diagnostic importance, an accurate estimation of blood flow in the capillary bundle within glomeruli defies the resolution of conventional imaging modalities. Ultrasound Localization Microscopy (ULM) has demonstrated its ability to image in-vivo deep organs in the body. Recently, the concept of sensing ULM or sULM was introduced to classify individual microbubble behavior based on the expected physiological conditions at the micrometric scale. In the kidney of both rats and humans, it revealed glomerular structures in 2D but was severely limited by planar projection. In this work, we aim to extend sULM in 3D to image the whole organ and in order to perform an accurate characterization of the entire kidney structure. The extension of sULM into the 3D domain allows better localization and more robust tracking. The 3D metrics of velocity and pathway angular shift made glomerular mask possible. This approach facilitated the quantification of glomerular physiological parameter such as an interior traveled distance of approximately 7.5 ±0.6 microns within the glomerulus. This study introduces a technique that characterize the kidney physiology which can serve as a method to facilite pathology assessment. Furthermore, its potential for clinical relevance could serve as a bridge between research and practical application, leading to innovative diagnostics and improved patient care.
Collapse
|
5
|
Xia S, Zheng Y, Hua Q, Wen J, Luo X, Yan J, Bai B, Dong Y, Zhou J. Super-resolution ultrasound and microvasculomics: a consensus statement. Eur Radiol 2024; 34:7503-7513. [PMID: 38811389 DOI: 10.1007/s00330-024-10796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 05/31/2024]
Abstract
This is a summary of a consensus statement on the introduction of "Ultrasound microvasculomics" produced by The Chinese Artificial Intelligence Alliance for Thyroid and Breast Ultrasound. The evaluation of microvessels is a very important part for the assessment of diseases. Super-resolution ultrasound (SRUS) microvascular imaging surpasses traditional ultrasound imaging in the morphological and functional analysis of microcirculation. SRUS microvascular imaging relies on contrast microbubbles to gain sensitivity to microvessels and improves the spatial resolution of ultrasound blood flow imaging for a more detailed depiction of vascular structures and hemodynamics. This method has been applied in preclinical animal models and pilot clinical studies, involving areas including neurology, oncology, nephrology, and cardiology. However, the current quantitative parameters of SRUS images are not enough for precise evaluation of microvessels. Therefore, by employing omics methods, more quantification indicators can be obtained, enabling a more precise and personalized assessment of microvascular status. Ultrasound microvasculomics - a high-throughput extraction of image features from SRUS images - is one novel approach that holds great promise but needs further validation in both bench and clinical settings. CLINICAL RELEVANCE STATEMENT: Super-resolution Ultrasound (SRUS) blood flow imaging improves spatial resolution. Ultrasound microvasculomics is possible to acquire high-throughput information of features from SRUS images. It provides more precise and abundant micro-blood flow information in clinical medicine. KEY POINTS: This consensus statement reviews the development and application of super-resolution ultrasound (SRUS). The shortcomings of the current quantification indicators of SRUS and strengths of the omics methodology are addressed. "Ultrasound microvasculomics" is introduced for a high-throughput extraction of image features from SRUS images.
Collapse
Affiliation(s)
- ShuJun Xia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, 200025, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - YuHang Zheng
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, 200025, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Qing Hua
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, 200025, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Jing Wen
- Department of Medical Ultrasound, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, China
| | - XiaoMao Luo
- Department of Medical Ultrasound, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, 650118, Kunming, China
| | - JiPing Yan
- Department of Ultrasound, Shanxi Provincial People's Hospital, 31th Shuangta Street, 030012, Taiyuan, China
| | - BaoYan Bai
- Department of Ultrasound, Affiliated Hospital of Yan 'an University, 43 North Street, Baota District, 716000, Yan'an, China
| | - YiJie Dong
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, 200025, Shanghai, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China.
| | - JianQiao Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, 200025, Shanghai, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China.
| |
Collapse
|
6
|
Hahne C, Chabouh G, Chavignon A, Couture O, Sznitman R. RF-ULM: Ultrasound Localization Microscopy Learned From Radio-Frequency Wavefronts. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3253-3262. [PMID: 38640052 DOI: 10.1109/tmi.2024.3391297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
In Ultrasound Localization Microscopy (ULM), achieving high-resolution images relies on the precise localization of contrast agent particles across a series of beamformed frames. However, our study uncovers an enormous potential: The process of delay-and-sum beamforming leads to an irreversible reduction of Radio-Frequency (RF) channel data, while its implications for localization remain largely unexplored. The rich contextual information embedded within RF wavefronts, including their hyperbolic shape and phase, offers great promise for guiding Deep Neural Networks (DNNs) in challenging localization scenarios. To fully exploit this data, we propose to directly localize scatterers in RF channel data. Our approach involves a custom super-resolution DNN using learned feature channel shuffling, non-maximum suppression, and a semi-global convolutional block for reliable and accurate wavefront localization. Additionally, we introduce a geometric point transformation that facilitates seamless mapping to the B-mode coordinate space. To understand the impact of beamforming on ULM, we validate the effectiveness of our method by conducting an extensive comparison with State-Of-The-Art (SOTA) techniques. We present the inaugural in vivo results from a wavefront-localizing DNN, highlighting its real-world practicality. Our findings show that RF-ULM bridges the domain shift between synthetic and real datasets, offering a considerable advantage in terms of precision and complexity. To enable the broader research community to benefit from our findings, our code and the associated SOTA methods are made available at https://github.com/hahnec/rf-ulm.
Collapse
|
7
|
Caudoux M, Demeulenaere O, Poree J, Sauvage J, Mateo P, Ghaleh B, Flesch M, Ferin G, Tanter M, Deffieux T, Papadacci C, Pernot M. Curved Toroidal Row Column Addressed Transducer for 3D Ultrafast Ultrasound Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3279-3291. [PMID: 38640053 DOI: 10.1109/tmi.2024.3391689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
3D Imaging of the human heart at high frame rate is of major interest for various clinical applications. Electronic complexity and cost has prevented the dissemination of 3D ultrafast imaging into the clinic. Row column addressed (RCA) transducers provide volumetric imaging at ultrafast frame rate by using a low electronic channel count, but current models are ill-suited for transthoracic cardiac imaging due to field-of-view limitations. In this study, we proposed a mechanically curved RCA with an aperture adapted for transthoracic cardiac imaging ( 24×16 mm2). The RCA has a toroidal curved surface of 96 elements along columns (curvature radius rC = 4.47 cm) and 64 elements along rows (curvature radius rR = 3 cm). We implemented delay and sum beamforming with an analytical calculation of the propagation of a toroidal wave which was validated using simulations (Field II). The imaging performance was evaluated on a calibrated phantom. Experimental 3D imaging was achieved up to 12 cm deep with a total angular aperture of 30° for both lateral dimensions. The Contrast-to-Noise ratio increased by 12 dB from 2 to 128 virtual sources. Then, 3D Ultrasound Localization Microscopy (ULM) was characterized in a sub-wavelength tube diameter. Finally, 3D ULM was demonstrated on a perfused ex-vivo swine heart to image the coronary microcirculation.
Collapse
|
8
|
Zhang C, Lei S, Ma A, Wang B, Wang S, Liu J, Shang D, Zhang Q, Li Y, Zheng H, Ma T. Evaluation of tumor microvasculature with 3D ultrasound localization microscopy based on 2D matrix array. Eur Radiol 2024; 34:5250-5259. [PMID: 38265473 DOI: 10.1007/s00330-023-10039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVE Evaluation of tumor microvascular morphology is of great significance in tumor diagnosis, therapeutic effect prediction, and surgical planning. Recently, two-dimensional ultrasound localization microscopy (2DULM) has demonstrated its superiority in the field of microvascular imaging. However, it suffers from planar dependence and is unintuitive. We propose a novel three-dimensional ultrasound localization microscopy (3DULM) to avoid these limitations. METHODS We investigated 3DULM based on a 2D array for tumor microvascular imaging. After intravenous injection of contrast agents, all elements of the 2D array transmit and receive signals to ensure a high and stable frame rate. Microbubble signal extraction, filtering, positioning, tracking, and other processing were used to obtain a 3D vascular map, flow velocity, and flow direction. To verify the effectiveness of 3DULM, it was validated on double helix tubes and rabbit VX2 tumors. Cisplatin was used to verify the ability of 3DULM to detect microvascular changes during tumor treatment. RESULTS In vitro, the sizes measured by 3DULM at 3 mm and 13 mm were 178 μ m and 182 μ m , respectively. In the rabbit tumors, we acquired 9000 volumes to reveal vessels about 30 μ m in diameter, which surpasses the diffraction limit of ultrasound in traditional ultrasound imaging, and the results matched with micro-angiography. In addition, there were significant changes in vascular density and curvature between the treatment and control groups. CONCLUSIONS The effectiveness of 3DULM was verified in vitro and in vivo. Hence, 3DULM may have potential applications in tumor diagnosis, tumor treatment evaluation, surgical protocol guidance, and cardiovascular disease. CLINICAL RELEVANCE STATEMENT 3D ultrasound localization microscopy is highly sensitive to microvascular changes; thus, it has clinical potential for tumor diagnosis and treatment evaluation. KEY POINTS • 3D ultrasound localization microscopy is demonstrated on double helix tubes and rabbit VX2 tumors. • 3D ultrasound localization microscopy can reveal vessels about 30 μ m in diameter-far smaller than traditional ultrasound. • This form of imaging has potential applications in tumor diagnosis, tumor treatment evaluation, surgical protocol guidance, and cardiovascular disease.
