1
|
Lee M, Lee H, Lee D, Cho H, Choi J, Cha BK, Kim K. Framework for dual-energy-like chest radiography image synthesis from single-energy computed tomography based on cycle-consistent generative adversarial network. Med Phys 2024; 51:1509-1530. [PMID: 36846955 DOI: 10.1002/mp.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/26/2023] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Dual-energy (DE) chest radiography (CXR) enables the selective imaging of two relevant materials, namely, soft tissue and bone structures, to better characterize various chest pathologies (i.e., lung nodule, bony lesions, etc.) and potentially improve CXR-based diagnosis. Recently, deep-learning-based image synthesis techniques have attracted considerable attention as alternatives to existing DE methods (i.e., dual-exposure-based and sandwich-detector-based methods) because software-based bone-only and bone-suppression images in CXR could be useful. PURPOSE The objective of this study was to develop a new framework for DE-like CXR image synthesis from single-energy computed tomography (CT) based on a cycle-consistent generative adversarial network. METHODS The core techniques of the proposed framework are divided into three categories: (1) data configuration from the generation of pseudo CXR from single energy CT, (2) learning of the developed network architecture using pseudo CXR and pseudo-DE imaging using a single-energy CT, and (3) inference of the trained network on real single-energy CXR. We performed a visual inspection and comparative evaluation using various metrics and introduced a figure of image quality (FIQ) to consider the effects of our framework on the spatial resolution and noise in terms of a single index through various test cases. RESULTS Our results indicate that the proposed framework is effective and exhibits potential synthetic imaging ability for two relevant materials: soft tissue and bone structures. Its effectiveness was validated, and its ability to overcome the limitations associated with DE imaging techniques (e.g., increase in exposure dose owing to the requirement of two acquisitions, and emphasis on noise characteristics) via an artificial intelligence technique was presented. CONCLUSIONS The developed framework addresses X-ray dose issues in the field of radiation imaging and enables pseudo-DE imaging with single exposure.
Collapse
Affiliation(s)
- Minjae Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hunwoo Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Dongyeon Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hyosung Cho
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Jaegu Choi
- Electro-Medical Device Research Center, Korea Electrotechnology Research Institute (KERI), Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Bo Kyung Cha
- Electro-Medical Device Research Center, Korea Electrotechnology Research Institute (KERI), Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Kyuseok Kim
- Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine, Gangman-gu, Unju-ro, Republic of Korea
| |
Collapse
|
2
|
Gillot M, Miranda F, Baquero B, Ruellas A, Gurgel M, Al Turkestani N, Anchling L, Hutin N, Biggs E, Yatabe M, Paniagua B, Fillion-Robin JC, Allemang D, Bianchi J, Cevidanes L, Prieto JC. Automatic landmark identification in cone-beam computed tomography. Orthod Craniofac Res 2023; 26:560-567. [PMID: 36811276 PMCID: PMC10440369 DOI: 10.1111/ocr.12642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE To present and validate an open-source fully automated landmark placement (ALICBCT) tool for cone-beam computed tomography scans. MATERIALS AND METHODS One hundred and forty-three large and medium field of view cone-beam computed tomography (CBCT) were used to train and test a novel approach, called ALICBCT that reformulates landmark detection as a classification problem through a virtual agent placed inside volumetric images. The landmark agents were trained to navigate in a multi-scale volumetric space to reach the estimated landmark position. The agent movements decision relies on a combination of DenseNet feature network and fully connected layers. For each CBCT, 32 ground truth landmark positions were identified by 2 clinician experts. After validation of the 32 landmarks, new models were trained to identify a total of 119 landmarks that are commonly used in clinical studies for the quantification of changes in bone morphology and tooth position. RESULTS Our method achieved a high accuracy with an average of 1.54 ± 0.87 mm error for the 32 landmark positions with rare failures, taking an average of 4.2 second computation time to identify each landmark in one large 3D-CBCT scan using a conventional GPU. CONCLUSION The ALICBCT algorithm is a robust automatic identification tool that has been deployed for clinical and research use as an extension in the 3D Slicer platform allowing continuous updates for increased precision.
