1
|
Guo C, Wang X, Ren H. Databases and computational methods for the identification of piRNA-related molecules: A survey. Comput Struct Biotechnol J 2024; 23:813-833. [PMID: 38328006 PMCID: PMC10847878 DOI: 10.1016/j.csbj.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs (ncRNAs) that plays important roles in many biological processes and major cancer diagnosis and treatment, thus becoming a hot research topic. This study aims to provide an in-depth review of computational piRNA-related research, including databases and computational models. Herein, we perform literature analysis and use comparative evaluation methods to summarize and analyze three aspects of computational piRNA-related research: (i) computational models for piRNA-related molecular identification tasks, (ii) computational models for piRNA-disease association prediction tasks, and (iii) computational resources and evaluation metrics for these tasks. This study shows that computational piRNA-related research has significantly progressed, exhibiting promising performance in recent years, whereas they also suffer from the emerging challenges of inconsistent naming systems and the lack of data. Different from other reviews on piRNA-related identification tasks that focus on the organization of datasets and computational methods, we pay more attention to the analysis of computational models, algorithms, and performances that aim to provide valuable references for computational piRNA-related identification tasks. This study will benefit the theoretical development and practical application of piRNAs by better understanding computational models and resources to investigate the biological functions and clinical implications of piRNA.
Collapse
Affiliation(s)
- Chang Guo
- Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou 510420, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Ren
- Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou 510420, China
- Laboratory of Language and Artificial Intelligence, Guangdong University of Foreign Studies, Guangzhou 510420, China
| |
Collapse
|
2
|
Wang S, Wang F, Qiao S, Zhuang Y, Zhang K, Pang S, Nowak R, Lv Z. MSHGANMDA: Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction. IEEE J Biomed Health Inform 2023; 27:4639-4648. [PMID: 35759606 DOI: 10.1109/jbhi.2022.3186534] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time. Although numerous biological experiments have identified multi-types of associations between miRNAs and diseases, existing computational methods are unable to sufficiently mine the knowledge in these associations to predict unknown associations. In this study, we innovatively propose a heterogeneous graph attention network model based on meta-subgraphs (MSHGANMDA) to predict the potential miRNA-disease associations. Firstly, we define five types of meta-subgraph from the known miRNA-disease associations. Then, we use meta-subgraph attention and meta-subgraph semantic attention to extract features of miRNA-disease pairs within and between these five meta-subgraphs, respectively. Finally, we apply a fully-connected layer (FCL) to predict the scores of unknown miRNA-disease associations and cross-entropy loss to train our model end-to-end. To evaluate the effectiveness of MSHGANMDA, we apply five-fold cross-validation to calculate the mean values of evaluation metrics Accuracy, Precision, Recall, and F1-score as 0.8595, 0.8601, 0.8596, and 0.8595, respectively. Experiments show that our model, which primarily utilizes multi-types of miRNA-disease association data, gets the greatest ROC-AUC value of 0.934 when compared to other state-of-the-art approaches. Furthermore, through case studies, we further confirm the effectiveness of MSHGANMDA in predicting unknown diseases.
Collapse
|
3
|
Guo Y, Zhou D, Ruan X, Cao J. Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features. Neural Netw 2023; 165:491-505. [PMID: 37336034 DOI: 10.1016/j.neunet.2023.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023]
Abstract
MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations.
Collapse
Affiliation(s)
- Yanbu Guo
- College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Dongming Zhou
- School of Information Science and Engineering, Yunnan University, Kunming 650500, China.
| | - Xiaoli Ruan
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China.
| | - Jinde Cao
- School of Mathematics, Southeast University, Nanjing 211189, China; Yonsei Frontier Lab, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
4
|
Chen M, Deng Y, Li Z, Ye Y, He Z. KATZNCP: a miRNA-disease association prediction model integrating KATZ algorithm and network consistency projection. BMC Bioinformatics 2023; 24:229. [PMID: 37268893 DOI: 10.1186/s12859-023-05365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Clinical studies have shown that miRNAs are closely related to human health. The study of potential associations between miRNAs and diseases will contribute to a profound understanding of the mechanism of disease development, as well as human disease prevention and treatment. MiRNA-disease associations predicted by computational methods are the best complement to biological experiments. RESULTS In this research, a federated computational model KATZNCP was proposed on the basis of the KATZ algorithm and network consistency projection to infer the potential miRNA-disease associations. In KATZNCP, a heterogeneous network was initially constructed by integrating the known miRNA-disease association, integrated miRNA similarities, and integrated disease similarities; then, the KATZ algorithm was implemented in the heterogeneous network to obtain the estimated miRNA-disease prediction scores. Finally, the precise scores were obtained by the network consistency projection method as the final prediction results. KATZNCP achieved the reliable predictive performance in leave-one-out cross-validation (LOOCV) with an AUC value of 0.9325, which was better than the state-of-the-art comparable algorithms. Furthermore, case studies of lung neoplasms and esophageal neoplasms demonstrated the excellent predictive performance of KATZNCP. CONCLUSION A new computational model KATZNCP was proposed for predicting potential miRNA-drug associations based on KATZ and network consistency projections, which can effectively predict the potential miRNA-disease interactions. Therefore, KATZNCP can be used to provide guidance for future experiments.
Collapse
Affiliation(s)
- Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yingwei Deng
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Zejun Li
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yifan Ye
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| | - Ziyi He
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| |
Collapse
|
5
|
Chen Y, Gao L, Zhang T. Stack-VTP: prediction of vesicle transport proteins based on stacked ensemble classifier and evolutionary information. BMC Bioinformatics 2023; 24:137. [PMID: 37029385 PMCID: PMC10080812 DOI: 10.1186/s12859-023-05257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Vesicle transport proteins not only play an important role in the transmembrane transport of molecules, but also have a place in the field of biomedicine, so the identification of vesicle transport proteins is particularly important. We propose a method based on ensemble learning and evolutionary information to identify vesicle transport proteins. Firstly, we preprocess the imbalanced dataset by random undersampling. Secondly, we extract position-specific scoring matrix (PSSM) from protein sequences, and then further extract AADP-PSSM and RPSSM features from PSSM, and use the Max-Relevance-Max-Distance (MRMD) algorithm to select the optimal feature subset. Finally, the optimal feature subset is fed into the stacked classifier for vesicle transport proteins identification. The experimental results show that the of accuracy (ACC), sensitivity (SN) and specificity (SP) of our method on the independent testing set are 82.53%, 0.774 and 0.836, respectively. The SN, SP and ACC of our proposed method are 0.013, 0.007 and 0.76% higher than the current state-of-the-art methods.
Collapse
Affiliation(s)
- Yu Chen
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Lixin Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China.
| |
Collapse
|
6
|
Kumar R, Yadav G, Kuddus M, Ashraf GM, Singh R. Unlocking the microbial studies through computational approaches: how far have we reached? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48929-48947. [PMID: 36920617 PMCID: PMC10016191 DOI: 10.1007/s11356-023-26220-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/24/2023] [Indexed: 04/16/2023]
Abstract
The metagenomics approach accelerated the study of genetic information from uncultured microbes and complex microbial communities. In silico research also facilitated an understanding of protein-DNA interactions, protein-protein interactions, docking between proteins and phyto/biochemicals for drug design, and modeling of the 3D structure of proteins. These in silico approaches provided insight into analyzing pathogenic and nonpathogenic strains that helped in the identification of probable genes for vaccines and antimicrobial agents and comparing whole-genome sequences to microbial evolution. Artificial intelligence, more precisely machine learning (ML) and deep learning (DL), has proven to be a promising approach in the field of microbiology to handle, analyze, and utilize large data that are generated through nucleic acid sequencing and proteomics. This enabled the understanding of the functional and taxonomic diversity of microorganisms. ML and DL have been used in the prediction and forecasting of diseases and applied to trace environmental contaminants and environmental quality. This review presents an in-depth analysis of the recent application of silico approaches in microbial genomics, proteomics, functional diversity, vaccine development, and drug design.
Collapse
Affiliation(s)
- Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah , 27272, United Arab Emirates
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
7
|
Gu X, Ding Y, Xiao P, He T. A GHKNN model based on the physicochemical property extraction method to identify SNARE proteins. Front Genet 2022; 13:935717. [PMID: 36506312 PMCID: PMC9727185 DOI: 10.3389/fgene.2022.935717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
There is a great deal of importance to SNARE proteins, and their absence from function can lead to a variety of diseases. The SNARE protein is known as a membrane fusion protein, and it is crucial for mediating vesicle fusion. The identification of SNARE proteins must therefore be conducted with an accurate method. Through extensive experiments, we have developed a model based on graph-regularized k-local hyperplane distance nearest neighbor model (GHKNN) binary classification. In this, the model uses the physicochemical property extraction method to extract protein sequence features and the SMOTE method to upsample protein sequence features. The combination achieves the most accurate performance for identifying all protein sequences. Finally, we compare the model based on GHKNN binary classification with other classifiers and measure them using four different metrics: SN, SP, ACC, and MCC. In experiments, the model performs significantly better than other classifiers.