Collapse
Affiliation(s)
- Changlu Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100000, China
| | - Shuang Lei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Aiqing Ma
- Nanomedicine and Nanoformulations Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bing Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shuo Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiamei Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dongqing Shang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100000, China
| | - Qi Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongchuan Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100000, China
| | - Teng Ma
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of the Chinese Academy of Sciences, Beijing, 100000, China.
| |
Collapse
|
9
|
Bodard S, Denis L, Chabouh G, Battaglia J, Anglicheau D, Hélénon O, Correas JM, Couture O. Visualization of Renal Glomeruli in Human Native Kidneys With Sensing Ultrasound Localization Microscopy. Invest Radiol 2024; 59:561-568. [PMID: 38214557 DOI: 10.1097/rli.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
OBJECTIVES Kidney diseases significantly impact individuals' quality of life and strongly reduce life expectancy. Glomeruli play a crucial role in kidney function. Current imaging techniques cannot visualize them due to their small size. Sensing ultrasound localization microscopy (sULM) has shown promising results for visualizing in vivo the glomeruli of human kidney grafts. This study aimed to evaluate the ability of sULM to visualize glomeruli in vivo in native human kidneys despite their depth and a shorter duration of ultrasound acquisition limited by the period of the patient's apnea. Sensing ultrasound localization microscopy parameters in native kidneys and kidney grafts and their consequence regarding glomeruli detection were also compared. MATERIALS AND METHODS Exploration by sULM was conducted in 15 patients with native kidneys and 5 with kidney allografts. Glomeruli were counted using a normalized distance metric projected onto sULM density maps. The difference in the acquisition time, the kidney depth, and the frame rate between native kidneys and kidney grafts and their consequence regarding glomeruli detection were assessed. RESULTS Glomerular visualization was achieved in 12 of 15 patients with native kidneys. It failed due to impossible breath-holding for 2 patients and a too-deep kidney for 1 patient. Sensing ultrasound localization microscopy found 16 glomeruli per square centimeter in the native kidneys (6-31) and 33 glomeruli per square centimeter in kidney transplant patients (18-55). CONCLUSIONS This study demonstrated that sULM can visualize glomeruli in native human kidneys in vivo. The proposed method may have many hypothetical applications, including biomarker development, assisting biopsy, or potentially avoiding it. It establishes a framework for improving the detection of local microstructural pathology, influencing the evaluation of allografts, and facilitating disease monitoring in the native kidney.
Collapse
Affiliation(s)
- Sylvain Bodard
- From the Service d'Imagerie Adulte, Hôpital Necker Enfants Malades, AP-HP, Paris, France (S.B., O.H., J.-M.C.); Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France (S.B., L.D., G.C., J.B., J.-M.C., O.C.); Université de Paris Cité, Paris, France (S.B., D.A., O.H., J.-M.C.); and Service de Néphrologie-Transplantation Rénale Adulte, Hôpital Necker Enfants Malades, AP-HP, Paris, France (D.A.)
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Masoumi MH, Kaddoura T, Zemp R. TOBE-Costas Arrays for Fast High-Resolution 3-D Power Doppler Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:648-658. [PMID: 38743556 DOI: 10.1109/tuffc.2024.3400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Two-dimensional sparse arrays and row-column arrays are both alternatives to 2-D fully addressed arrays with lower channel counts. Row-column arrays have recently demonstrated fast 3-D structural and flow imaging but commonly suffer from high grating lobes or require multiplexing to achieve better quality. Two-dimensional sparse arrays enable full-volume acquisitions for each transmit event, but plane-wave transmissions with them usually lack quality in terms of uniformity of wavefronts. Here, we propose a novel architecture that combines both types of these arrays in one aperture, enabling imaging using row-column or sparse arrays alone or a hybrid imaging scheme where the row-column array is used in transmission and a 2-D sparse array in reception. This hybrid imaging scheme can potentially solve the shortcomings of each of these approaches. The sparse array layout chosen is a Costas array, characterized by having only one element per row and column, facilitating its integration with row-column arrays. We simulate images acquired with TOBE-Costas arrays using the hybrid imaging scheme and compare them to row-column and sparse spiral arrays of equivalent aperture size (128λ × 128λ at 7.5 MHz) in ultrafast plane-wave imaging of point targets and 3-D power Doppler imaging of synthetic flow phantoms. Our simulation results show that TOBE-Costas arrays exhibit superior resolution and lower sidelobe levels compared with plane-wave compounding with row-column arrays. Compared with density-tapered spiral arrays, they provide a larger field of view and finer resolution.
Collapse
|
11
|
Riemer K, Tan Q, Morse S, Bau L, Toulemonde M, Yan J, Zhu J, Wang B, Taylor L, Lerendegui M, Wu Q, Stride E, Dunsby C, Weinberg PD, Tang MX. 3D Acoustic Wave Sparsely Activated Localization Microscopy With Phase Change Contrast Agents. Invest Radiol 2024; 59:379-390. [PMID: 37843819 DOI: 10.1097/rli.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
OBJECTIVE The aim of this study is to demonstrate 3-dimensional (3D) acoustic wave sparsely activated localization microscopy (AWSALM) of microvascular flow in vivo using phase change contrast agents (PCCAs). MATERIALS AND METHODS Three-dimensional AWSALM using acoustically activable PCCAs was evaluated on a crossed tube microflow phantom, the kidney of New Zealand White rabbits, and the brain of C57BL/6J mice through intact skull. A mixture of C 3 F 8 and C 4 F 10 low-boiling-point fluorocarbon gas was used to generate PCCAs with an appropriate activation pressure. A multiplexed 8-MHz matrix array connected to a 256-channel ultrasound research platform was used for transmitting activation and imaging ultrasound pulses and recording echoes. The in vitro and in vivo echo data were subsequently beamformed and processed using a set of customized algorithms for generating 3D super-resolution ultrasound images through localizing and tracking activated contrast agents. RESULTS With 3D AWSALM, the acoustic activation of PCCAs can be controlled both spatially and temporally, enabling contrast on demand and capable of revealing 3D microvascular connectivity. The spatial resolution of the 3D AWSALM images measured using Fourier shell correlation is 64 μm, presenting a 9-time improvement compared with the point spread function and 1.5 times compared with half the wavelength. Compared with the microbubble-based approach, more signals were localized in the microvasculature at similar concentrations while retaining sparsity and longer tracks in larger vessels. Transcranial imaging was demonstrated as a proof of principle of PCCA activation in the mouse brain with 3D AWSALM. CONCLUSIONS Three-dimensional AWSALM generates volumetric ultrasound super-resolution microvascular images in vivo with spatiotemporal selectivity and enhanced microvascular penetration.