Collapse
Affiliation(s)
- Maxime Gillot
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, MI, Ann Arbor, USA
- CPE Lyon, Lyon, France
| | - Felicia Miranda
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, MI, Ann Arbor, USA
- Department of Orthodontics, Bauru Dental School, University of São Paulo, Bauru, Brazil
| | - Baptiste Baquero
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, MI, Ann Arbor, USA
- CPE Lyon, Lyon, France
| | - Antonio Ruellas
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Gurgel
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, MI, Ann Arbor, USA
| | - Najla Al Turkestani
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, MI, Ann Arbor, USA
- Department of Restorative and Aesthetic Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Luc Anchling
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, MI, Ann Arbor, USA
- CPE Lyon, Lyon, France
| | - Nathan Hutin
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, MI, Ann Arbor, USA
- CPE Lyon, Lyon, France
| | - Elizabeth Biggs
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, MI, Ann Arbor, USA
| | - Marilia Yatabe
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, MI, Ann Arbor, USA
| | | | | | | | - Jonas Bianchi
- Department of Orthodontics, University of the Pacific, San Francisco, CA, USA
| | - Lucia Cevidanes
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, MI, Ann Arbor, USA
| | - Juan Carlos Prieto
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Wu X, Pei J, Chen C, Zhu Y, Wang J, Qian Q, Zhang J, Sun Q, Guo Y. Federated Active Learning for Multicenter Collaborative Disease Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2068-2080. [PMID: 37015520 DOI: 10.1109/tmi.2022.3227563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Current computer-aided diagnosis system with deep learning method plays an important role in the field of medical imaging. The collaborative diagnosis of diseases by multiple medical institutions has become a popular trend. However, large scale annotations put heavy burdens on medical experts. Furthermore, the centralized learning system has defects in privacy protection and model generalization. To meet these challenges, we propose two federated active learning methods for multicenter collaborative diagnosis of diseases: the Labeling Efficient Federated Active Learning (LEFAL) and the Training Efficient Federated Active Learning (TEFAL). The proposed LEFAL applies a task-agnostic hybrid sampling strategy considering data uncertainty and diversity simultaneously to improve data efficiency. The proposed TEFAL evaluates the client informativeness with a discriminator to improve client efficiency. On the Hyper-Kvasir dataset for gastrointestinal disease diagnosis, with only 65% of labeled data, the LEFAL achieves 95% performance on the segmentation task with whole labeled data. Moreover, on the CC-CCII dataset for COVID-19 diagnosis, with only 50 iterations, the accuracy and F1-score of TEFAL are 0.90 and 0.95, respectively on the classification task. Extensive experimental results demonstrate that the proposed federated active learning methods outperform state-of-the-art methods on segmentation and classification tasks for multicenter collaborative disease diagnosis.
Collapse
|
4
|
Abiyev R, Idoko JB, Altıparmak H, Tüzünkan M. Fetal Health State Detection Using Interval Type-2 Fuzzy Neural Networks. Diagnostics (Basel) 2023; 13:diagnostics13101690. [PMID: 37238176 DOI: 10.3390/diagnostics13101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Diagnosis of fetal health is a difficult process that depends on various input factors. Depending on the values or the interval of values of these input symptoms, the detection of fetal health status is implemented. Sometimes it is difficult to determine the exact values of the intervals for diagnosing the diseases and there may always be disagreement between the expert doctors. As a result, the diagnosis of diseases is often carried out in uncertain conditions and can sometimes cause undesirable errors. Therefore, the vague nature of diseases and incomplete patient data can lead to uncertain decisions. One of the effective approaches to solve such kind of problem is the use of fuzzy logic in the construction of the diagnostic system. This paper proposes a type-2 fuzzy neural system (T2-FNN) for the detection of fetal health status. The structure and design algorithms of the T2-FNN system are presented. Cardiotocography, which provides information about the fetal heart rate and uterine contractions, is employed for monitoring fetal status. Using measured statistical data, the design of the system is implemented. Comparisons of various models are presented to prove the effectiveness of the proposed system. The system can be utilized in clinical information systems to obtain valuable information about fetal health status.