Collapse
Affiliation(s)
- Xingyue Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Tao He
- Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
8
|
Yu L, Ju B, Ren S. HLGNN-MDA: Heuristic Learning Based on Graph Neural Networks for miRNA-Disease Association Prediction. Int J Mol Sci 2022; 23:13155. [PMID: 36361945 PMCID: PMC9657597 DOI: 10.3390/ijms232113155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 01/12/2024] Open
Abstract
Identifying disease-related miRNAs can improve the understanding of complex diseases. However, experimentally finding the association between miRNAs and diseases is expensive in terms of time and resources. The computational screening of reliable miRNA-disease associations has thus become a necessary tool to guide biological experiments. "Similar miRNAs will be associated with the same disease" is the assumption on which most current miRNA-disease association prediction methods rely; however, biased prior knowledge, and incomplete and inaccurate miRNA similarity data and disease similarity data limit the performance of the model. Here, we propose heuristic learning based on graph neural networks to predict microRNA-disease associations (HLGNN-MDA). We learn the local graph topology features of the predicted miRNA-disease node pairs using graph neural networks. In particular, our improvements to the graph convolution layer of the graph neural network enable it to learn information among homogeneous nodes and among heterogeneous nodes. We illustrate the performance of HLGNN-MDA by performing tenfold cross-validation against excellent baseline models. The results show that we have promising performance in multiple metrics. We also focus on the role of the improvements to the graph convolution layer in the model. The case studies are supported by evidence on breast cancer, hepatocellular carcinoma and renal cell carcinoma. Given the above, the experiments demonstrate that HLGNN-MDA can serve as a reliable method to identify novel miRNA-disease associations.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China
| | | | | |
Collapse
|
9
|
Yang M, Huang ZA, Gu W, Han K, Pan W, Yang X, Zhu Z. Prediction of biomarker-disease associations based on graph attention network and text representation. Brief Bioinform 2022; 23:6651308. [PMID: 35901464 DOI: 10.1093/bib/bbac298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION The associations between biomarkers and human diseases play a key role in understanding complex pathology and developing targeted therapies. Wet lab experiments for biomarker discovery are costly, laborious and time-consuming. Computational prediction methods can be used to greatly expedite the identification of candidate biomarkers. RESULTS Here, we present a novel computational model named GTGenie for predicting the biomarker-disease associations based on graph and text features. In GTGenie, a graph attention network is utilized to characterize diverse similarities of biomarkers and diseases from heterogeneous information resources. Meanwhile, a pretrained BERT-based model is applied to learn the text-based representation of biomarker-disease relation from biomedical literature. The captured graph and text features are then integrated in a bimodal fusion network to model the hybrid entity representation. Finally, inductive matrix completion is adopted to infer the missing entries for reconstructing relation matrix, with which the unknown biomarker-disease associations are predicted. Experimental results on HMDD, HMDAD and LncRNADisease data sets showed that GTGenie can obtain competitive prediction performance with other state-of-the-art methods. AVAILABILITY The source code of GTGenie and the test data are available at: https://github.com/Wolverinerine/GTGenie.
Collapse
Affiliation(s)
- Minghao Yang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Zhi-An Huang
- Center for Computer Science and Information Technology, City University of Hong Kong Dongguan Research Institute, Dongguan, China
| | - Wenhao Gu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518000, China.,GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Kun Han
- GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Wenying Pan
- GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Xiao Yang
- GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Zexuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518000, China
| |
Collapse
|
10
|
Ji C, Wang Y, Gao Z, Li L, Ni J, Zheng C. A Semi-Supervised Learning Method for MiRNA-Disease Association Prediction Based on Variational Autoencoder. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2049-2059. [PMID: 33735084 DOI: 10.1109/tcbb.2021.3067338] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that play critical role in many biological processes, such as cell growth, development, differentiation and aging. Increasing studies have revealed that miRNAs are closely involved in many human diseases. Therefore, the prediction of miRNA-disease associations is of great significance to the study of the pathogenesis, diagnosis and intervention of human disease. However, biological experimentally methods are usually expensive in time and money, while computational methods can provide an efficient way to infer the underlying disease-related miRNAs. In this study, we propose a novel method to predict potential miRNA-disease associations, called SVAEMDA. Our method mainly consider the miRNA-disease association prediction as semi-supervised learning problem. SVAEMDA integrates disease semantic similarity, miRNA functional similarity and respective Gaussian interaction profile (GIP) similarities. The integrated similarities are used to learn the representations of diseases and miRNAs. SVAEMDA trains a variational autoencoder based predictor by using known miRNA-disease associations, with the form of concatenated dense vectors. Reconstruction probability of the predictor is used to measure the correlation of the miRNA-disease pairs. Experimental results show that SVAEMDA outperforms other stat-of-the-art methods. AUC values of SVAEMDA of global leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV) are 0.9464 and 0.9428 respectively. In addition, case studies of three common human diseases indicate that SVAEMDA obtains 100 percent of the top 50 predicted candidates in the benchmark databases. Therefore, SVAEMDA can efficiently and accurately predict the potential associations between diseases and miRNAs.
Collapse
|
11
|
Li J, Wei S, Zhang Y, Lu S, Zhang X, Wang Q, Yan J, Yang S, Chen L, Liu Y, Huang Z. Comprehensive Analyses of Mutation-Derived Long-Chain Noncoding RNA Signatures of Genome Instability in Kidney Renal Papillary Cell Carcinoma. Front Genet 2022; 13:874673. [PMID: 35547247 PMCID: PMC9082950 DOI: 10.3389/fgene.2022.874673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The role of long-chain noncoding RNA (lncRNA) in genomic instability has been demonstrated to be increasingly importance. Therefore, in this study, lncRNAs associated with genomic instability were identified and kidney renal papillary cell carcinoma (KIRP)-associated predictive features were analysed to classify high-risk patients and improve individualised treatment. Methods: The training (n = 142) and test (n = 144) sets were created using raw RNA-seq and patient’s clinical data of KIRP obtained from The Cancer Genome Atlas (TCGA).There are 27 long-chain noncoding RNAs (lncRNAs) that are connected with genomic instability, these lncRNAs were identified using the ‘limma’ R package based on the numbers of somatic mutations and lncRNA expression profiles acquired from KIRP TCGA cohort. Furthermore, Cox regression analysis was carried out to develop a genome instability-derived lncRNA-based gene signature (GILncSig), whose prognostic value was confirmed in the test cohort as well as across the entire KIRP TCGA dataset. Results: A GILncSig derived from three lncRNAs (BOLA3-AS1, AC004870, and LINC00839), which were related with poor KIRP survival, was identified, which was split up into high- and low-risk groups. Additionally, the GILncSig was found to be an independent prognostic predictive index in KIRP using univariate and multivariate Cox analysis. Furthermore, the prognostic significance and characteristics of GilncSig were confirmed in the training test and TCGA sets. GilncSig also showed better predictive performance than other prognostic lncRNA features. Conclusion: The function of lncRNAs in genomic instability and the genetic diversity of KIRP were elucidated in this work. Moreover, three lncRNAs were screened for prediction of the outcome of KIRP survival and novel insights into identifying cancer biomarkers related to genomic instability were discussed.
Collapse
Affiliation(s)
- Jian Li
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shimei Wei
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan Zhang
- Department of Pediatrics, Shanxi Children's Hospital, Taiyuan, China
| | - Shuangshuang Lu
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaoxu Zhang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qiong Wang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiawei Yan
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Sanju Yang
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Liying Chen
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Yunguang Liu
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhijing Huang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
12
|
Yu N, Liu ZP, Gao R. Predicting multiple types of MicroRNA-disease associations based on tensor factorization and label propagation. Comput Biol Med 2022; 146:105558. [PMID: 35525071 DOI: 10.1016/j.compbiomed.2022.105558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) play important regulatory roles in the pathogenesis and progression of diseases. Most existing bioinformatics methods only study miRNA-disease binary association prediction. However, there are many types of associations between miRNA and disease. In addition, the miRNA-disease-type association dataset has inherent noise and incompleteness. In this paper, a novel method based on tensor factorization and label propagation (TFLP) is proposed to alleviate the above problems. First, as an effective tensor factorization method, tensor robust principal component analysis (TRPCA) is applied to the original multiple-type miRNA-disease associations to obtain a clean and complete low-rank prediction tensor. Second, the Gaussian interaction profile (GIP) kernel is used to describe the similarity of disease pairs and the similarity of miRNA pairs. Then, they are combined with disease semantic similarity and miRNA functional similarity to obtain an integrated disease similarity network and an integrated miRNA similarity network, respectively. Finally, the low-rank association tensor and the biological similarity as auxiliary information are introduced into label propagation. The prediction performance of the algorithm is improved by iterative propagation of labeled information to unlabeled samples. Extensive experiments reveal that the proposed TFLP method outperforms other state-of-the-art methods for predicting multiple types of miRNA-disease associations. The data and source codes are available at https://github.com/nayu0419/TFLP.
Collapse
Affiliation(s)
- Na Yu
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China.
| | - Zhi-Ping Liu
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China.