Collapse
Affiliation(s)
- Kai Riemer
- From the Department of Bioengineering, Imperial College London, London, United Kingdom (K.R., Q.T., S.M., M.T., J.Y., J.Z., B.W., L.T., M.L., P.D.W., M.-X.T.); NDORMS, University of Oxford, Oxford, United Kingdom (L.B., Q.W., E.S.); and Department of Physics, Imperial College London, London, United Kingdom (C.D.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McCall JR, Chavignon A, Couture O, Dayton PA, Pinton GF. Element Position Calibration for Matrix Array Transducers with Multiple Disjoint Piezoelectric Panels. ULTRASONIC IMAGING 2024; 46:139-150. [PMID: 38334055 DOI: 10.1177/01617346241227900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Two-dimensional ultrasound transducers enable the acquisition of fully volumetric data that have been demonstrated to provide greater diagnostic information in the clinical setting and are a critical tool for emerging ultrasound methods, such as super-resolution and functional imaging. This technology, however, is not without its limitations. Due to increased fabrication complexity, some matrix probes with disjoint piezoelectric panels may require initial calibration. In this manuscript, two methods for calibrating the element positions of the Vermon 1024-channel 8 MHz matrix transducer are detailed. This calibration is a necessary step for acquiring high resolution B-mode images while minimizing transducer-based image degradation. This calibration is also necessary for eliminating vessel-doubling artifacts in super-resolution images and increasing the overall signal-to-noise ratio (SNR) of the image. Here, we show that the shape of the point spread function (PSF) can be significantly improved and PSF-doubling artifacts can be reduced by up to 10 dB via this simple calibration procedure.
Collapse
Affiliation(s)
- Jacob R McCall
- Department of Electrical Engineering, North Carolina State University, Raleigh, NC, USA
- Joint-Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Arthur Chavignon
- Department Laboratoire d'Imagerie, Sorbonne Université, CNRS INSERM, Paris, France
| | - Olivier Couture
- Department Laboratoire d'Imagerie, Sorbonne Université, CNRS INSERM, Paris, France
| | - Paul A Dayton
- Joint-Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Gianmarco F Pinton
- Joint-Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Wang N, Qiang Y, Qiu C, Chen Y, Wang X, Pan Y, Liu R, Wu W, Zheng H, Qiu W, Zhang Z. A Multiplexed 32 × 32 2D Matrix Array Transducer for Flexible Sub-Aperture Volumetric Ultrasound Imaging. IEEE Trans Biomed Eng 2024; 71:831-840. [PMID: 37756181 DOI: 10.1109/tbme.2023.3319513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A fully-sampled two-dimensional (2D) matrix array ultrasonic transducer is essential for fast and accurate three-dimensional (3D) volumetric ultrasound imaging. However, these arrays, usually consisting of thousands of elements, not only face challenges of poor performance and complex wiring due to high-density elements and small element sizes but also put high requirements for electronic systems. Current commercially available fully-sampled matrix arrays, dividing the aperture into four fixed sub-apertures to reduce system channels through multiplexing are widely used. However, the fixed sub-aperture configuration limits imaging flexibility and the gaps between sub-apertures lead to reduced imaging quality. In this study, we propose a high-performance multiplexed matrix array by the design of 1-3 piezocomposite and gapless sub-aperture configuration, as well as optimized matching layer materials. Furthermore, we introduce a sub-aperture volumetric imaging method based on the designed matrix array, enabling high-quality and flexible 3D ultrasound imaging with a low-cost 256-channel system. The influence of imaging parameters, including the number of sub-apertures and steering angle on imaging quality was investigated by simulation, in vitro and in vivo imaging experiments. The fabricated matrix array has a center frequency of 3.4 MHz and a -6 dB bandwidth of above 70%. The proposed sub-aperture volumetric imaging method demonstrated a 10% improvement in spatial resolution, a 19% increase in signal-to-noise ratio, and a 57.7% increase in contrast-to-noise ratio compared with the fixed sub-aperture array imaging method. This study provides a new strategy for high-quality volumetric ultrasound imaging with a low-cost system.
Collapse
|
14
|
Zarader P, Francois Q, Coudert A, Duplat B, Haliyo S, Couture O. Proof of Concept of an Affordable, Compact and Transcranial Submillimeter Accurate Ultrasound-Based Tracking System. IEEE Trans Biomed Eng 2024; 71:893-903. [PMID: 37796674 DOI: 10.1109/tbme.2023.3322302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In neurosurgery, a current challenge is to provide localized therapy in deep and difficult-to-access brain areas with millimeter accuracy. In this prospect, new surgical devices such as microrobots are being developed, which require controlled inbrain navigation to ensure the safety and efficiency of the intervention. In this context, the device tracking technology has to answer a three-sided challenge: invasiveness, performance, and facility of use. Although ultrasound seems appropriate for transcranial tracking, the skull remains an obstacle because of its significant acoustic perturbations. A compact and affordable ultrasound-based tracking system that minimizes skull-related disturbances is proposed here. This system consists of three emitters fixed on the patient's head and a one-millimeter receiver embedded in the surgical device. The 3D position of the receiver is obtained by trilateration based on time of flight measurements. The system demonstrates a submillimeter tracking accuracy through an 8.9 mm thick skull plate phantom. This result opens multiple perspectives in terms of millimeter accurate navigation for a large number of neurobiomedical devices.
Collapse
|
15
|
Bourquin C, Porée J, Rauby B, Perrot V, Ghigo N, Belgharbi H, Bélanger S, Ramos-Palacios G, Cortes N, Ladret H, Ikan L, Casanova C, Lesage F, Provost J. Quantitative pulsatility measurements using 3D dynamic ultrasound localization microscopy. Phys Med Biol 2024; 69:045017. [PMID: 38181421 DOI: 10.1088/1361-6560/ad1b68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
A rise in blood flow velocity variations (i.e. pulsatility) in the brain, caused by the stiffening of upstream arteries, is associated with cognitive impairment and neurodegenerative diseases. The study of this phenomenon requires brain-wide pulsatility measurements, with large penetration depth and high spatiotemporal resolution. The development of dynamic ultrasound localization microscopy (DULM), based on ULM, has enabled pulsatility measurements in the rodent brain in 2D. However, 2D imaging accesses only one slice of the brain and measures only 2D-projected and hence biased velocities . Herein, we present 3D DULM: using a single ultrasound scanner at high frame rate (1000-2000 Hz), this method can produce dynamic maps of microbubbles flowing in the bloodstream and extract quantitative pulsatility measurements in the cat brain with craniotomy and in the mouse brain through the skull, showing a wide range of flow hemodynamics in both large and small vessels. We highlighted a decrease in pulsatility along the vascular tree in the cat brain, which could be mapped with ultrasound down to a few tens of micrometers for the first time. We also performed an intra-animal validation of the method by showing consistent measurements between the two sides of the Willis circle in the mouse brain. Our study provides the first step towards a new biomarker that would allow the detection of dynamic abnormalities in microvessels in the brain, which could be linked to early signs of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chloé Bourquin
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Jonathan Porée
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Brice Rauby
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Vincent Perrot
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Nin Ghigo
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
| | - Hatim Belgharbi
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | | | | | - Nelson Cortes
- School of Optometry, University of Montreal, Montréal, QC H3T 1P1, Canada
| | - Hugo Ladret
- School of Optometry, University of Montreal, Montréal, QC H3T 1P1, Canada
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, F-13005, France
| | - Lamyae Ikan
- School of Optometry, University of Montreal, Montréal, QC H3T 1P1, Canada
| | - Christian Casanova
- School of Optometry, University of Montreal, Montréal, QC H3T 1P1, Canada
| | - Frédéric Lesage
- Department of Electrical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Jean Provost
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| |
Collapse
|
16
|
Wang B, Riemer K, Toulemonde M, Yan J, Zhou X, Smith CAB, Tang MX. Broad Elevation Projection Super-Resolution Ultrasound (BEP-SRUS) Imaging With a 1-D Unfocused Linear Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:255-265. [PMID: 38109244 DOI: 10.1109/tuffc.2023.3343992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Super-resolution ultrasound (SRUS) through localizing spatially isolated microbubbles (MBs) has been demonstrated to overcome the wave diffraction limit and reveal the microvascular structure and flow information at the microscopic scale. However, 3-D SRUS imaging remains a challenge due to the fabrication and computational complexity of 2-D matrix array probes. Inspired by X-ray radiography which can present information within a volume in a single projection image with much simpler hardware than X-ray computerized tomography (CT), this study investigates the feasibility of broad elevation projection super-resolution (BEP-SR) ultrasound using a 1-D unfocused linear array. Both simulation and in vitro experiments were conducted on 3-D microvessel phantoms. In vivo demonstration was done on the Rabbit kidney. Data from a 1-D linear array with and without an elevational focus were synthesized by summing up row signals acquired from a 2-D matrix array with and without delays. A full 3-D reconstruction was also generated as the reference, using the same data of the 2-D matrix array but without summing row signals. Results show that using an unfocused 1-D array probe, BEP-SR can capture significantly more information within a volume in both vascular structure and flow velocity than the conventional 1-D elevational-focused probe. Compared with the 2-D projection image of the full 3-D SRUS results using the 2-D array probe with the same aperture size, the 2-D projection SRUS image of BEP-SR has similar volume coverage, using 32 folds fewer independent elements. This study demonstrates BEP-SR's ability of high-resolution imaging of microvascular structures and flow velocity within a 3-D volume at significantly reduced costs. The proposed BEP method could significantly benefit the clinical translation of the SRUS imaging technique by making it more affordable and repeatable.