Collapse
Affiliation(s)
- Rahib Abiyev
- Applied Artificial Intelligence Research Centre, Department of Computer Engineering, Near East University, Nicosia 99138, Turkey
| | - John Bush Idoko
- Department of Computer Engineering, Near East University, Nicosia 99138, Turkey
| | - Hamit Altıparmak
- Department of Computer Engineering, Near East University, Nicosia 99138, Turkey
| | - Murat Tüzünkan
- Applied Artificial Intelligence Research Centre, Near East University, Nicosia 99138, Turkey
| |
Collapse
|
5
|
Lai SL, Chen CS, Lin BR, Chang RF. Intraoperative Detection of Surgical Gauze Using Deep Convolutional Neural Network. Ann Biomed Eng 2023; 51:352-362. [PMID: 35972601 DOI: 10.1007/s10439-022-03033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
Abstract
During laparoscopic surgery, surgical gauze is usually inserted into the body cavity to help achieve hemostasis. Retention of surgical gauze in the body cavity may necessitate reoperation and increase surgical risk. Using deep learning technology, this study aimed to propose a neural network model for gauze detection from the surgical video to record the presence of the gauze. The model was trained by the training group using YOLO (You Only Look Once)v5x6, then applied to the testing group. Positive predicted value (PPV), sensitivity, and mean average precision (mAP) were calculated. Furthermore, a timeline of gauze presence in the video was drawn by the model as well as human annotation to evaluate the accuracy. After the model was well-trained, the PPV, sensitivity, and mAP in the testing group were 0.920, 0.828, and 0.881, respectively. The inference time was 11.3 ms per image. The average accuracy of the model adding a marking and filtering process was 0.899. In conclusion, surgical gauze can be successfully detected using deep learning in the surgical video. Our model provided a fast detection of surgical gauze, allowing further real-time gauze tracing in laparoscopic surgery that may help surgeons recall the location of the missing gauze.
Collapse
Affiliation(s)
- Shuo-Lun Lai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 10617, Taiwan.,Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Sheng Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Been-Ren Lin
- Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ruey-Feng Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 10617, Taiwan. .,Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Munir K, Frezza F, Rizzi A. Deep Learning Hybrid Techniques for Brain Tumor Segmentation. SENSORS (BASEL, SWITZERLAND) 2022; 22:8201. [PMID: 36365900 PMCID: PMC9658353 DOI: 10.3390/s22218201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Medical images play an important role in medical diagnosis and treatment. Oncologists analyze images to determine the different characteristics of deadly diseases, plan the therapy, and observe the evolution of the disease. The objective of this paper is to propose a method for the detection of brain tumors. Brain tumors are identified from Magnetic Resonance (MR) images by performing suitable segmentation procedures. The latest technical literature concerning radiographic images of the brain shows that deep learning methods can be implemented to extract specific features of brain tumors, aiding clinical diagnosis. For this reason, most data scientists and AI researchers work on Machine Learning methods for designing automatic screening procedures. Indeed, an automated method would result in quicker segmentation findings, providing a robust output with respect to possible differences in data sources, mostly due to different procedures in data recording and storing, resulting in a more consistent identification of brain tumors. To improve the performance of the segmentation procedure, new architectures are proposed and tested in this paper. We propose deep neural networks for the detection of brain tumors, trained on the MRI scans of patients' brains. The proposed architectures are based on convolutional neural networks and inception modules for brain tumor segmentation. A comparison of these proposed architectures with the baseline reference ones shows very interesting results. MI-Unet showed a performance increase in comparison to baseline Unet architecture by 7.5% in dice score, 23.91% insensitivity, and 7.09% in specificity. Depth-wise separable MI-Unet showed a performance increase by 10.83% in dice score, 2.97% in sensitivity, and 12.72% in specificity as compared to the baseline Unet architecture. Hybrid Unet architecture achieved performance improvement of 9.71% in dice score, 3.56% in sensitivity, and 12.6% in specificity. Whereas the depth-wise separable hybrid Unet architecture outperformed the baseline architecture by 15.45% in dice score, 20.56% in sensitivity, and 12.22% in specificity.
Collapse
|
7
|
Deep Learning Approaches for Automatic Localization in Medical Images. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6347307. [PMID: 35814554 PMCID: PMC9259335 DOI: 10.1155/2022/6347307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022]
Abstract
Recent revolutionary advances in deep learning (DL) have fueled several breakthrough achievements in various complicated computer vision tasks. The remarkable successes and achievements started in 2012 when deep learning neural networks (DNNs) outperformed the shallow machine learning models on a number of significant benchmarks. Significant advances were made in computer vision by conducting very complex image interpretation tasks with outstanding accuracy. These achievements have shown great promise in a wide variety of fields, especially in medical image analysis by creating opportunities to diagnose and treat diseases earlier. In recent years, the application of the DNN for object localization has gained the attention of researchers due to its success over conventional methods, especially in object localization. As this has become a very broad and rapidly growing field, this study presents a short review of DNN implementation for medical images and validates its efficacy on benchmarks. This study presents the first review that focuses on object localization using the DNN in medical images. The key aim of this study was to summarize the recent studies based on the DNN for medical image localization and to highlight the research gaps that can provide worthwhile ideas to shape future research related to object localization tasks. It starts with an overview on the importance of medical image analysis and existing technology in this space. The discussion then proceeds to the dominant DNN utilized in the current literature. Finally, we conclude by discussing the challenges associated with the application of the DNN for medical image localization which can drive further studies in identifying potential future developments in the relevant field of study.