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China.
| |
Collapse
|
13
|
Zhao S, Pan Q, Zou Q, Ju Y, Shi L, Su X. Identifying and Classifying Enhancers by Dinucleotide-Based Auto-Cross Covariance and Attention-Based Bi-LSTM. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7518779. [PMID: 35422876 PMCID: PMC9005296 DOI: 10.1155/2022/7518779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Enhancers are a class of noncoding DNA elements located near structural genes. In recent years, their identification and classification have been the focus of research in the field of bioinformatics. However, due to their high free scattering and position variability, although the performance of the prediction model has been continuously improved, there is still a lot of room for progress. In this paper, density-based spatial clustering of applications with noise (DBSCAN) was used to screen the physicochemical properties of dinucleotides to extract dinucleotide-based auto-cross covariance (DACC) features; then, the features are reduced by feature selection Python toolkit MRMD 2.0. The reduced features are input into the random forest to identify enhancers. The enhancer classification model was built by word2vec and attention-based Bi-LSTM. Finally, the accuracies of our enhancer identification and classification models were 77.25% and 73.50%, respectively, and the Matthews' correlation coefficients (MCCs) were 0.5470 and 0.4881, respectively, which were better than the performance of most predictors.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Qingfeng Pan
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, Guangdong, China
| |
Collapse
|
14
|
Zhang H, Zou Q, Ju Y, Song C, Chen D. Distance-based support vector machine to predict DNA N6-methyladenine modification. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220404145517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
DNA N6-methyladenine plays an important role in the restriction-modification system to isolate invasion from adventive DNA. The shortcomings of the high time-consumption and high costs of experimental methods have been exposed, and some computational methods have emerged. The support vector machine theory has received extensive attention in the bioinformatics field due to its solid theoretical foundation and many good characteristics.
Objective:
General machine learning methods include an important step of extracting features. The research has omitted this step and replaced with easy-to-obtain sequence distances matrix to obtain better results
Method:
First sequence alignment technology was used to achieve the similarity matrix. Then a novel transformation turned the similarity matrix into a distance matrix. Next, the similarity-distance matrix is made positive semi-definite so that it can be used in the kernel matrix. Finally, the LIBSVM software was applied to solve the support vector machine.
Results:
The five-fold cross-validation of this model on rice and mouse data has achieved excellent accuracy rates of 92.04% and 96.51%, respectively. This shows that the DB-SVM method has obvious advantages compared with traditional machine learning methods. Meanwhile this model achieved 0.943,0.982 and 0.818 accuracy,0.944, 0.982, and 0.838 Matthews correlation coefficient and 0.942, 0.982 and 0.840 F1 scores for the rice, M. musculus and cross-species genome datasets, respectively.
Conclusion:
These outcomes show that this model outperforms the iIM-CNN and csDMA in the prediction of DNA 6mA modification, which are the lastest research on DNA 6mA.
Collapse
Affiliation(s)
- Haoyu Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen 361005, China
| | - Chenggang Song
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
15
|
Gong Y, Dong B, Zhang Z, Zhai Y, Gao B, Zhang T, Zhang J. VTP-Identifier: Vesicular Transport Proteins Identification Based on PSSM Profiles and XGBoost. Front Genet 2022; 12:808856. [PMID: 35047020 PMCID: PMC8762342 DOI: 10.3389/fgene.2021.808856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Vesicular transport proteins are related to many human diseases, and they threaten human health when they undergo pathological changes. Protein function prediction has been one of the most in-depth topics in bioinformatics. In this work, we developed a useful tool to identify vesicular transport proteins. Our strategy is to extract transition probability composition, autocovariance transformation and other information from the position-specific scoring matrix as feature vectors. EditedNearesNeighbours (ENN) is used to address the imbalance of the data set, and the Max-Relevance-Max-Distance (MRMD) algorithm is adopted to reduce the dimension of the feature vector. We used 5-fold cross-validation and independent test sets to evaluate our model. On the test set, VTP-Identifier presented a higher performance compared with GRU. The accuracy, Matthew's correlation coefficient (MCC) and area under the ROC curve (AUC) were 83.6%, 0.531 and 0.873, respectively.
Collapse
Affiliation(s)
- Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Benzhi Dong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Tian Z, Fang H, Ye Y, Zhu Z. A novel gene functional similarity calculation model by utilizing the specificity of terms and relationships in gene ontology. BMC Bioinformatics 2022; 23:47. [PMID: 35057740 PMCID: PMC8772239 DOI: 10.1186/s12859-022-04557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Recently, with the foundation and development of gene ontology (GO) resources, numerous works have been proposed to compute functional similarity of genes and achieved series of successes in some research fields. Focusing on the calculation of the information content (IC) of terms is the main idea of these methods, which is essential for measuring functional similarity of genes. However, most approaches have some deficiencies, especially when measuring the IC of both GO terms and their corresponding annotated term sets. To this end, measuring functional similarity of genes accurately is still challenging. Results In this article, we proposed a novel gene functional similarity calculation method, which especially encapsulates the specificity of terms and edges (STE). The proposed method mainly contains three steps. Firstly, a novel computing model is put forward to compute the IC of terms. This model has the ability to exploit the specific structural information of GO terms. Secondly, the IC of term sets are computed by capturing the genetic structure between the terms contained in the set. Lastly, we measure the gene functional similarity according to the IC overlap ratio of the corresponding annotated genes sets. The proposed method accurately measures the IC of not only GO terms but also the annotated term sets by leveraging the specificity of edges in the GO graph. Conclusions We conduct experiments on gene functional classification in biological pathways, gene expression datasets, and protein-protein interaction datasets. Extensive experimental results show the better performances of our proposed STE against several baseline methods.
Collapse
|
17
|
Zhang Z, Cui F, Cao C, Wang Q, Zou Q. Single-cell RNA analysis reveals the potential risk of organ-specific cell types vulnerable to SARS-CoV-2 infections. Comput Biol Med 2022; 140:105092. [PMID: 34864302 PMCID: PMC8628631 DOI: 10.1016/j.compbiomed.2021.105092] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of coronavirus disease 2019 (COVID-19) since December 2019 that has led to more than 160 million confirmed cases, including 3.3 million deaths. To understand the mechanism by which SARS-CoV-2 invades human cells and reveal organ-specific susceptible cell types for COVID-19, we conducted comprehensive bioinformatic analysis using public single-cell RNA sequencing datasets. Utilizing the expression information of six confirmed COVID-19 receptors (ACE2, TMPRSS2, NRP1, AXL, FURIN and CTSL), we demonstrated that macrophages are the most likely cells that may be associated with SARS-CoV-2 pathogenesis in lung. Besides the widely reported 'chemokine storm', we identified ribosome related pathways that may also be potential therapeutic target for COVID-19 lung infection patients. Moreover, cell-cell communication analysis and trajectory analysis revealed that M1-like macrophages showed the highest relation to severe COVID-19 patients. And we also demonstrated that up-regulation of chemokine pathways generally lead to severe symptoms, while down-regulation of ribosome and RNA activity related pathways are more likely to be mild. Other organ-specific susceptible cell type analyses could also provide potential targets for COVID-19 therapy. This work can provide clues for understanding the pathogenesis of COVID-19 and contribute to understanding the mechanism by which SARS-CoV-2 invades human cells.
Collapse
Affiliation(s)
- Zilong Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
| | - Feifei Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
| | - Chen Cao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
| | - Qingsuo Wang
- Beidahuang Industry Group General Hospital, Harbin, 150001, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China.
| |
Collapse
|
18
|
Zhang S, Li J, Zhou W, Li T, Zhang Y, Wang J. Higher-Order Proximity-Based MiRNA-Disease Associations Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:501-512. [PMID: 32750847 DOI: 10.1109/tcbb.2020.2994971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MiRNA-disease association prediction plays an important role in identifying human disease-related miRNAs. This approach is helpful not only to formulate individualized diagnosis schemes, but also to understand the pathogenesis of diseases. Many studies have focused on enhancing the prediction performance using explicit side information, such as miRNA functional similarity and disease semantic similarity. The existing approaches, however, often ignore the higher-order implicit proximity among miRNAs and diseases. To this end, in this paper, we first propose a novel approach HOP_MDA (Higher-Order Proximity based MiRNA and Disease Association Prediction) for predicting potential association between miRNA and disease. Both explicit interaction information and implicit higher-order proximity information between miRNA and disease are encoded with different order proximity matrices which are weightily combined into a parameterized prediction matrix. A supervised learning approach based on the known miRNAs-disease associations is proposed to determine the optimal weight parameters. The prediction matrix is then used to achieve effective prediction. Additionally, a higher-order proximity approximation technique (HOPA_MDA) is presented to make more efficient predictions. 5-fold cross validation is used to evaluate the performance of our proposed method. The average AUC values of HOPA_MDA for two real datasets are 0.921+/-0.002 and 0.944+/-0.0015, respectively. Our method can also predict potential miRNAs specific to new diseases with no known related miRNAs.