Collapse
|
17
|
McCall JR, DeRuiter R, Ross M, Santibanez F, Hingtgen SD, Pinton GF, Dayton PA. Longitudinal 3-D Visualization of Microvascular Disruption and Perfusion Changes in Mice During the Evolution of Glioblastoma Using Super-Resolution Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1401-1416. [PMID: 37756182 DOI: 10.1109/tuffc.2023.3320034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Glioblastoma is an aggressive brain cancer with a very poor prognosis in which less than 6% of patients survive more than five-year post-diagnosis. The outcome of this disease for many patients may be improved by early detection. This could provide clinicians with the information needed to take early action for treatment. In this work, we present the utilization of a non-invasive, fully volumetric ultrasonic imaging method to assess microvascular change during the evolution of glioblastoma in mice. Volumetric ultrasound localization microscopy (ULM) was used to observe statistically significant ( ) reduction in the appearance of functional vasculature over the course of three weeks. We also demonstrate evidence suggesting the reduction of vascular flow for vessels peripheral to the tumor. With an 82.5% consistency rate in acquiring high-quality vascular images, we demonstrate the possibility of volumetric ULM as a longitudinal method for microvascular characterization of neurological disease.
Collapse
|
18
|
Bureau F, Robin J, Le Ber A, Lambert W, Fink M, Aubry A. Three-dimensional ultrasound matrix imaging. Nat Commun 2023; 14:6793. [PMID: 37880210 PMCID: PMC10600255 DOI: 10.1038/s41467-023-42338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Matrix imaging paves the way towards a next revolution in wave physics. Based on the response matrix recorded between a set of sensors, it enables an optimized compensation of aberration phenomena and multiple scattering events that usually drastically hinder the focusing process in heterogeneous media. Although it gave rise to spectacular results in optical microscopy or seismic imaging, the success of matrix imaging has been so far relatively limited with ultrasonic waves because wave control is generally only performed with a linear array of transducers. In this paper, we extend ultrasound matrix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables a much sharper estimation of the transmission matrix that links each transducer and each medium voxel. Here, we first present an experimental proof of concept on a tissue-mimicking phantom through ex-vivo tissues and then, show the potential of 3D matrix imaging for transcranial applications.
Collapse
Affiliation(s)
- Flavien Bureau
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Justine Robin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
- Physics for Medicine, ESPCI Paris, PSL University, INSERM, CNRS, Paris, France
| | - Arthur Le Ber
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - William Lambert
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
- Hologic / SuperSonic Imagine, 135 Rue Emilien Gautier, 13290, Aix-en-Provence, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.
| |
Collapse
|
19
|
Søgaard SB, Andersen SB, Taghavi I, Schou M, Christoffersen C, Jacobsen JCB, Kjer HM, Gundlach C, McDermott A, Jensen JA, Nielsen MB, Sørensen CM. Super-Resolution Ultrasound Imaging of Renal Vascular Alterations in Zucker Diabetic Fatty Rats during the Development of Diabetic Kidney Disease. Diagnostics (Basel) 2023; 13:3197. [PMID: 37892017 PMCID: PMC10605617 DOI: 10.3390/diagnostics13203197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Individuals with diabetes at risk of developing diabetic kidney disease (DKD) are challenging to identify using currently available clinical methods. Prognostic accuracy and initiation of treatment could be improved by a quantification of the renal microvascular rarefaction and the increased vascular tortuosity during the development of DKD. Super-resolution ultrasound (SRUS) imaging is an in vivo technique capable of visualizing blood vessels at sizes below 75 µm. This preclinical study aimed to investigate the alterations in renal blood vessels' density and tortuosity in a type 2 diabetes rat model, Zucker diabetic fatty (ZDF) rats, as a prediction of DKD. Lean age-matched Zucker rats were used as controls. A total of 36 rats were studied, subdivided into ages of 12, 22, and 40 weeks. Measured albuminuria indicated the early stage of DKD, and the SRUS was compared with the ex vivo micro-computed tomography (µCT) of the same kidneys. Assessed using the SRUS imaging, a significantly decreased cortical vascular density was detected in the ZDF rats from 22 weeks of age compared to the healthy controls, concomitant with a significantly increased albuminuria. Already by week 12, a trend towards a decreased cortical vascular density was found prior to the increased albuminuria. The quantified vascular density in µCT corresponded with the in vivo SRUS imaging, presenting a consistently lower vascular density in the ZDF rats. Regarding vessel tortuosity, an overall trend towards an increased tortuosity was present in the ZDF rats. SRUS shows promise for becoming an additional tool for monitoring and prognosing DKD. In the future, large-scale animal studies and human trials are needed for confirmation.
Collapse
Affiliation(s)
- Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | | | - Christina Christoffersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jens Christian Brings Jacobsen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
| | - Hans Martin Kjer
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Amy McDermott
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
| |
Collapse
|
20
|
You Q, Lowerison MR, Shin Y, Chen X, Sekaran NVC, Dong Z, Llano DA, Anastasio MA, Song P. Contrast-Free Super-Resolution Power Doppler (CS-PD) Based on Deep Neural Networks. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1355-1368. [PMID: 37566494 PMCID: PMC10619974 DOI: 10.1109/tuffc.2023.3304527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Super-resolution ultrasound microvessel imaging based on ultrasound localization microscopy (ULM) is an emerging imaging modality that is capable of resolving micrometer-scaled vessels deep into tissue. In practice, ULM is limited by the need for contrast injection, long data acquisition, and computationally expensive postprocessing times. In this study, we present a contrast-free super-resolution power Doppler (CS-PD) technique that uses deep networks to achieve super-resolution with short data acquisition. The training dataset is comprised of spatiotemporal ultrafast ultrasound signals acquired from in vivo mouse brains, while the testing dataset includes in vivo mouse brain, chicken embryo chorioallantoic membrane (CAM), and healthy human subjects. The in vivo mouse imaging studies demonstrate that CS-PD could achieve an approximate twofold improvement in spatial resolution when compared with conventional power Doppler. In addition, the microvascular images generated by CS-PD showed good agreement with the corresponding ULM images as indicated by a structural similarity index of 0.7837 and a peak signal-to-noise ratio (PSNR) of 25.52. Moreover, CS-PD was able to preserve the temporal profile of the blood flow (e.g., pulsatility) that is similar to conventional power Doppler. Finally, the generalizability of CS-PD was demonstrated on testing data of different tissues using different imaging settings. The fast inference time of the proposed deep neural network also allows CS-PD to be implemented for real-time imaging. These features of CS-PD offer a practical, fast, and robust microvascular imaging solution for many preclinical and clinical applications of Doppler ultrasound.