Collapse
|
8
|
Luo Y, Yu X, Yang D, Zhou B. A survey of intelligent transmission line inspection based on unmanned aerial vehicle. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10189-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Xiong X, Smith BJ, Graves SA, Sunderland JJ, Graham MM, Gross BA, Buatti JM, Beichel RR. Quantification of uptake in pelvis F-18 FLT PET-CT images using a 3D localization and segmentation CNN. Med Phys 2022; 49:1585-1598. [PMID: 34982836 PMCID: PMC9447843 DOI: 10.1002/mp.15440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The purpose of this work was to develop and validate a deep convolutional neural network (CNN) approach for the automated pelvis segmentation in computed tomography (CT) scans to enable the quantification of active pelvic bone marrow by means of Fluorothymidine F-18 (FLT) tracer uptake measurement in positron emission tomography (PET) scans. This quantification is a critical step in calculating bone marrow dose for radiopharmaceutical therapy clinical applications as well as external beam radiation doses. METHODS An approach for the combined localization and segmentation of the pelvis in CT volumes of varying sizes, ranging from full-body to pelvis CT scans, was developed that utilizes a novel CNN architecture in combination with a random sampling strategy. The method was validated on 34 planning CT scans and 106 full-body FLT PET-CT scans using a cross-validation strategy. Specifically, two different training and CNN application options were studied, quantitatively assessed, and statistically compared. RESULTS The proposed method was able to successfully locate and segment the pelvis in all test cases. On all data sets, an average Dice coefficient of 0.9396 ± $\pm$ 0.0182 or better was achieved. The relative tracer uptake measurement error ranged between 0.065% and 0.204%. The proposed approach is time-efficient and shows a reduction in runtime of up to 95% compared to a standard U-Net-based approach without a localization component. CONCLUSIONS The proposed method enables the efficient calculation of FLT uptake in the pelvis. Thus, it represents a valuable tool to facilitate bone marrow preserving adaptive radiation therapy and radiopharmaceutical dose calculation. Furthermore, the method can be adapted to process other bone structures as well as organs.
Collapse
Affiliation(s)
- Xiaofan Xiong
- Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242
| | - Brian J. Smith
- Department of Biostatistics, The University of Iowa, Iowa City, IA 52242
| | - Stephen A. Graves
- Department of Radiology, The University of Iowa, Iowa City, IA 52242
| | | | - Michael M. Graham
- Department of Radiology, The University of Iowa, Iowa City, IA 52242
| | - Brandie A. Gross
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242
| | - John M. Buatti
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242
| | - Reinhard R. Beichel
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
10
|
Al-Mukhtar M, Morad AH, Albadri M, Islam MDS. Weakly Supervised Sensitive Heatmap framework to classify and localize diabetic retinopathy lesions. Sci Rep 2021; 11:23631. [PMID: 34880311 PMCID: PMC8655092 DOI: 10.1038/s41598-021-02834-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
Vision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are applied to smooth the data set. In stage two, the network had gotten deeply to the optic disk segment for eliminating any exudate's false prediction because the exudates had the same color pixel as the optic disk. In stage three, the network is fed through training data to classify each label. Finally, the layers of the convolution neural network are re-edited, and used to localize the impact of DR on the patient's eye. The framework tackles the matching technique between two essential concepts where the classification problem depends on the supervised learning method. While the localization problem was obtained by the weakly supervised method. An additional layer known as weakly supervised sensitive heat map (WSSH) was added to detect the ROI of the lesion at a test accuracy of 98.65%, while comparing with Class Activation Map that involved weakly supervised technology achieved 0.954. The main purpose is to learn a representation that collect the central localization of discriminative features in a retina image. CNN-WSSH model is able to highlight decisive features in a single forward pass for getting the best detection of lesions.