Collapse
|
19
|
Guo Y, Cheng H, Yuan Z, Liang Z, Wang Y, Du D. Testing Gene-Gene Interactions Based on a Neighborhood Perspective in Genome-wide Association Studies. Front Genet 2021; 12:801261. [PMID: 34956337 PMCID: PMC8693929 DOI: 10.3389/fgene.2021.801261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Unexplained genetic variation that causes complex diseases is often induced by gene-gene interactions (GGIs). Gene-based methods are one of the current statistical methodologies for discovering GGIs in case-control genome-wide association studies that are not only powerful statistically, but also interpretable biologically. However, most approaches include assumptions about the form of GGIs, which results in poor statistical performance. As a result, we propose gene-based testing based on the maximal neighborhood coefficient (MNC) called gene-based gene-gene interaction through a maximal neighborhood coefficient (GBMNC). MNC is a metric for capturing a wide range of relationships between two random vectors with arbitrary, but not necessarily equal, dimensions. We established a statistic that leverages the difference in MNC in case and in control samples as an indication of the existence of GGIs, based on the assumption that the joint distribution of two genes in cases and controls should not be substantially different if there is no interaction between them. We then used a permutation-based statistical test to evaluate this statistic and calculate a statistical p-value to represent the significance of the interaction. Experimental results using both simulation and real data showed that our approach outperformed earlier methods for detecting GGIs.
Collapse
Affiliation(s)
- Yingjie Guo
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Honghong Cheng
- School of Information, Shanxi University of Finance and Economics, Taiyuan, China
| | - Zhian Yuan
- Research Institute of Big Data Science and Industry, Shanxi University, Taiyuan, China
| | - Zhen Liang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yang Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Debing Du
- Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
20
|
Han S, Wang N, Guo Y, Tang F, Xu L, Ju Y, Shi L. Application of Sparse Representation in Bioinformatics. Front Genet 2021; 12:810875. [PMID: 34976030 PMCID: PMC8715914 DOI: 10.3389/fgene.2021.810875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022] Open
Abstract
Inspired by L1-norm minimization methods, such as basis pursuit, compressed sensing, and Lasso feature selection, in recent years, sparse representation shows up as a novel and potent data processing method and displays powerful superiority. Researchers have not only extended the sparse representation of a signal to image presentation, but also applied the sparsity of vectors to that of matrices. Moreover, sparse representation has been applied to pattern recognition with good results. Because of its multiple advantages, such as insensitivity to noise, strong robustness, less sensitivity to selected features, and no “overfitting” phenomenon, the application of sparse representation in bioinformatics should be studied further. This article reviews the development of sparse representation, and explains its applications in bioinformatics, namely the use of low-rank representation matrices to identify and study cancer molecules, low-rank sparse representations to analyze and process gene expression profiles, and an introduction to related cancers and gene expression profile database.
Collapse
Affiliation(s)
- Shuguang Han
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Ning Wang
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Yuxin Guo
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Furong Tang
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
- *Correspondence: Ying Ju, ; Lei Shi,
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Ying Ju, ; Lei Shi,
| |
Collapse
|
21
|
Guo CR, Mao Y, Jiang F, Juan CX, Zhou GP, Li N. Computational detection of a genome instability-derived lncRNA signature for predicting the clinical outcome of lung adenocarcinoma. Cancer Med 2021; 11:864-879. [PMID: 34866362 PMCID: PMC8817082 DOI: 10.1002/cam4.4471] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/30/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022] Open
Abstract
Evidence has been emerging of the importance of long non-coding RNAs (lncRNAs) in genome instability. However, no study has established how to classify such lncRNAs linked to genomic instability, and whether that connection poses a therapeutic significance. Here, we established a computational frame derived from mutator hypothesis by combining profiles of lncRNA expression and those of somatic mutations in a tumor genome, and identified 185 candidate lncRNAs associated with genomic instability in lung adenocarcinoma (LUAD). Through further studies, we established a six lncRNA-based signature, which assigned patients to the high- and low-risk groups with different prognosis. Further validation of this signature was performed in a number of separate cohorts of LUAD patients. In addition, the signature was found closely linked to genomic mutation rates in patients, indicating it could be a useful way to quantify genomic instability. In summary, this research offered a novel method by through which more studies may explore the function of lncRNAs and presented a possible new way for detecting biomarkers associated with genomic instability in cancers.
Collapse
Affiliation(s)
- Chen-Rui Guo
- Department of Abdominal Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Mao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology,, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chen-Xia Juan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Li
- Department of Abdominal Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
22
|
Zheng Y, Wang H, Ding Y, Guo F. CEPZ: A Novel Predictor for Identification of DNase I Hypersensitive Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2768-2774. [PMID: 33481716 DOI: 10.1109/tcbb.2021.3053661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNase I hypersensitive sites (DHSs) have proven to be tightly associated with cis-regulatory elements, commonly indicating specific function on the chromatin structure. Thus, identifying DHSs plays a fundamental role in decoding gene regulatory behavior. While traditional experimental methods turn to be time-consuming and expensive, computational techniques promise to be practical to discovering and analyzing regulatory factors. In this study, we applied an efficient model that considered composition information and physicochemical properties and effectively selected features with a boosting algorithm. CEPZ, our predictor, greatly improved a Matthews correlation coefficient and accuracy of 0.7740 and 0.9113 respectively, more competitive than any predictor before. This result suggests that it may become a useful tool for DHSs research in the human and other complex genomes. Our research was anchored on the properties of dinucleotides and we identified several dinucleotides with significant differences in the distribution of DHS and non-DHS samples, which are likely to have a special meaning in the chromatin structure. The datasets, feature sets and the relevant algorithm are available at https://github.com/YanZheng-16/CEPZ_DHS/.
Collapse
|
23
|
Ding P, Ouyang W, Luo J, Kwoh CK. Heterogeneous information network and its application to human health and disease. Brief Bioinform 2021; 21:1327-1346. [PMID: 31566212 DOI: 10.1093/bib/bbz091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 12/11/2022] Open
Abstract
The molecular components with the functional interdependencies in human cell form complicated biological network. Diseases are mostly caused by the perturbations of the composite of the interaction multi-biomolecules, rather than an abnormality of a single biomolecule. Furthermore, new biological functions and processes could be revealed by discovering novel biological entity relationships. Hence, more and more biologists focus on studying the complex biological system instead of the individual biological components. The emergence of heterogeneous information network (HIN) offers a promising way to systematically explore complicated and heterogeneous relationships between various molecules for apparently distinct phenotypes. In this review, we first present the basic definition of HIN and the biological system considered as a complex HIN. Then, we discuss the topological properties of HIN and how these can be applied to detect network motif and functional module. Afterwards, methodologies of discovering relationships between disease and biomolecule are presented. Useful insights on how HIN aids in drug development and explores human interactome are provided. Finally, we analyze the challenges and opportunities for uncovering combinatorial patterns among pharmacogenomics and cell-type detection based on single-cell genomic data.
Collapse
Affiliation(s)
- Pingjian Ding
- School of Computer Science, University of South China, Hengyang, China
| | - Wenjue Ouyang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Chee-Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
24
|
Calculated identification of mutator-derived lncRNA signatures of genomic instability to predict the clinical outcome of muscle-invasive bladder cancer. Cancer Cell Int 2021; 21:476. [PMID: 34496843 PMCID: PMC8424867 DOI: 10.1186/s12935-021-02185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Muscle-invasive bladder cancer (MIBC) is one of the most important type of bladder cancer, with a high morbidity and mortality rate. Studies have found that long non-coding RNA (lncRNA) plays a key role in maintaining genomic instability. However, Identification of lncRNAs related to genomic instability (GIlncRNAs) and their clinical significance in cancers have not been extensively studied yet. METHODS Here, we downloaded the lncRNA expression profiles, somatic mutation profiles and clinical related data in MIBC patients from The Cancer Genome Atlas (TCGA) database. A lncRNA computational framework was used to find differentially expressed GIlncRNAs. Multivariate Cox regression analysis was used to construct a genomic instability-related lncRNA signature (GIlncSig). Univariate and multivariate Cox analyses were used to assess the independent prognostic for the GIlncSig and other key clinical factors. RESULTS We found 43 differentially expressed GIlncRNAs and constructed the GIlncSig with 6 GIlncRNAs in the training cohort. The patients were divided into two risk groups. The overall survival of patients in the high-risk group was lower than that in the low-risk group (P < 0.001), which were further verified in the testing cohort and the entire TCGA cohort. Univariate and multivariate Cox regression showed that the GIlncSig was an independent prognostic factor. In addition, the GIlncSig correlated with the genomic mutation rate of MIBC, indicating its potential as a measure of the degree of genomic instability. The GIlncSig was able to divide FGFR3 wild- and mutant-type patients into two risk groups, and effectively enhanced the prediction effect. CONCLUSION Our study introduced an important reference for further research on the role of GIlncRNAs, and provided prognostic indicators and potential biological therapy targets for MIBC.