Collapse
|
21
|
Zhang G, Liao C, Hu JR, Hu HM, Lei YM, Harput S, Ye HR. Nanodroplet-Based Super-Resolution Ultrasound Localization Microscopy. ACS Sens 2023; 8:3294-3306. [PMID: 37607403 DOI: 10.1021/acssensors.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Over the past decade, super-resolution ultrasound localization microscopy (SR-ULM) has revolutionized ultrasound imaging with its capability to resolve the microvascular structures below the ultrasound diffraction limit. The introduction of this imaging technique enables the visualization, quantification, and characterization of tissue microvasculature. The early implementations of SR-ULM utilize microbubbles (MBs) that require a long image acquisition time due to the requirement of capturing sparsely isolated microbubble signals. The next-generation SR-ULM employs nanodroplets that have the potential to significantly reduce the image acquisition time without sacrificing the resolution. This review discusses various nanodroplet-based ultrasound localization microscopy techniques and their corresponding imaging mechanisms. A summary is given on the preclinical applications of SR-ULM with nanodroplets, and the challenges in the clinical translation of nanodroplet-based SR-ULM are presented while discussing the future perspectives. In conclusion, ultrasound localization microscopy is a promising microvasculature imaging technology that can provide new diagnostic and prognostic information for a wide range of pathologies, such as cancer, heart conditions, and autoimmune diseases, and enable personalized treatment monitoring at a microlevel.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS, Paris 75015, France
| | - Chen Liao
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jun-Rui Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| | - Sevan Harput
- Department of Electrical and Electronic Engineering, London South Bank University, London SE1 0AA, U.K
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| |
Collapse
|
22
|
Yan J, Wang B, Riemer K, Hansen-Shearer J, Lerendegui M, Toulemonde M, Rowlands CJ, Weinberg PD, Tang MX. Fast 3D Super-Resolution Ultrasound With Adaptive Weight-Based Beamforming. IEEE Trans Biomed Eng 2023; 70:2752-2761. [PMID: 37015124 PMCID: PMC7614997 DOI: 10.1109/tbme.2023.3263369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
OBJECTIVE Super-resolution ultrasound (SRUS) imaging through localising and tracking sparse microbubbles has been shown to reveal microvascular structure and flow beyond the wave diffraction limit. Most SRUS studies use standard delay and sum (DAS) beamforming, where high side lobes and broad main lobes make isolation and localisation of densely distributed bubbles challenging, particularly in 3D due to the typically small aperture of matrix array probes. METHOD This study aimed to improve 3D SRUS by implementing a new fast 3D coherence beamformer based on channel signal variance. Two additional fast coherence beamformers, that have been implemented in 2D were implemented in 3D for the first time as comparison: a nonlinear beamformer with p-th root compression and a coherence factor beamformer. The 3D coherence beamformers, together with DAS, were compared in computer simulation, on a microflow phantom and in vivo. RESULTS Simulation results demonstrated that all three adaptive weight-based beamformers can narrow the main lobe, suppress the side lobes, while maintaining the weaker scatter signals. Improved 3D SRUS images of microflow phantom and a rabbit kidney within a 3-second acquisition were obtained using the adaptive weight-based beamformers, when compared with DAS. CONCLUSION The adaptive weight-based 3D beamformers can improve the SRUS and the proposed variance-based beamformer performs best in simulations and experiments. SIGNIFICANCE Fast 3D SRUS would significantly enhance the potential utility of this emerging imaging modality in a broad range of biomedical applications.
Collapse
Affiliation(s)
- Jipeng Yan
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Bingxue Wang
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Kai Riemer
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Joseph Hansen-Shearer
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Marcelo Lerendegui
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Matthieu Toulemonde
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | | | - Peter D. Weinberg
- Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Meng-Xing Tang
- Ultrasound Lab for Imaging and Sensing, Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| |
Collapse
|
23
|
Zheng H, Niu L, Qiu W, Liang D, Long X, Li G, Liu Z, Meng L. The Emergence of Functional Ultrasound for Noninvasive Brain-Computer Interface. RESEARCH (WASHINGTON, D.C.) 2023; 6:0200. [PMID: 37588619 PMCID: PMC10427153 DOI: 10.34133/research.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.
Collapse
Affiliation(s)
- Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weibao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojing Long
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
24
|
Dencks S, Schmitz G. Ultrasound localization microscopy. Z Med Phys 2023; 33:292-308. [PMID: 37328329 PMCID: PMC10517400 DOI: 10.1016/j.zemedi.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Ultrasound Localization Microscopy (ULM) is an emerging technique that provides impressive super-resolved images of microvasculature, i.e., images with much better resolution than the conventional diffraction-limited ultrasound techniques and is already taking its first steps from preclinical to clinical applications. In comparison to the established perfusion or flow measurement methods, namely contrast-enhanced ultrasound (CEUS) and Doppler techniques, ULM allows imaging and flow measurements even down to the capillary level. As ULM can be realized as a post-processing method, conventional ultrasound systems can be used for. ULM relies on the localization of single microbubbles (MB) of commercial, clinically approved contrast agents. In general, these very small and strong scatterers with typical radii of 1-3 µm are imaged much larger in ultrasound images than they actually are due to the point spread function of the imaging system. However, by applying appropriate methods, these MBs can be localized with sub-pixel precision. Then, by tracking MBs over successive frames of image sequences, not only the morphology of vascular trees but also functional information such as flow velocities or directions can be obtained and visualized. In addition, quantitative parameters can be derived to describe pathological and physiological changes in the microvasculature. In this review, the general concept of ULM and conditions for its applicability to microvessel imaging are explained. Based on this, various aspects of the different processing steps for a concrete implementation are discussed. The trade-off between complete reconstruction of the microvasculature and the necessary measurement time as well as the implementation in 3D are reviewed in more detail, as they are the focus of current research. Through an overview of potential or already realized preclinical and clinical applications - pathologic angiogenesis or degeneration of vessels, physiological angiogenesis, or the general understanding of organ or tissue function - the great potential of ULM is demonstrated.
Collapse
Affiliation(s)
- Stefanie Dencks
- Lehrstuhl für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum, Bochum, Germany.
| | - Georg Schmitz
- Lehrstuhl für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
25
|
Chen X, Lowerison MR, Dong Z, Chandra Sekaran NV, Llano DA, Song P. Localization Free Super-Resolution Microbubble Velocimetry Using a Long Short-Term Memory Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2374-2385. [PMID: 37028074 PMCID: PMC10461750 DOI: 10.1109/tmi.2023.3251197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ultrasound localization microscopy is a super-resolution imaging technique that exploits the unique characteristics of contrast microbubbles to side-step the fundamental trade-off between imaging resolution and penetration depth. However, the conventional reconstruction technique is confined to low microbubble concentrations to avoid localization and tracking errors. Several research groups have introduced sparsity- and deep learning-based approaches to overcome this constraint to extract useful vascular structural information from overlapping microbubble signals, but these solutions have not been demonstrated to produce blood flow velocity maps of the microcirculation. Here, we introduce Deep-SMV, a localization free super-resolution microbubble velocimetry technique, based on a long short-term memory neural network, that provides high imaging speed and robustness to high microbubble concentrations, and directly outputs blood velocity measurements at a super-resolution. Deep-SMV is trained efficiently using microbubble flow simulation on real in vivo vascular data and demonstrates real-time velocity map reconstruction suitable for functional vascular imaging and pulsatility mapping at super-resolution. The technique is successfully applied to a wide variety of imaging scenarios, include flow channel phantoms, chicken embryo chorioallantoic membranes, and mouse brain imaging. An implementation of Deep-SMV is openly available at https://github.com/chenxiptz/SR_microvessel_velocimetry, with two pre-trained models available at https://doi.org/10.7910/DVN/SECUFD.
Collapse
|
26
|
Song P, Rubin JM, Lowerison MR. Super-resolution ultrasound microvascular imaging: Is it ready for clinical use? Z Med Phys 2023; 33:309-323. [PMID: 37211457 PMCID: PMC10517403 DOI: 10.1016/j.zemedi.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/23/2023]
Abstract
The field of super-resolution ultrasound microvascular imaging has been rapidly growing over the past decade. By leveraging contrast microbubbles as point targets for localization and tracking, super-resolution ultrasound pinpoints the location of microvessels and measures their blood flow velocity. Super-resolution ultrasound is the first in vivo imaging modality that can image micron-scale vessels at a clinically relevant imaging depth without tissue destruction. These unique capabilities of super-resolution ultrasound provide structural (vessel morphology) and functional (vessel blood flow) assessments of tissue microvasculature on a global and local scale, which opens new doors for many enticing preclinical and clinical applications that benefit from microvascular biomarkers. The goal of this short review is to provide an update on recent advancements in super-resolution ultrasound imaging, with a focus on summarizing existing applications and discussing the prospects of translating super-resolution imaging to clinical practice and research. In this review, we also provide brief introductions of how super-resolution ultrasound works, how does it compare with other imaging modalities, and what are the tradeoffs and limitations for an audience who is not familiar with the technology.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, United States; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, United States.