Collapse
Affiliation(s)
| | | | | | - M D Samiul Islam
- Department of Computing Science, University of Alberta, Edmonton, Canada.
| |
Collapse
|
11
|
Brosch T, Peters J, Groth A, Weber FM, Weese J. Model-based segmentation using neural network-based boundary detectors: Application to prostate and heart segmentation in MR images. MACHINE LEARNING WITH APPLICATIONS 2021. [DOI: 10.1016/j.mlwa.2021.100078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Kaur J, Kaur P. Outbreak COVID-19 in Medical Image Processing Using Deep Learning: A State-of-the-Art Review. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2021; 29:2351-2382. [PMID: 34690493 PMCID: PMC8525064 DOI: 10.1007/s11831-021-09667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
From the month of December-19, the outbreak of Coronavirus (COVID-19) triggered several deaths and overstated every aspect of individual health. COVID-19 has been designated as a pandemic by World Health Organization. The circumstances placed serious trouble on every country worldwide, particularly with health arrangements and time-consuming responses. The increase in the positive cases of COVID-19 globally spread every day. The quantity of accessible diagnosing kits is restricted because of complications in detecting the existence of the illness. Fast and correct diagnosis of COVID-19 is a timely requirement for the prevention and controlling of the pandemic through suitable isolation and medicinal treatment. The significance of the present work is to discuss the outline of the deep learning techniques with medical imaging such as outburst prediction, virus transmitted indications, detection and treatment aspects, vaccine availability with remedy research. Abundant image resources of medical imaging as X-rays, Computed Tomography Scans, Magnetic Resonance imaging, formulate deep learning high-quality methods to fight against the pandemic COVID-19. The review presents a comprehensive idea of deep learning and its related applications in healthcare received over the past decade. At the last, some issues and confrontations to control the health crisis and outbreaks have been introduced. The progress in technology has contributed to developing individual's lives. The problems faced by the radiologists during medical imaging techniques and deep learning approaches for diagnosing the COVID-19 infections have been also discussed.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Computer Engineering & Technology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Prabhpreet Kaur
- Department of Computer Engineering & Technology, Guru Nanak Dev University, Amritsar, Punjab India
| |
Collapse
|
13
|
|
14
|
Zhang YN, XIA KR, LI CY, WEI BL, Zhang B. Review of Breast Cancer Pathologigcal Image Processing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1994764. [PMID: 34595234 PMCID: PMC8478535 DOI: 10.1155/2021/1994764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Breast cancer is one of the most common malignancies. Pathological image processing of breast has become an important means for early diagnosis of breast cancer. Using medical image processing to assist doctors to detect potential breast cancer as early as possible has always been a hot topic in the field of medical image diagnosis. In this paper, a breast cancer recognition method based on image processing is systematically expounded from four aspects: breast cancer detection, image segmentation, image registration, and image fusion. The achievements and application scope of supervised learning, unsupervised learning, deep learning, CNN, and so on in breast cancer examination are expounded. The prospect of unsupervised learning and transfer learning for breast cancer diagnosis is prospected. Finally, the privacy protection of breast cancer patients is put forward.
Collapse
Affiliation(s)
- Ya-nan Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
- HRG International Institute (Hefei) of Research and Innovation, Hefei 230000, China
| | - Ke-rui XIA
- HRG International Institute (Hefei) of Research and Innovation, Hefei 230000, China
| | - Chang-yi LI
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
| | - Ben-li WEI
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
| | - Bing Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
15
|
Deep Reinforcement Learning with Explicit Spatio-Sequential Encoding Network for Coronary Ostia Identification in CT Images. SENSORS 2021; 21:s21186187. [PMID: 34577391 PMCID: PMC8469841 DOI: 10.3390/s21186187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Accurate identification of the coronary ostia from 3D coronary computed tomography angiography (CCTA) is a essential prerequisite step for automatically tracking and segmenting three main coronary arteries. In this paper, we propose a novel deep reinforcement learning (DRL) framework to localize the two coronary ostia from 3D CCTA. An optimal action policy is determined using a fully explicit spatial-sequential encoding policy network applying 2.5D Markovian states with three past histories. The proposed network is trained using a dueling DRL framework on the CAT08 dataset. The experiment results show that our method is more efficient and accurate than the other methods. blueFloating-point operations (FLOPs) are calculated to measure computational efficiency. The result shows that there are 2.5M FLOPs on the proposed method, which is about 10 times smaller value than 3D box-based methods. In terms of accuracy, the proposed method shows that 2.22 ± 1.12 mm and 1.94 ± 0.83 errors on the left and right coronary ostia, respectively. The proposed method can be applied to the tasks to identify other target objects by changing the target locations in the ground truth data. Further, the proposed method can be utilized as a pre-processing method for coronary artery tracking methods.