Collapse
|
25
|
Niu M, Wu J, Zou Q, Liu Z, Xu L. rBPDL:Predicting RNA-Binding Proteins Using Deep Learning. IEEE J Biomed Health Inform 2021; 25:3668-3676. [PMID: 33780344 DOI: 10.1109/jbhi.2021.3069259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA-binding protein (RBP) is a powerful and wide-ranging regulator that plays an important role in cell development, differentiation, metabolism, health and disease. The prediction of RBPs provides valuable guidance for biologists. Although experimental methods have made great progress in predicting RBP, they are time-consuming and not flexible. Therefore, we developed a network model, rBPDL, by combining a convolutional neural network and long short-term memory for multilabel classification of RBPs. Moreover, to achieve better prediction results, we used a voting algorithm for ensemble learning of the model. We compared rBPDL with state-of-the-art methods and found that rBPDL significantly improved identification performance for the RBP68 dataset, with a macro-Area Under Curve (AUC), micro-AUC, and weighted AUC of 0.936, 0.962, and 0.946, respectively. Furthermore, through AUC statistical analysis of the RBP domain, we analyzed the performance of rBPDL and found that the RBP identification performance in the same domain was similar. In addition, we analyzed the performance preferences and physicochemical properties of the binding protein amino acids and explored the characteristics that affect the binding by using the RBP86 dataset.
Collapse
|
26
|
Li J, Liu T, Wang J, Li Q, Ning C, Yang Y. MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction. Artif Intell Med 2021; 118:102115. [PMID: 34412838 DOI: 10.1016/j.artmed.2021.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/01/2022]
Abstract
Predicting the associations between microRNAs (miRNAs) and diseases is of great significance for identifying miRNAs related to human diseases. Since it is time-consuming and costly to identify the association between miRNA and disease through biological experiments, computational methods are currently used as an effective supplement to identify the potential association between disease and miRNA. This paper presents a Multi-view Kernel Fusion Network (MvKFN) based prediction method (MvKFN-MDA) to address the problem of miRNA-disease associations prediction. A novel multiple kernel fusion framework Multi-view Kernel Fusion Network (MvKFN) is first proposed to effectively fuse different views similarity kernels constructed from different data sources in a highly nonlinear way. Using MvKFNs, both different base similarity kernels for miRNA, such as sequence, functional, semantic, Gaussian profile kernels and different base similarity kernels for diseases, such as semantic, Gaussian profile kernel are nonlinearly fused into two integrated similarity kernels, one for miRNA, another for disease. Then, miRNA and disease feature representations are extracted from the miRNA and disease integrated similarity kernels respectively. These features are then fed into a neural matrix completion framework which finally outputs the association prediction scores. The parameters of MvKFN-MDA are learned based on the known miRNA-disease association matrix in a supervised end-to-end way. We compare the proposed method with other state-of-the-art methods. The AUCs of our proposed method were superior to the existing methods in both 5-FCV and LOOCV on two open experimental datasets. Furthermore, 49, 48, and 47 of the top 50 predicted miRNAs for three high-risk human diseases, namely, colon cancer, lymphoma, and kidney cancer, are verified respectively using experimental literature. Finally, 100% accuracy from the top 50 predicted miRNAs is achieved when breast cancer is used as a case study to evaluate the ability of MvKFN-MDA for predicting a new disease without any known related miRNAs.
Collapse
Affiliation(s)
- Jin Li
- School of Software, Yunnan University, Kunming, China; Kunming Key Laboratory of Data Science and Intelligent Computing, Kunming, China
| | - Tao Liu
- School of Software, Yunnan University, Kunming, China
| | - Jingru Wang
- School of Software, Yunnan University, Kunming, China
| | - Qing Li
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chenxi Ning
- School of Software, Yunnan University, Kunming, China
| | - Yun Yang
- School of Software, Yunnan University, Kunming, China; Kunming Key Laboratory of Data Science and Intelligent Computing, Kunming, China.
| |
Collapse
|
27
|
Dai Q, Chu Y, Li Z, Zhao Y, Mao X, Wang Y, Xiong Y, Wei DQ. MDA-CF: Predicting MiRNA-Disease associations based on a cascade forest model by fusing multi-source information. Comput Biol Med 2021; 136:104706. [PMID: 34371319 DOI: 10.1016/j.compbiomed.2021.104706] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are significant regulators in various biological processes. They may become promising biomarkers or therapeutic targets, which provide a new perspective in diagnosis and treatment of multiple diseases. Since the experimental methods are always costly and resource-consuming, prediction of disease-related miRNAs using computational methods is in great need. In this study, we developed MDA-CF to identify underlying miRNA-disease associations based on a cascade forest model. In this method, multi-source information was integrated to represent miRNAs and diseases comprehensively, and the autoencoder was utilized for dimension reduction to obtain the optimal feature space. The cascade forest model was then employed for miRNA-disease association prediction. As a result, the average AUC of MDA-CF was 0.9464 on HMDD v3.2 in five-fold cross-validation. Compared with previous computational methods, MDA-CF performed better on HMDD v2.0 with an average AUC of 0.9258. Moreover, MDA-CF was implemented to investigate colon neoplasm, breast neoplasm, and gastric neoplasm, and 100%, 86%, 88% of the top 50 potential miRNAs were validated by authoritative databases. In conclusion, MDA-CF appears to be a reliable method to uncover disease-associated miRNAs. The source code of MDA-CF is available at https://github.com/a1622108/MDA-CF.
Collapse
Affiliation(s)
- Qiuying Dai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanyi Chu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiqi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yusong Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueying Mao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
28
|
Peng B, Li H, Na R, Lu T, Li Y, Zhao J, Zhang H, Zhang L. Identification of a Novel Prognostic Signature of Genome Instability-Related LncRNAs in Early Stage Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:706454. [PMID: 34336859 PMCID: PMC8324209 DOI: 10.3389/fcell.2021.706454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Background Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) play a crucial part in maintaining genomic instability. We therefore identified genome instability-related lncRNAs and constructed a prediction signature for early stage lung adenocarcinoma (LUAD) as well in order for classification of high-risk group of patients and improvement of individualized therapies. Methods Early stage LUAD RNA-seq and clinical data from The Cancer Genome Atlas (TCGA) were randomly divided into training set (n = 177) and testing set (n = 176). A total of 146 genomic instability-associated lncRNAs were identified based on somatic mutation profiles combining lncRNA expression profiles from TCGA by the “limma R” package. We performed Cox regression analysis to develop this predictive indicator. We validated the prognostic signature by an external independent LUAD cohort with microarray platform acquired from the Gene Expression Omnibus (GEO). Results A genome instability-related six-lncRNA-based gene signature (GILncSig) was established to divide subjects into high-risk and low-risk groups with different outcomes at statistically significant levels. According to the multivariate Cox regression and stratification analysis, the GILncSig was an independent predictive factor. Furthermore, the six-lncRNA signature achieved AUC values of 0.745, 0.659, and 0.708 in the training set, testing set, and TCGA set, respectively. When compared with other prognostic lncRNA signatures, the GILncSig also exhibited better prediction performance. Conclusion The prognostic lncRNA signature is a potent tool for risk stratification of early stage LUAD patients. Our study also provided new insights for identifying genome instability-related cancer biomarkers.
Collapse
Affiliation(s)
- Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huawei Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruisi Na
- Second Clinical College of Medicine, Harbin Medical University, Harbin, China
| | - Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongchao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaying Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Zhu Z, Han X, Cheng L. Identification of gene signature associated with type 2 diabetes mellitus by integrating mutation and expression data. Curr Gene Ther 2021; 22:51-58. [PMID: 34238156 DOI: 10.2174/1566523221666210707140839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/08/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease. The molecular diagnosis should be helpful for the treatment of T2DM patients. With the development of sequencing technology, a large number of differentially expressed genes were identified from expression data. However, the method of machine learning can only identify the local optimal solution as the signature. The mutation information obtained by inheritance can better reflect the relationship between genes and diseases. Therefore, we need to integrate mutation information to more accurately identify the signature. To this end, we integrated genome-wide association study (GWAS) data and expression data, combined with expression quantitative trait loci (eQTL) technology to get T2DM predictive signature (T2DMSig-10). Firstly, we used GWAS data to obtain a list of T2DM susceptible loci. Then, we used eQTL technology to obtain risk single nucleotide polymorphisms (SNPs), and combined with the pancreatic β-cells gene expression data to obtain 10 protein-coding genes. Next, we combined these genes with equal weights. After receiver operating characteristic (ROC), single-gene removal and increase method, gene ontology function enrichment and protein-protein interaction network were used to verify the results that showed that T2DMSig-10 had an excellent predictive effect on T2DM (AUC=0.99), and was highly robust. In short, we obtained the predictive signature of T2DM, and further verified it.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xudong Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Cheng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
30
|
Nami Y, Imeni N, Panahi B. Application of machine learning in bacteriophage research. BMC Microbiol 2021; 21:193. [PMID: 34174831 PMCID: PMC8235560 DOI: 10.1186/s12866-021-02256-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Phages are one of the key components in the structure, dynamics, and interactions of microbial communities in different bins. It has a clear impact on human health and the food industry. Bacteriophage characterization using in vitro approaches are time/cost consuming and laborious tasks. On the other hand, with the advent of new high-throughput sequencing technology, the development of a powerful computational framework to characterize the newly identified bacteriophages is inevitable for future research. Machine learning includes powerful techniques that enable the analysis of complex datasets for knowledge discovery and pattern recognition. In this study, we have conducted a comprehensive review of machine learning methods application using different types of features were applied in various aspects of bacteriophage research including, automated curation, identification, classification, host species recognition, virion protein identification, and life cycle prediction. Moreover, potential limitations and advantages of the developed frameworks were discussed.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Nazila Imeni
- Young Researchers and Elite Clube, Marand Branch, Islamic Azad University, Marand, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
31
|
Ding Y, Lei X, Liao B, Wu FX. Predicting miRNA-Disease Associations Based on Multi-View Variational Graph Auto-Encoder with Matrix Factorization. IEEE J Biomed Health Inform 2021; 26:446-457. [PMID: 34111017 DOI: 10.1109/jbhi.2021.3088342] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v2.0 and 0.9470 on HMDD v3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations.