| | - Jonathan M Rubin
- Department of Radiology, University of Michigan, Ann Arbor, United States
| | - Matthew R Lowerison
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States
| |
Collapse
|
27
|
Yu J, Dong H, Ta D, Xie R, Xu K. Super-resolution Ultrasound Microvascular Angiography for Spinal Cord Penumbra Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00202-8. [PMID: 37451953 DOI: 10.1016/j.ultrasmedbio.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE After spinal cord injury (SCI) or ischemia, timely intervention in the penumbra, such as recanalization and tissue reperfusion, is essential for preservation of its function. However, limited by imaging resolution and micro-blood flow sensitivity, golden standard angiography modalities, including magnetic resonance angiography (MRA) and digital subtraction angiography (DSA), are still not applicable for spinal cord microvascular imaging. Regarding spinal cord penumbra, to the best of authors' knowledge, currently, there is no efficient in vivo imaging modality for its evaluation. With tens-of-micrometer resolution and deep penetration, advanced ultrasound localization microscopy (ULM) could potentially meet the needs of emergent diagnosis and long-term monitoring of spinal cord penumbra. METHODS ULM microvasculature imaging was performed on rats with all laminae removed to obtain the blood supply in major spinal cord segments (C5-L5). For adult rats with spinal cord penumbra induced by compression injury (1 s, 10 s and 15 s), ULM imaging was conducted. The corresponding angiography results are investigated in terms of microvessel saturation, morphology, and flow velocity. The Basso/Beattie/Bresnahan (BBB) locomotor rating scale and hematoxylin and eosin staining were utilized for model validation and comparison. RESULTS The feasibility of ULM enabling spinal cord penumbra imaging and development monitoring was demonstrated. The focal injury core and penumbra can be clearly identified using the proposed method. Significant difference of perfusion can be observed after 1 s, 10 s and 15 s compression. Quantitative results show a high correlation between in vivo ultrasonic angiography, BBB functional evaluation and ex vivo histology assessment under different compression duration. CONCLUSION It is demonstrated that the super-resolution ULM micro-vasculature imaging can be used to evaluate the penumbra in spinal cord at acute and early stage of chronic phase, providing an efficient modality for micro-hemodynamics monitoring of the spinal cord.
Collapse
Affiliation(s)
- Junjin Yu
- Center for Biomedical Engineering, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China
| | - Haoru Dong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Dean Ta
- Center for Biomedical Engineering, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kailiang Xu
- Center for Biomedical Engineering, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Lei S, Zhang C, Zhu B, Gao Z, Zhang Q, Liu J, Li Y, Zheng H, Ma T. In vivo ocular microvasculature imaging in rabbits with 3D ultrasound localization microscopy. ULTRASONICS 2023; 133:107022. [PMID: 37178486 DOI: 10.1016/j.ultras.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Morphological and hemodynamic changes in the ocular vasculature are important signs of various ocular diseases. The evaluation of the ocular microvasculature with high resolution is valuable in comprehensive diagnoses. However, it is difficult for current optical imaging techniques to visualize the posterior segment and retrobulbar microvasculature due to the limited penetration depth of light, particularly when the refractive medium is opaque. Thus, we have developed a 3D ultrasound localization microscopy (ULM) imaging method to visualize the ocular microvasculature in rabbits with micron-scale resolution. We used a 32 × 32 matrix array transducer (center frequency: 8 MHz) with a compounding plane wave sequence and microbubbles. Block-wise singular value decomposition spatiotemporal clutter filtering and block-matching 3D denoising were implemented to extract the flowing microbubble signals at different imaging depths with high signal-to-noise ratios. The center points of microbubbles were localized and tracked in 3D space to achieve the micro-angiography. The in vivo results demonstrate the ability of 3D ULM to visualize the microvasculature of the eye in rabbits, where vessels down to 54 μm were successfully revealed. Moreover, the microvascular maps indicated the morphological abnormalities in the eye with retinal detachment. This efficient modality shows potential for use in the diagnosis of ocular diseases.
Collapse
Affiliation(s)
- Shuang Lei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changlu Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zeping Gao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China
| | - Jiamei Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China
| | - Yongchuan Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Teng Ma
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China.
| |
Collapse
|
29
|
Brown KG, Li J, Margolis R, Trinh B, Eisenbrey JR, Hoyt K. Assessment of Transarterial Chemoembolization Using Super-resolution Ultrasound Imaging and a Rat Model of Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1318-1326. [PMID: 36868958 DOI: 10.1016/j.ultrasmedbio.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a highly prevalent form of liver cancer diagnosed annually in 600,000 people worldwide. A common treatment is transarterial chemoembolization (TACE), which interrupts the blood supply of oxygen and nutrients to the tumor mass. The need for repeat TACE treatments may be assessed in the weeks after therapy with contrast-enhanced ultrasound (CEUS) imaging. Although the spatial resolution of traditional CEUS has been restricted by the diffraction limit of ultrasound (US), this physical barrier has been overcome by a recent innovation known as super-resolution US (SRUS) imaging. In short, SRUS enhances the visible details of smaller microvascular structures on the 10 to 100 µm scale, which unlocks a host of new clinical opportunities for US. METHODS In this study, a rat model of orthotopic HCC is introduced and TACE treatment response (to a doxorubicin-lipiodol emulsion) is assessed using longitudinal SRUS and magnetic resonance imaging (MRI) performed at 0, 7 and 14 d. Animals were euthanized at 14 d for histological analysis of excised tumor tissue and determination of TACE response, that is, control, partial response or complete response. CEUS imaging was performed using a pre-clinical US system (Vevo 3100, FUJIFILM VisualSonics Inc.) equipped with an MX201 linear array transducer. After administration of a microbubble contrast agent (Definity, Lantheus Medical Imaging), a series of CEUS images were collected at each tissue cross-section as the transducer was mechanically stepped at 100 μm increments. SRUS images were formed at each spatial position, and a microvascular density metric was calculated. Microscale computed tomography (microCT, OI/CT, MILabs) was used to confirm TACE procedure success, and tumor size was monitored using a small animal MRI system (BioSpec 3T, Bruker Corp.). RESULTS Although there were no differences at baseline (p > 0.15), both microvascular density levels and tumor size measures from the complete responder cases at 14 d were considerably lower and smaller, respectively, than those in the partial responder or control group animals. Histological analysis revealed tumor-to-necrosis levels of 8.4%, 51.1% and 100%, for the control, partial responder and complete responder groups, respectively (p < 0.005). CONCLUSION SRUS imaging is a promising modality for assessing early changes in microvascular networks in response to tissue perfusion-altering interventions such as TACE treatment of HCC.
Collapse
Affiliation(s)
- Katherine G Brown
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Junjie Li
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ryan Margolis
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Brian Trinh
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
30
|
Masoumi MH, Kaddoura T, Zemp RJ. Costas Sparse 2-D Arrays for High-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:460-472. [PMID: 37028300 DOI: 10.1109/tuffc.2023.3256339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Two-dimensional arrays enable volumetric ultrasound imaging but have been limited to small aperture size and hence low resolution due to the high cost and complexity of fabrication, addressing, and processing associated with large fully addressed arrays. Here, we propose Costas arrays as a gridded sparse 2-D array architecture for volumetric ultrasound imaging. Costas arrays have exactly one element for every row and column, such that the vector displacement between any pair of elements is unique. These properties ensure aperiodicity, which helps eliminate grating lobes. Compared with previously reported works, we studied the distribution of active elements based on an order-256 Costas layout on a wider aperture ( 96 λ×96 λ at 7.5 MHz center frequency) for high-resolution imaging. Our investigations with focused scanline imaging of point targets and cyst phantoms showed that Costas arrays exhibit lower peak sidelobe levels compared with random sparse arrays of the same size and offer comparable performance in terms of contrast compared with Fermat spiral arrays. In addition, Costas arrays are gridded, which could ease the manufacturing and has one element for each row/column, which enables simple interconnection strategies. Compared with state-of-the-art matrix probes, which are commonly 32×32 , the proposed sparse arrays achieve higher lateral resolution and a wider field of view.
Collapse
|
31
|
Denis L, Bodard S, Hingot V, Chavignon A, Battaglia J, Renault G, Lager F, Aissani A, Hélénon O, Correas JM, Couture O. Sensing ultrasound localization microscopy for the visualization of glomeruli in living rats and humans. EBioMedicine 2023; 91:104578. [PMID: 37086650 PMCID: PMC10149190 DOI: 10.1016/j.ebiom.2023.104578] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Estimation of glomerular function is necessary to diagnose kidney diseases. However, the study of glomeruli in the clinic is currently done indirectly through urine and blood tests. A recent imaging technique called Ultrasound Localization Microscopy (ULM) has appeared. It is based on the ability to record continuous movements of individual microbubbles in the bloodstream. Although ULM improved the resolution of vascular imaging up to tenfold, the imaging of the smallest vessels had yet to be reported. METHODS We acquired ultrasound sequences from living humans and rats and then applied filters to divide the data set into slow-moving and fast-moving microbubbles. We performed a double tracking to highlight and characterize populations of microbubbles with singular behaviors. We decided to call this technique "sensing ULM" (sULM). We used post-mortem micro-CT for side-by-side confirmation in rats. FINDINGS In this study, we report the observation of microbubbles flowing in the glomeruli in living humans and rats. We present a set of analysis tools to extract quantitative information from individual microbubbles, such as remanence time or normalized distance. INTERPRETATION As glomeruli play a key role in kidney function, it would be possible that their observation yields a deeper understanding of the kidney. It could also be a tool to diagnose kidney diseases in patients. More generally, it will bring imaging capabilities closer to the functional units of organs, which is a key to understand most diseases, such as cancer, diabetes, or kidney failures. FUNDING This study was funded by the European Research Council under the European Union Horizon H2020 program (ERC Consolidator grant agreement No 772786-ResolveStroke).