Collapse
|
16
|
Magrelli S, Valentini P, De Rose C, Morello R, Buonsenso D. Classification of Lung Disease in Children by Using Lung Ultrasound Images and Deep Convolutional Neural Network. Front Physiol 2021; 12:693448. [PMID: 34512375 PMCID: PMC8432935 DOI: 10.3389/fphys.2021.693448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023] Open
Abstract
Bronchiolitis is the most common cause of hospitalization of children in the first year of life and pneumonia is the leading cause of infant mortality worldwide. Lung ultrasound technology (LUS) is a novel imaging diagnostic tool for the early detection of respiratory distress and offers several advantages due to its low-cost, relative safety, portability, and easy repeatability. More precise and efficient diagnostic and therapeutic strategies are needed. Deep-learning-based computer-aided diagnosis (CADx) systems, using chest X-ray images, have recently demonstrated their potential as a screening tool for pulmonary disease (such as COVID-19 pneumonia). We present the first computer-aided diagnostic scheme for LUS images of pulmonary diseases in children. In this study, we trained from scratch four state-of-the-art deep-learning models (VGG19, Xception, Inception-v3 and Inception-ResNet-v2) for detecting children with bronchiolitis and pneumonia. In our experiments we used a data set consisting of 5,907 images from 33 healthy infants, 3,286 images from 22 infants with bronchiolitis, and 4,769 images from 7 children suffering from bacterial pneumonia. Using four-fold cross-validation, we implemented one binary classification (healthy vs. bronchiolitis) and one three-class classification (healthy vs. bronchiolitis vs. bacterial pneumonia) out of three classes. Affine transformations were applied for data augmentation. Hyperparameters were optimized for the learning rate, dropout regularization, batch size, and epoch iteration. The Inception-ResNet-v2 model provides the highest classification performance, when compared with the other models used on test sets: for healthy vs. bronchiolitis, it provides 97.75% accuracy, 97.75% sensitivity, and 97% specificity whereas for healthy vs. bronchiolitis vs. bacterial pneumonia, the Inception-v3 model provides the best results with 91.5% accuracy, 91.5% sensitivity, and 95.86% specificity. We performed a gradient-weighted class activation mapping (Grad-CAM) visualization and the results were qualitatively evaluated by a pediatrician expert in LUS imaging: heatmaps highlight areas containing diagnostic-relevant LUS imaging-artifacts, e.g., A-, B-, pleural-lines, and consolidations. These complex patterns are automatically learnt from the data, thus avoiding hand-crafted features usage. By using LUS imaging, the proposed framework might aid in the development of an accessible and rapid decision support-method for diagnosing pulmonary diseases in children using LUS imaging.
Collapse
Affiliation(s)
| | - Piero Valentini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina De Rose
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rosa Morello
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
17
|
Schuuring MJ, Išgum I, Cosyns B, Chamuleau SAJ, Bouma BJ. Routine Echocardiography and Artificial Intelligence Solutions. Front Cardiovasc Med 2021; 8:648877. [PMID: 33708808 PMCID: PMC7940184 DOI: 10.3389/fcvm.2021.648877] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction: Echocardiography is widely used because of its portability, high temporal resolution, absence of radiation, and due to the low-costs. Over the past years, echocardiography has been recommended by the European Society of Cardiology in most cardiac diseases for both diagnostic and prognostic purposes. These recommendations have led to an increase in number of performed studies each requiring diligent processing and reviewing. The standard work pattern of image analysis including quantification and reporting has become highly resource intensive and time consuming. Existence of a large number of datasets with digital echocardiography images and recent advent of AI technology have created an environment in which artificial intelligence (AI) solutions can be developed successfully to automate current manual workflow. Methods and Results: We report on published AI solutions for echocardiography analysis on methods' performance, characteristics of the used data and imaged population. Contemporary AI applications are available for automation and advent in the image acquisition, analysis, reporting and education. AI solutions have been developed for both diagnostic and predictive tasks in echocardiography. Left ventricular function assessment and quantification have been most often performed. Performance of automated image view classification, image quality enhancement, cardiac function assessment, disease classification, and cardiac event prediction was overall good but most studies lack external evaluation. Conclusion: Contemporary AI solutions for image acquisition, analysis, reporting and education are developed for relevant tasks with promising performance. In the future major benefit of AI in echocardiography is expected from improvements in automated analysis and interpretation to reduce workload and improve clinical outcome. Some of the challenges have yet to be overcome, however, none of them are insurmountable.