Collapse
|
32
|
Song B, Li Z, Lin X, Wang J, Wang T, Fu X. Pretraining model for biological sequence data. Brief Funct Genomics 2021; 20:181-195. [PMID: 34050350 PMCID: PMC8194843 DOI: 10.1093/bfgp/elab025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
With the development of high-throughput sequencing technology, biological sequence data reflecting life information becomes increasingly accessible. Particularly on the background of the COVID-19 pandemic, biological sequence data play an important role in detecting diseases, analyzing the mechanism and discovering specific drugs. In recent years, pretraining models that have emerged in natural language processing have attracted widespread attention in many research fields not only to decrease training cost but also to improve performance on downstream tasks. Pretraining models are used for embedding biological sequence and extracting feature from large biological sequence corpus to comprehensively understand the biological sequence data. In this survey, we provide a broad review on pretraining models for biological sequence data. Moreover, we first introduce biological sequences and corresponding datasets, including brief description and accessible link. Subsequently, we systematically summarize popular pretraining models for biological sequences based on four categories: CNN, word2vec, LSTM and Transformer. Then, we present some applications with proposed pretraining models on downstream tasks to explain the role of pretraining models. Next, we provide a novel pretraining scheme for protein sequences and a multitask benchmark for protein pretraining models. Finally, we discuss the challenges and future directions in pretraining models for biological sequences.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangzheng Fu
- Corresponding author: Xiangzheng Fu, College of Information Science and Engineering, Hunan University, Changsha, Hunan, China. Tel: 86-0731-88821907; E-mail:
| |
Collapse
|
33
|
Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, Wei X, Qiu J, Salahub DR, Xiong Y, Wei DQ. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 2021; 22:6261915. [PMID: 34009265 DOI: 10.1093/bib/bbab165] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of the miRNA-disease associations (MDAs) helps to understand the etiology and mechanisms of various diseases. However, the experimental methods are costly and time-consuming. Thus, it is urgent to develop computational methods towards the prediction of MDAs. Based on the graph theory, the MDA prediction is regarded as a node classification task in the present study. To solve this task, we propose a novel method MDA-GCNFTG, which predicts MDAs based on Graph Convolutional Networks (GCNs) via graph sampling through the Feature and Topology Graph to improve the training efficiency and accuracy. This method models both the potential connections of feature space and the structural relationships of MDA data. The nodes of the graphs are represented by the disease semantic similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity. Moreover, we considered six tasks simultaneously on the MDA prediction problem at the first time, which ensure that under both balanced and unbalanced sample distribution, MDA-GCNFTG can predict not only new MDAs but also new diseases without known related miRNAs and new miRNAs without known related diseases. The results of 5-fold cross-validation show that the MDA-GCNFTG method has achieved satisfactory performance on all six tasks and is significantly superior to the classic machine learning methods and the state-of-the-art MDA prediction methods. Moreover, the effectiveness of GCNs via the graph sampling strategy and the feature and topology graph in MDA-GCNFTG has also been demonstrated. More importantly, case studies for two diseases and three miRNAs are conducted and achieved satisfactory performance.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Xuhong Wang
- School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, China
| | - Qiuying Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, China
| | | | | | - Dennis Russell Salahub
- Department of Chemistry, University of Calgary, Fellow Royal Society of Canada and Fellow of the American Association for the Advancement of Science, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
34
|
Shen ZA, Luo T, Zhou YK, Yu H, Du PF. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks. Brief Bioinform 2021; 22:6210071. [PMID: 33822882 DOI: 10.1093/bib/bbab051] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Noncoding RNAs (ncRNAs) play crucial roles in many biological processes. Experimental methods for identifying ncRNA-protein interactions (NPIs) are always costly and time-consuming. Many computational approaches have been developed as alternative ways. In this work, we collected five benchmarking datasets for predicting NPIs. Based on these datasets, we evaluated and compared the prediction performances of existing machine-learning based methods. Graph neural network (GNN) is a recently developed deep learning algorithm for link predictions on complex networks, which has never been applied in predicting NPIs. We constructed a GNN-based method, which is called Noncoding RNA-Protein Interaction prediction using Graph Neural Networks (NPI-GNN), to predict NPIs. The NPI-GNN method achieved comparable performance with state-of-the-art methods in a 5-fold cross-validation. In addition, it is capable of predicting novel interactions based on network information and sequence information. We also found that insufficient sequence information does not affect the NPI-GNN prediction performance much, which makes NPI-GNN more robust than other methods. As far as we can tell, NPI-GNN is the first end-to-end GNN predictor for predicting NPIs. All benchmarking datasets in this work and all source codes of the NPI-GNN method have been deposited with documents in a GitHub repo (https://github.com/AshuiRUA/NPI-GNN).
Collapse
Affiliation(s)
- Zi-Ang Shen
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Tao Luo
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Yuan-Ke Zhou
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Han Yu
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Pu-Feng Du
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| |
Collapse
|
35
|
Wang J, Li J, Yue K, Wang L, Ma Y, Li Q. NMCMDA: neural multicategory MiRNA-disease association prediction. Brief Bioinform 2021; 22:6189772. [PMID: 33778850 DOI: 10.1093/bib/bbab074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/05/2021] [Indexed: 01/20/2023] Open
Abstract
MOTIVATION There is growing evidence showing that the dysregulations of miRNAs cause diseases through various kinds of the underlying mechanism. Thus, predicting the multiple-category associations between microRNAs (miRNAs) and diseases plays an important role in investigating the roles of miRNAs in diseases. Moreover, in contrast with traditional biological experiments which are time-consuming and expensive, computational approaches for the prediction of multicategory miRNA-disease associations are time-saving and cost-effective that are highly desired for us. RESULTS We present a novel data-driven end-to-end learning-based method of neural multiple-category miRNA-disease association prediction (NMCMDA) for predicting multiple-category miRNA-disease associations. The NMCMDA has two main components: (i) encoder operates directly on the miRNA-disease heterogeneous network and leverages Graph Neural Network to learn miRNA and disease latent representations, respectively. (ii) Decoder yields miRNA-disease association scores with the learned latent representations as input. Various kinds of encoders and decoders are proposed for NMCMDA. Finally, the NMCMDA with the encoder of Relational Graph Convolutional Network and the neural multirelational decoder (NMR-RGCN) achieves the best prediction performance. We compared the NMCMDA with other baselines on three experimental datasets. The experimental results show that the NMR-RGCN is significantly superior to the state-of-the-art method TDRC in terms of Top-1 precision, Top-1 Recall, and Top-1 F1. Additionally, case studies are provided for two high-risk human diseases (namely, breast cancer and lung cancer) and we also provide the prediction and validation of top-10 miRNA-disease-category associations based on all known data of HMDD v3.2, which further validate the effectiveness and feasibility of the proposed method.
Collapse
Affiliation(s)
| | - Jin Li
- School of Software, Yunnan University, China
| | - Kun Yue
- School of Information, Yunnan University, China
| | | | | | - Qing Li
- Kunming Medical University, China
| |
Collapse
|
36
|
Chen Z, Shen Z, Zhang Z, Zhao D, Xu L, Zhang L. RNA-Associated Co-expression Network Identifies Novel Biomarkers for Digestive System Cancer. Front Genet 2021; 12:659788. [PMID: 33841514 PMCID: PMC8033200 DOI: 10.3389/fgene.2021.659788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 01/04/2023] Open
Abstract
Cancers of the digestive system are malignant diseases. Our study focused on colon cancer, esophageal cancer (ESCC), rectal cancer, gastric cancer (GC), and rectosigmoid junction cancer to identify possible biomarkers for these diseases. The transcriptome data were downloaded from the TCGA database (The Cancer Genome Atlas Program), and a network was constructed using the WGCNA algorithm. Two significant modules were found, and coexpression networks were constructed. CytoHubba was used to identify hub genes of the two networks. GO analysis suggested that the network genes were involved in metabolic processes, biological regulation, and membrane and protein binding. KEGG analysis indicated that the significant pathways were the calcium signaling pathway, fatty acid biosynthesis, and pathways in cancer and insulin resistance. Some of the most significant hub genes were hsa-let-7b-3p, hsa-miR-378a-5p, hsa-miR-26a-5p, hsa-miR-382-5p, and hsa-miR-29b-2-5p and SECISBP2 L, NCOA1, HERC1, HIPK3, and MBNL1, respectively. These genes were predicted to be associated with the tumor prognostic reference for this patient population.