Collapse
Affiliation(s)
- Louise Denis
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France.
| | - Sylvain Bodard
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Service d'Imagerie Adulte, F-75015, Paris, France; Université de Paris Cité, F-75006, Paris, France
| | - Vincent Hingot
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Arthur Chavignon
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Jacques Battaglia
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Gilles Renault
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Franck Lager
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Abderrahmane Aissani
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Olivier Hélénon
- AP-HP, Hôpital Necker Enfants Malades, Service d'Imagerie Adulte, F-75015, Paris, France; Université de Paris Cité, F-75006, Paris, France
| | - Jean-Michel Correas
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Service d'Imagerie Adulte, F-75015, Paris, France; Université de Paris Cité, F-75006, Paris, France
| | - Olivier Couture
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| |
Collapse
|
32
|
Chabouh G, van Elburg B, Versluis M, Segers T, Quilliet C, Coupier G. Buckling of lipidic ultrasound contrast agents under quasi-static load. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220025. [PMID: 36774952 DOI: 10.1098/rsta.2022.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
Collapse of lipidic ultrasound contrast agents under high-frequency compressive load has been historically interpreted by the vanishing of surface tension. By contrast, buckling of elastic shells is known to occur when costly compressible stress is released through bending. Through quasi-static compression experiments on lipidic shells, we analyse the buckling events in the framework of classical elastic buckling theory and deduce the mechanical characteristics of these shells. They are then compared with that obtained through acoustic characterization. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'.
Collapse
Affiliation(s)
- Georges Chabouh
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France
| | - Benjamin van Elburg
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Tim Segers
- BIOS/Lab-on-a-Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | | | - Gwennou Coupier
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France
| |
Collapse
|
33
|
Favre H, Pernot M, Tanter M, Papadacci C. Transcranial 3D ultrasound localization microscopy using a large element matrix array with a multi-lens diffracting layer: an in vitrostudy. Phys Med Biol 2023; 68. [PMID: 36808924 DOI: 10.1088/1361-6560/acbde3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
Objective. Early diagnosis and acute knowledge of cerebral disease require to map the microflows of the whole brain. Recently, ultrasound localization microscopy (ULM) was applied to map and quantify blood microflows in 2D in the brain of adult patients down to the micron scale. Whole brain 3D clinical ULM remains challenging due to the transcranial energy loss which reduces significantly the imaging sensitivity.Approach. Large aperture probes with a large surface can increase both the field of view and sensitivity. However, a large active surface implies thousands of acoustic elements, which limits clinical translation. In a previous simulation study, we developed a new probe concept combining a limited number of elements and a large aperture. It is based on large elements, to increase sensitivity, and a multi-lens diffracting layer to improve the focusing quality. In this study, a 16 elements prototype, driven at 1 MHz frequency, was made andin vitroexperiments were performed to validate the imaging capabilities of this new probe concept.Main results. First, pressure fields emitted from a large single transducer element without and with diverging lens were compared. Low directivity was measured for the large element with the diverging lens while maintaining high transmit pressure. The focusing quality of 4 × 3cm matrix arrays of 16 elements without/with lenses were compared.In vitroexperiments in a water tank and through a human skull were achieved to localize and track microbubbles in tubes.Significance.ULM was achieved demonstrating the strong potential of multi-lens diffracting layer to enable microcirculation assessment over a large field of view through the bones.
Collapse
Affiliation(s)
- Hugues Favre
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012 Paris, France
| | - Mathieu Pernot
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012 Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012 Paris, France
| | - Clément Papadacci
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012 Paris, France
| |
Collapse
|
34
|
Goudot G, Jimenez A, Mohamedi N, Sitruk J, Khider L, Mortelette H, Papadacci C, Hyafil F, Tanter M, Messas E, Pernot M, Mirault T. Assessment of Takayasu's arteritis activity by ultrasound localization microscopy. EBioMedicine 2023; 90:104502. [PMID: 36893585 PMCID: PMC10017361 DOI: 10.1016/j.ebiom.2023.104502] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Ultrasound localization microscopy (ULM) based on ultrafast ultrasound imaging of circulating microbubbles (MB) can image microvascular blood flows in vivo up to the micron scale. Takayasu arteritis (TA) has an increased vascularisation of the thickened arterial wall when active. We aimed to perform vasa vasorum ULM of the carotid wall and demonstrate that ULM can provide imaging markers to assess the TA activity. METHODS Patients with TA were consecutively included with assessment of activity by the National Institute of Health criteria: 5 had active TA (median age 35.8 [24.5-46.0] years) and 11 had quiescent TA (37.2 [31.7-47.3] years). ULM was performed using a 6.4 MHz probe and a dedicated imaging sequence (plane waves with 8 angles, frame rate 500 Hz), coupled with the intravenous injection of MB. Individual MB were localised at a subwavelength scale then tracked, allowing the reconstruction of the vasa vasorum flow anatomy and velocity. FINDINGS ULM allowed to show microvessels and to measure their flow velocity within the arterial wall. The number of MB detected per second in the wall was 121 [80-146] in active cases vs. 10 [6-15] in quiescent cases (p = 0.0005), with a mean velocity of 40.5 [39.0-42.9] mm.s-1 in active cases. INTERPRETATION ULM allows visualisation of microvessels within the thickened carotid wall in TA, with significantly greater MB density in active cases. ULM provides a precise visualisation in vivo of the vasa vasorum and gives access to the arterial wall vascularisation quantification. FUNDING French Society of Cardiology. ART (Technological Research Accelerator) biomedical ultrasound program of INSERM, France.
Collapse
Affiliation(s)
- Guillaume Goudot
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France.
| | - Anatole Jimenez
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Nassim Mohamedi
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France
| | - Jonas Sitruk
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France
| | - Lina Khider
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France
| | - Hélène Mortelette
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Clément Papadacci
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Fabien Hyafil
- Nuclear Medicine Department, Georges Pompidou European Hospital, APHP, Université Paris Cité, Paris, France
| | - Mickaël Tanter
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Emmanuel Messas
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Tristan Mirault
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France; Université Paris Cité, INSERM U970 PARCC, F-75015 Paris, France; French National Reference Centre for Rare Vascular Diseases, FAVA-MULTI, Member of the European Reference Network on Rare Multisystemic Vascular Diseases (VASCERN), F-75015 Paris, France
| |
Collapse
|
35
|
Ultrasound localization microscopy of the human kidney allograft on a clinical ultrasound scanner. Kidney Int 2023; 103:930-935. [PMID: 36841476 DOI: 10.1016/j.kint.2023.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/27/2023]
Abstract
Chronic kidney disease is a major medical problem, causing more than a million deaths each year worldwide. Peripheral kidney microvascular damage characterizes most chronic kidney diseases, yet noninvasive and quantitative diagnostic tools to measure this are lacking. Ultrasound Localization Microscopy (ULM) can assess tissue microvasculature with unprecedented resolution. Here, we optimized methods on 35 kidney transplants and studied the feasibility of ULM in seven human kidney allografts with a standard low frame rate ultrasound scanner to access microvascular damage. Interlobar, arcuate, cortical radial vessels, and part of the medullary organization were visible on ULM density maps. The medullary vasa recta can be seen but are not as clear as the cortical vessels. Acquisition parameters were derived from Contrast-Enhanced Ultrasound examinations by increasing the duration of the recorded clip at the same plane. ULM images were compared with Color Doppler, Advanced Dynamic Flow, and Superb Microvascular Imaging with a contrast agent. Despite some additional limitations due to movement and saturation artifacts, ULM identified vessels two to four times thinner compared with Doppler modes. The mean ULM smallest analyzable vessel cross section was 0.3 ± 0.2 mm in the seven patients. Additionally, ULM was able to provide quantitative information on blood velocities in the cortical area. Thus, this proof-of-concept study has shown ULM to be a promising imaging technique for qualitative and quantitative microvascular assessment. Imaging native kidneys in patients with kidney diseases will be needed to identify their ULM biomarkers.