Collapse
Affiliation(s)
- Mark J. Schuuring
- Amsterdam University Medical Centers -Location Academic Medical Center, Department of Cardiology, University of Amsterdam, Amsterdam, Netherlands
| | - Ivana Išgum
- Amsterdam University Medical Centers -Location Academic Medical Center, Department of Biomedical Engineering and Physics, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam University Medical Centers -Location Academic Medical Center, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers -Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bernard Cosyns
- Department of Cardiology, University Hospital Brussel, Brussels, Belgium
| | - Steven A. J. Chamuleau
- Amsterdam University Medical Centers -Location Academic Medical Center, Department of Cardiology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers -Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Berto J. Bouma
- Amsterdam University Medical Centers -Location Academic Medical Center, Department of Cardiology, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Bhattacharya S, Reddy Maddikunta PK, Pham QV, Gadekallu TR, Krishnan S SR, Chowdhary CL, Alazab M, Jalil Piran M. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. SUSTAINABLE CITIES AND SOCIETY 2021; 65:102589. [PMID: 33169099 PMCID: PMC7642729 DOI: 10.1016/j.scs.2020.102589] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Since December 2019, the coronavirus disease (COVID-19) outbreak has caused many death cases and affected all sectors of human life. With gradual progression of time, COVID-19 was declared by the world health organization (WHO) as an outbreak, which has imposed a heavy burden on almost all countries, especially ones with weaker health systems and ones with slow responses. In the field of healthcare, deep learning has been implemented in many applications, e.g., diabetic retinopathy detection, lung nodule classification, fetal localization, and thyroid diagnosis. Numerous sources of medical images (e.g., X-ray, CT, and MRI) make deep learning a great technique to combat the COVID-19 outbreak. Motivated by this fact, a large number of research works have been proposed and developed for the initial months of 2020. In this paper, we first focus on summarizing the state-of-the-art research works related to deep learning applications for COVID-19 medical image processing. Then, we provide an overview of deep learning and its applications to healthcare found in the last decade. Next, three use cases in China, Korea, and Canada are also presented to show deep learning applications for COVID-19 medical image processing. Finally, we discuss several challenges and issues related to deep learning implementations for COVID-19 medical image processing, which are expected to drive further studies in controlling the outbreak and controlling the crisis, which results in smart healthy cities.
Collapse
Affiliation(s)
- Sweta Bhattacharya
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Quoc-Viet Pham
- Research Institute of Computer, Information and Communication, Pusan National University, Busan 46241, Republic of Korea
| | - Thippa Reddy Gadekallu
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Siva Rama Krishnan S
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chiranji Lal Chowdhary
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mamoun Alazab
- College of Engineering, IT & Environment, Charles Darwin University, Australia
| | - Md Jalil Piran
- Department of Computer Science and Engineering, Sejong University, 05006, Seoul, Republic of Korea
| |
Collapse
|
19
|
Zhang B, Liu H, Luo H, Li K. Automatic quality assessment for 2D fetal sonographic standard plane based on multitask learning. Medicine (Baltimore) 2021; 100:e24427. [PMID: 33530242 PMCID: PMC7850658 DOI: 10.1097/md.0000000000024427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 12/31/2020] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT The quality control of fetal sonographic (FS) images is essential for the correct biometric measurements and fetal anomaly diagnosis. However, quality control requires professional sonographers to perform and is often labor-intensive. To solve this problem, we propose an automatic image quality assessment scheme based on multitask learning to assist in FS image quality control. An essential criterion for FS image quality control is that all the essential anatomical structures in the section should appear full and remarkable with a clear boundary. Therefore, our scheme aims to identify those essential anatomical structures to judge whether an FS image is the standard image, which is achieved by 3 convolutional neural networks. The Feature Extraction Network aims to extract deep level features of FS images. Based on the extracted features, the Class Prediction Network determines whether the structure meets the standard and Region Proposal Network identifies its position. The scheme has been applied to 3 types of fetal sections, which are the head, abdominal, and heart. The experimental results show that our method can make a quality assessment of an FS image within less a second. Also, our method achieves competitive performance in both the segmentation and diagnosis compared with state-of-the-art methods.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Ultrasound, West China Second Hospital, Sichuan University/ Key Laboratory of Obstetrics & Gynecology, Pediatric Diseases, and Birth Defects of the Ministry of Education