Collapse
Affiliation(s)
- Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Zijie Shen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Zilong Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Da Zhao
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lijun Zhang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
37
|
Abstract
The COVID-19 coronavirus is a new strain of coronavirus that had not been previously detected in humans. As its severe pathogenicity is concerned, it is important to study it thoroughly to aid in the discovery of a cure. In this study, the microRNAs (miRNAs) of COVID-19 were annotated to provide a powerful tool for the study of this novel coronavirus. We obtained 16 novel coronavirus genome sequences and the mature sequences of all viruses in the microRNA database (miRbase), and then used the miRNA mature sequences of the virus to perform the Basic Local Alignment Search Tool (BLAST) analysis in the coronavirus genome, extending the matched regions of approximately 20 bp to two segments by 200 bp. Six sequences were obtained after deleting redundant sequences. Then, the hairpin structures of the mature miRNAs were determined using RNAfold. The mature sequence on one hairpin arm was selected into a total of 4 sequences, and finally the relevant miRNA precursor prediction tools were used to verify whether the selected sequences are miRNA precursor sequences of the novel coronavirus. The miRNAs of the novel coronavirus were annotated by our newly developed method, which will lay the foundation for further study of this virus.
Collapse
|
38
|
Chen Y, Fu X, Li Z, Peng L, Zhuo L. Prediction of lncRNA-Protein Interactions via the Multiple Information Integration. Front Bioeng Biotechnol 2021; 9:647113. [PMID: 33718346 PMCID: PMC7947871 DOI: 10.3389/fbioe.2021.647113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
The long non-coding RNA (lncRNA)-protein interaction plays an important role in the post-transcriptional gene regulation, such as RNA splicing, translation, signaling, and the development of complex diseases. The related research on the prediction of lncRNA-protein interaction relationship is beneficial in the excavation and the discovery of the mechanism of lncRNA function and action occurrence, which are important. Traditional experimental methods for detecting lncRNA-protein interactions are expensive and time-consuming. Therefore, computational methods provide many effective strategies to deal with this problem. In recent years, most computational methods only use the information of the lncRNA-lncRNA or the protein-protein similarity and cannot fully capture all features to identify their interactions. In this paper, we propose a novel computational model for the lncRNA-protein prediction on the basis of machine learning methods. First, a feature method is proposed for representing the information of the network topological properties of lncRNA and protein interactions. The basic composition feature information and evolutionary information based on protein, the lncRNA sequence feature information, and the lncRNA expression profile information are extracted. Finally, the above feature information is fused, and the optimized feature vector is used with the recursive feature elimination algorithm. The optimized feature vectors are input to the support vector machine (SVM) model. Experimental results show that the proposed method has good effectiveness and accuracy in the lncRNA-protein interaction prediction.
Collapse
Affiliation(s)
- Yifan Chen
- College of Information Science and Engineering, Hunan University, Changsha, China
- School of Computer and Information Science, Hunan Institute of Technology, Hengyang, China
| | - Xiangzheng Fu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Zejun Li
- School of Computer and Information Science, Hunan Institute of Technology, Hengyang, China
| | - Li Peng
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Linlin Zhuo
- Department of Mathematics and Information Engineering, Wenzhou University Oujiang College, Wenzhou, China
| |
Collapse
|
39
|
He S, Guo F, Zou Q, HuiDing. MRMD2.0: A Python Tool for Machine Learning with Feature Ranking and Reduction. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200503030350] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
The study aims to find a way to reduce the dimensionality of the dataset.
Background:
Dimensionality reduction is the key issue of the machine learning process. It does
not only improve the prediction performance but also could recommend the intrinsic features and
help to explore the biological expression of the machine learning “black box”.
Objective:
A variety of feature selection algorithms are used to select data features to achieve
dimensionality reduction.
Methods:
First, MRMD2.0 integrated 7 different popular feature ranking algorithms with
PageRank strategy. Second, optimized dimensionality was detected with forward adding strategy.
Result:
We have achieved good results in our experiments.
Conclusion:
Several works have been tested with MRMD2.0. It showed well performance.
Otherwise, it also can draw the performance curves according to the feature dimensionality. If
users want to sacrifice accuracy for fewer features, they can select the dimensionality from the
performance curves.
Other:
We developed friendly python tools together with the web server. The users could upload
their csv, arff or libsvm format files. Then the webserver would help to rank features and find the
optimized dimensionality.
Collapse
Affiliation(s)
- Shida He
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - HuiDing
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
40
|
Ding Y, Lei X, Liao B, Wu FX. Machine learning approaches for predicting biomolecule-disease associations. Brief Funct Genomics 2021; 20:273-287. [PMID: 33554238 DOI: 10.1093/bfgp/elab002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biomolecules, such as microRNAs, circRNAs, lncRNAs and genes, are functionally interdependent in human cells, and all play critical roles in diverse fundamental and vital biological processes. The dysregulations of such biomolecules can cause diseases. Identifying the associations between biomolecules and diseases can uncover the mechanisms of complex diseases, which is conducive to their diagnosis, treatment, prognosis and prevention. Due to the time consumption and cost of biologically experimental methods, many computational association prediction methods have been proposed in the past few years. In this study, we provide a comprehensive review of machine learning-based approaches for predicting disease-biomolecule associations with multi-view data sources. Firstly, we introduce some databases and general strategies for integrating multi-view data sources in the prediction models. Then we discuss several feature representation methods for machine learning-based prediction models. Thirdly, we comprehensively review machine learning-based prediction approaches in three categories: basic machine learning methods, matrix completion-based methods and deep learning-based methods, while discussing their advantages and disadvantages. Finally, we provide some perspectives for further improving biomolecule-disease prediction methods.
Collapse
Affiliation(s)
- Yulian Ding
- Division of Biomedical Engineering at the University of Saskatchewan
| | - Xiujuan Lei
- School of Computer Science at Shaanxi Normal University
| | - Bo Liao
- School of Mathematics and Statistics at Hainan Normal University, Haikou, China
| | - Fang-Xiang Wu
- College of Engineering and the Department of Computer Science at University of Saskatchewan
| |
Collapse
|
41
|
|
42
|
Lv Z, Ding H, Wang L, Zou Q. A Convolutional Neural Network Using Dinucleotide One-hot Encoder for identifying DNA N6-Methyladenine Sites in the Rice Genome. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.09.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Li K, Zhong Y, Lin X, Quan Z. Predicting the Disease Risk of Protein Mutation Sequences With Pre-training Model. Front Genet 2020; 11:605620. [PMID: 33408741 PMCID: PMC7780924 DOI: 10.3389/fgene.2020.605620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 12/05/2022] Open
Abstract
Accurately identifying the missense mutations is of great help to alleviate the loss of protein function and structural changes, which might greatly reduce the risk of disease for tumor suppressor genes (e.g., BRCA1 and PTEN). In this paper, we propose a hybrid framework, called BertVS, that predicts the disease risk for the missense mutation of proteins. Our framework is able to learn sequence representations from the protein domain through pre-training BERT models, and also integrates with the hydrophilic properties of amino acids to obtain the sequence representations of biochemical characteristics. The concatenation of two learned representations are then sent to the classifier to predict the missense mutations of protein sequences. Specifically, we use the protein family database (Pfam) as a corpus to train the BERT model to learn the contextual information of protein sequences, and our pre-training BERT model achieves a value of 0.984 on accuracy in the masked language model prediction task. We conduct extensive experiments on BRCA1 and PTEN datasets. With comparison to the baselines, results show that BertVS achieves higher performance of 0.920 on AUROC and 0.915 on AUPR in the functionally critical domain of the BRCA1 gene. Additionally, the extended experiment on the ClinVar dataset can illustrate that gene variants with known clinical significance can also be efficiently classified by our method. Therefore, BertVS can learn the functional information of the protein sequences and effectively predict the disease risk of variants with an uncertain clinical significance.
Collapse
Affiliation(s)
- Kuan Li
- School of Cyberspace Security, Dongguan University of Technology, Guangdong, China
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China
| | - Yue Zhong
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Xuan Lin
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Zhe Quan
- College of Information Science and Engineering, Hunan University, Changsha, China
| |
Collapse
|
44
|
Zhang X, Ma H, Zou Q, Wu J. Analysis of Cyclin-Dependent Kinase 1 as an Independent Prognostic Factor for Gastric Cancer Based on Statistical Methods. Front Cell Dev Biol 2020; 8:620164. [PMID: 33365314 PMCID: PMC7750425 DOI: 10.3389/fcell.2020.620164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the expression of cyclin-dependent kinase 1 (CDK1) in gastric cancer (GC), evaluate its relationship with the clinicopathological features and prognosis of GC, and analyze the advantage of CDK1 as a potential independent prognostic factor for GC. METHODS The Cancer Genome Atlas (TCGA) data and corresponding clinical features of GC were collected. First, the aim gene was selected by combining five topological analysis methods, where the gene expression in paracancerous and GC tissues was analyzed by Limma package and Wilcox test. Second, the correlation between gene expression and clinical features was analyzed by logistic regression. Finally, the survival analysis was carried out by using the Kaplan-Meier. The gene prognostic value was evaluated by univariate and multivariate Cox analyses, and the gene potential biological function was explored by gene set enrichment analysis (GSEA). RESULTS CDK1 was selected as one of the most important genes associated with GC. The expression level of CDK1 in GC tissues was significantly higher than that in paracancerous tissues, which was significantly correlated with pathological stage and grade. The survival rate of the CDK1 high expression group was significantly lower than that of the low expression group. CDK1 expression was significantly correlated with overall survival (OS). CDK1 expression was mainly involved in prostate cancer, small cell lung cancer, and GC and was enriched in the WNT signaling pathway and T cell receptor signaling pathway. CONCLUSION CDK1 may serve as an independent prognostic factor for GC. It is also expected to be a new target for molecular targeted therapy of GC.