Collapse
|
36
|
Tai H, Basavarajappa L, Hoyt K. 3-D H-scan ultrasound imaging of relative scatterer size using a matrix array transducer and sparse random aperture compounding. Comput Biol Med 2022; 151:106316. [PMID: 36442278 PMCID: PMC9749370 DOI: 10.1016/j.compbiomed.2022.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
H-scan ultrasound (US) is a high-resolution imaging technique for soft tissue characterization. By acquiring data in volume space, H-scan US can provide insight into subtle tissue changes or heterogenous patterns that might be missed using traditional cross-sectional US imaging approaches. In this study, we introduce a 3-dimensional (3-D) H-scan US imaging technology for voxel-level tissue characterization in simulation and experimentation. Using a matrix array transducer, H-scan US imaging was developed to evaluate the relative size of US scattering aggregates in volume space. Experimental data was acquired using a programmable US system (Vantage 256, Verasonics Inc, Kirkland, WA) equipped with a 1024-element (32 × 32) matrix array transducer (Vermon Inc, Tours, France). Imaging was performed using the full array in transmission. Radiofrequency (RF) data sequences were collected using a sparse random aperture compounding technique with 6 different data compounding approaches. Plane wave imaging at five angles was performed at a center frequency of 8 MHz. Scan conversion and attenuation correction were applied. To generate the 3-D H-scan US images, a convolution filter bank (N = 256) was then used to process the RF data sequences and measure the spectral content of the backscattered US signals before volume reconstruction. Preliminary experimental studies were conducted using homogeneous phantom materials embedded with spherical US scatterers of varying diameter, i.e., 27 to 45, 63 to 75, or 106-126 μm. Both simulated and experimental results revealed that 3-D H-scan US images have a low spatial variance when tested with homogeneous phantom materials. Furthermore, H-scan US is considerably more sensitive than traditional B-mode US imaging for differentiating US scatterers of varying size (p = 0.001 and p = 0.93, respectively). Overall, this study demonstrates the feasibility of 3-D H-scan US imaging using a matrix array transducer for tissue characterization in volume space.
Collapse
Affiliation(s)
- Haowei Tai
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Lokesh Basavarajappa
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
37
|
Andersen SB, Sørensen CM, Jensen JA, Nielsen MB. Microvascular Imaging with Super-Resolution Ultrasound. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2022; 43:543-547. [PMID: 36470255 DOI: 10.1055/a-1937-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
38
|
Lok UW, Huang C, Trzasko JD, Kim Y, Lucien F, Tang S, Gong P, Song P, Chen S. Three-Dimensional Ultrasound Localization Microscopy with Bipartite Graph-Based Microbubble Pairing and Kalman-Filtering-Based Tracking on a 256-Channel Verasonics Ultrasound System with a 32 × 32 Matrix Array. J Med Biol Eng 2022; 42:767-779. [PMID: 36712192 PMCID: PMC9881453 DOI: 10.1007/s40846-022-00755-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023]
Abstract
Three-dimensional (3D) ultrasound localization microscopy (ULM) using a 2-D matrix probe and microbubbles (MBs) has been recently proposed to visualize microvasculature beyond the ultrasound diffraction limit in three spatial dimensions. However, 3D ULM suffers from several limitations: (1) high system complexity due to numerous channel counts, (2) complex MB flow dynamics in 3D, and (3) extremely long acquisition time. To reduce the system complexity while maintaining high image quality, we used a sub-aperture process to reduce received channel counts. To address the second issue, a 3D bipartite graph-based method with Kalman filtering-based tracking was used in this study for MB tracking. An MB separation approach was incorporated to separate high concentration MB data into multiple, sparser MB datasets, allowing better MB localization and tracking for a limited acquisition time. The proposed method was first validated in a flow channel phantom, showing improved spatial resolutions compared with the contrasted enhanced power Doppler image. Then the proposed method was evaluated with an in vivo chicken embryo brain dataset. Results showed that the reconstructed 3D super-resolution image achieved a spatial resolution of around 52 μm (smaller than the wavelength of around 200 μm). Microvessels that cannot be resolved clearly using localization only, can be well identified with the tailored 3D pairing and tracking algorithms. To sum up, the feasibility of the 3D ULM is shown, indicating the great possibility in clinical applications.
Collapse
Affiliation(s)
- U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Joshua D. Trzasko
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Yohan Kim
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Ping Gong
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Pengfei Song
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Shigao Chen
- Corresponding Author: Dr. Shigao Chen, Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905,
| |
Collapse
|
39
|
Yociss M, Brown K, Bruce M, Hoyt K. Amplitude modulation and baseband delay-multiply-and-sum beamforming for improved vessel visualization with volumetric contrast-enhanced ultrasound. 2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) 2022:1-4. [DOI: 10.1109/ius54386.2022.9957183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Megan Yociss
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| | - Katherine Brown
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| | - Matthew Bruce
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington,Seattle,Washington,USA
| | - Kenneth Hoyt
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| |
Collapse
|
40
|
Chavignon A, Hingot V, Orset C, Vivien D, Couture O. 3D transcranial ultrasound localization microscopy for discrimination between ischemic and hemorrhagic stroke in early phase. Sci Rep 2022; 12:14607. [PMID: 36028542 PMCID: PMC9418177 DOI: 10.1038/s41598-022-18025-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Early diagnosis is a critical part of the emergency care of cerebral hemorrhages and ischemia. A rapid and accurate diagnosis of strokes reduces the delays to appropriate treatments and a better functional recovery. Currently, CTscan and MRI are the gold standards with constraints of accessibility, availability, and possibly some contraindications. The development of Ultrasound Localization Microscopy (ULM) has enabled new perspectives to conventional transcranial ultrasound imaging with increased sensitivity, penetration depth, and resolution. The possibility of volumetric imaging has increased the field-of-view and provided a more precise description of the microvascularisation. In this study, rats (n = 9) were subjected to thromboembolic ischemic stroke or intracerebral hemorrhages prior to volumetric ULM at the early phases after onsets. Although the volumetric ULM performed in the early phase of ischemic stroke revealed a large hypoperfused area in the cortical area of the occluded artery, it showed a more diffused hypoperfusion in the hemorrhagic model. Respective computations of a Microvascular Diffusion Index highlighted different patterns of perfusion loss during the first 24 h of these two strokes’ subtypes. Our study provides the first proof that this methodology should allow early discrimination between ischemic and hemorrhagic stroke with a potential toward diagnosis and monitoring in clinic.
Collapse
Affiliation(s)
- Arthur Chavignon
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France.
| | - Vincent Hingot
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| | - Cyrille Orset
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France
| | - Denis Vivien
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, CHU Caen, Avenue de la Côte de Nacre, Caen, France
| | - Olivier Couture
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| |
Collapse
|
41
|
Renaudin N, Demené C, Dizeux A, Ialy-Radio N, Pezet S, Tanter M. Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale. Nat Methods 2022; 19:1004-1012. [PMID: 35927475 PMCID: PMC9352591 DOI: 10.1038/s41592-022-01549-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/14/2022] [Indexed: 12/02/2022]
Abstract
The advent of neuroimaging has increased our understanding of brain function. While most brain-wide functional imaging modalities exploit neurovascular coupling to map brain activity at millimeter resolutions, the recording of functional responses at microscopic scale in mammals remains the privilege of invasive electrophysiological or optical approaches, but is mostly restricted to either the cortical surface or the vicinity of implanted sensors. Ultrasound localization microscopy (ULM) has achieved transcranial imaging of cerebrovascular flow, up to micrometre scales, by localizing intravenously injected microbubbles; however, the long acquisition time required to detect microbubbles within microscopic vessels has so far restricted ULM application mainly to microvasculature structural imaging. Here we show how ULM can be modified to quantify functional hyperemia dynamically during brain activation reaching a 6.5-µm spatial and 1-s temporal resolution in deep regions of the rat brain.
Collapse
Affiliation(s)
- Noémi Renaudin
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Charlie Demené
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Alexandre Dizeux
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Nathalie Ialy-Radio
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Sophie Pezet
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France.
| |
Collapse
|