Collapse
Affiliation(s)
- Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Hua Ma
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China
| | - Jin Wu
- School of Management, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
45
|
Wang C, Wu J, Xu L, Zou Q. NonClasGP-Pred: robust and efficient prediction of non-classically secreted proteins by integrating subset-specific optimal models of imbalanced data. Microb Genom 2020; 6:mgen000483. [PMID: 33245691 PMCID: PMC8116686 DOI: 10.1099/mgen.0.000483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023] Open
Abstract
Non-classically secreted proteins (NCSPs) are proteins that are located in the extracellular environment, although there is a lack of known signal peptides or secretion motifs. They usually perform different biological functions in intracellular and extracellular environments, and several of their biological functions are linked to bacterial virulence and cell defence. Accurate protein localization is essential for all living organisms, however, the performance of existing methods developed for NCSP identification has been unsatisfactory and in particular suffer from data deficiency and possible overfitting problems. Further improvement is desirable, especially to address the lack of informative features and mining subset-specific features in imbalanced datasets. In the present study, a new computational predictor was developed for NCSP prediction of gram-positive bacteria. First, to address the possible prediction bias caused by the data imbalance problem, ten balanced subdatasets were generated for ensemble model construction. Then, the F-score algorithm combined with sequential forward search was used to strengthen the feature representation ability for each of the training subdatasets. Third, the subset-specific optimal feature combination process was adopted to characterize the original data from different aspects, and all subdataset-based models were integrated into a unified model, NonClasGP-Pred, which achieved an excellent performance with an accuracy of 93.23 %, a sensitivity of 100 %, a specificity of 89.01 %, a Matthew's correlation coefficient of 87.68 % and an area under the curve value of 0.9975 for ten-fold cross-validation. Based on assessment on the independent test dataset, the proposed model outperformed state-of-the-art available toolkits. For availability and implementation, see: http://lab.malab.cn/~wangchao/softwares/NonClasGP/.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jin Wu
- School of Management, Shenzhen Polytechnic, Shenzhen, PR China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, PR China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, PR China
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, PR China
| |
Collapse
|
46
|
Meng C, Wu J, Guo F, Dong B, Xu L. CWLy-pred: A novel cell wall lytic enzyme identifier based on an improved MRMD feature selection method. Genomics 2020; 112:4715-4721. [DOI: 10.1016/j.ygeno.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 10/25/2022]
|
47
|
Dou L, Li X, Zhang L, Xiang H, Xu L. iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier. J Proteome Res 2020; 20:191-201. [PMID: 33090794 DOI: 10.1021/acs.jproteome.0c00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lysine glutarylation is a newly reported post-translational modification (PTM) that plays significant roles in regulating metabolic and mitochondrial processes. Accurate identification of protein glutarylation is the primary task to better investigate molecular functions and various applications. Due to the common disadvantages of the time-consuming and expensive nature of traditional biological sequencing techniques as well as the explosive growth of protein data, building precise computational models to rapidly diagnose glutarylation is a popular and feasible solution. In this work, we proposed a novel AdaBoost-based predictor called iGlu_AdaBoost to distinguish glutarylation and non-glutarylation sequences. Here, the top 37 features were chosen from a total of 1768 combined features using Chi2 following incremental feature selection (IFS) to build the model, including 188D, the composition of k-spaced amino acid pairs (CKSAAP), and enhanced amino acid composition (EAAC). With the help of the hybrid-sampling method SMOTE-Tomek, the AdaBoost algorithm was performed with satisfactory recall, specificity, and AUC values of 87.48%, 72.49%, and 0.89 over 10-fold cross validation as well as 72.73%, 71.92%, and 0.63 over independent test, respectively. Further feature analysis inferred that positively charged amino acids RK play critical roles in glutarylation recognition. Our model presented the well generalization ability and consistency of the prediction results of positive and negative samples, which is comparable to four published tools. The proposed predictor is an efficient tool to find potential glutarylation sites and provides helpful suggestions for further research on glutarylation mechanisms and concerned disease treatments.
Collapse
Affiliation(s)
- Lijun Dou
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen 518055, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaoling Li
- Department of Oncology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin 150000, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Huaikun Xiang
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
48
|
Zhang L, Liu B, Li Z, Zhu X, Liang Z, An J. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model. BMC Bioinformatics 2020; 21:470. [PMID: 33087064 PMCID: PMC7579830 DOI: 10.1186/s12859-020-03765-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Many studies prove that miRNAs have significant roles in diagnosing and treating complex human diseases. However, conventional biological experiments are too costly and time-consuming to identify unconfirmed miRNA-disease associations. Thus, computational models predicting unidentified miRNA-disease pairs in an efficient way are becoming promising research topics. Although existing methods have performed well to reveal unidentified miRNA-disease associations, more work is still needed to improve prediction performance. RESULTS In this work, we present a novel multiple meta-paths fusion graph embedding model to predict unidentified miRNA-disease associations (M2GMDA). Our method takes full advantage of the complex structure and rich semantic information of miRNA-disease interactions in a self-learning way. First, a miRNA-disease heterogeneous network was derived from verified miRNA-disease pairs, miRNA similarity and disease similarity. All meta-path instances connecting miRNAs with diseases were extracted to describe intrinsic information about miRNA-disease interactions. Then, we developed a graph embedding model to predict miRNA-disease associations. The model is composed of linear transformations of miRNAs and diseases, the means encoder of a single meta-path instance, the attention-aware encoder of meta-path type and attention-aware multiple meta-path fusion. We innovatively integrated meta-path instances, meta-path based neighbours, intermediate nodes in meta-paths and more information to strengthen the prediction in our model. In particular, distinct contributions of different meta-path instances and meta-path types were combined with attention mechanisms. The data sets and source code that support the findings of this study are available at https://github.com/dangdangzhang/M2GMDA . CONCLUSIONS M2GMDA achieved AUCs of 0.9323 and 0.9182 in global leave-one-out cross validation and fivefold cross validation with HDMM V2.0. The results showed that our method outperforms other prediction methods. Three kinds of case studies with lung neoplasms, breast neoplasms, prostate neoplasms, pancreatic neoplasms, lymphoma and colorectal neoplasms demonstrated that 47, 50, 49, 48, 50 and 50 out of the top 50 candidate miRNAs predicted by M2GMDA were validated by biological experiments. Therefore, it further confirms the prediction performance of our method.
Collapse
Affiliation(s)
- Lei Zhang
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Bailong Liu
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China.
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.
| | - Zhengwei Li
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China.
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.
| | - Xiaoyan Zhu
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Zhizhen Liang
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Jiyong An
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
49
|
Wang C, Sun K, Wang J, Guo M. Data fusion-based algorithm for predicting miRNA–Disease associations. Comput Biol Chem 2020; 88:107357. [DOI: 10.1016/j.compbiolchem.2020.107357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022]
|
50
|
Ji BY, You ZH, Chen ZH, Wong L, Yi HC. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information. BMC Bioinformatics 2020; 21:401. [PMID: 32912137 PMCID: PMC7646193 DOI: 10.1186/s12859-020-03716-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background As an important non-coding RNA, microRNA (miRNA) plays a significant role in a series of life processes and is closely associated with a variety of Human diseases. Hence, identification of potential miRNA-disease associations can make great contributions to the research and treatment of Human diseases. However, to our knowledge, many existing computational methods only utilize the single type of known association information between miRNAs and diseases to predict their potential associations, without focusing on their interactions or associations with other types of molecules. Results In this paper, we propose a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information. Firstly, a heterogeneous network is constructed by integrating known associations among miRNA, protein and disease, and the network representation method Learning Graph Representations with Global Structural Information (GraRep) is implemented to learn the behavior information of miRNAs and diseases in the network. Then, the behavior information of miRNAs and diseases is combined with the attribute information of them to represent miRNA-disease association pairs. Finally, the prediction model is established based on the Random Forest algorithm. Under the five-fold cross validation, the proposed NEMPD model obtained average 85.41% prediction accuracy with 80.96% sensitivity at the AUC of 91.58%. Furthermore, the performance of NEMPD is also validated by the case studies. Among the top 50 predicted disease-related miRNAs, 48 (breast neoplasms), 47 (colon neoplasms), 47 (lung neoplasms) were confirmed by two other databases. Conclusions The proposed NEMPD model has a good performance in predicting the potential associations between miRNAs and diseases, and has great potency in the field of miRNA-disease association prediction in the future.
Collapse
Affiliation(s)
- Bo-Ya Ji
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhu-Hong You
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhan-Heng Chen
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leon Wong
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Cheng Yi
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|