| | - Han Liu
- Glasgow College, University of Electronic Science and Technology of China
| | - Hong Luo
- Department of Ultrasound, West China Second Hospital, Sichuan University/ Key Laboratory of Obstetrics & Gynecology, Pediatric Diseases, and Birth Defects of the Ministry of Education
| | - Kejun Li
- Wangwang Technology Company, Chengdu, China
| |
Collapse
|
20
|
Drukker K, Yan P, Sibley A, Wang G. Biomedical imaging and analysis through deep learning. Artif Intell Med 2021. [DOI: 10.1016/b978-0-12-821259-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Dozen A, Komatsu M, Sakai A, Komatsu R, Shozu K, Machino H, Yasutomi S, Arakaki T, Asada K, Kaneko S, Matsuoka R, Aoki D, Sekizawa A, Hamamoto R. Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information. Biomolecules 2020; 10:E1526. [PMID: 33171658 PMCID: PMC7695246 DOI: 10.3390/biom10111526] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Image segmentation is the pixel-by-pixel detection of objects, which is the most challenging but informative in the fundamental tasks of machine learning including image classification and object detection. Pixel-by-pixel segmentation is required to apply machine learning to support fetal cardiac ultrasound screening; we have to detect cardiac substructures precisely which are small and change shapes dynamically with fetal heartbeats, such as the ventricular septum. This task is difficult for general segmentation methods such as DeepLab v3+, and U-net. Hence, here we proposed a novel segmentation method named Cropping-Segmentation-Calibration (CSC) that is specific to the ventricular septum in ultrasound videos in this study. CSC employs the time-series information of videos and specific section information to calibrate the output of U-net. The actual sections of the ventricular septum were annotated in 615 frames from 421 normal fetal cardiac ultrasound videos of 211 pregnant women who were screened. The dataset was assigned a ratio of 2:1, which corresponded to a ratio of the training to test data, and three-fold cross-validation was conducted. The segmentation results of DeepLab v3+, U-net, and CSC were evaluated using the values of the mean intersection over union (mIoU), which were 0.0224, 0.1519, and 0.5543, respectively. The results reveal the superior performance of CSC.
Collapse
Affiliation(s)
- Ai Dozen
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Akira Sakai
- Artificial Intelligence Laboratory, Fujitsu Laboratories Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211-8588, Japan; (A.S.); (S.Y.)
- RIKEN AIP-Fujitsu Collaboration Center, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (R.K.); (R.M.)
- Biomedical Science and Engineering Track, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Reina Komatsu
- RIKEN AIP-Fujitsu Collaboration Center, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (R.K.); (R.M.)
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (T.A.); (A.S.)
| | - Kanto Shozu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
| | - Hidenori Machino
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Suguru Yasutomi
- Artificial Intelligence Laboratory, Fujitsu Laboratories Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211-8588, Japan; (A.S.); (S.Y.)
- RIKEN AIP-Fujitsu Collaboration Center, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (R.K.); (R.M.)
| | - Tatsuya Arakaki
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (T.A.); (A.S.)
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ryu Matsuoka
- RIKEN AIP-Fujitsu Collaboration Center, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (R.K.); (R.M.)
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (T.A.); (A.S.)
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (T.A.); (A.S.)
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Biomedical Science and Engineering Track, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
22
|
Cheng Q, Ke Y, Abdelmouty A. Negative emotion diffusion and intervention countermeasures of social networks based on deep learning. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-179979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aiming at the limitation of using only word features in traditional deep learning sentiment classification, this paper combines topic features with deep learning models to build a topic-fused deep learning sentiment classification model. The model can fuse topic features to obtain high-quality high-level text features. Experiments show that in binary sentiment classification, the highest classification accuracy of the model can reach more than 90%, which is higher than that of commonly used deep learning models. This paper focuses on the combination of deep neural networks and emerging text processing technologies, and improves and perfects them from two aspects of model architecture and training methods, and designs an efficient deep network sentiment analysis model. A CNN (Convolutional Neural Network) model based on polymorphism is proposed. The model constructs the CNN input matrix by combining the word vector information of the text, the emotion information of the words, and the position information of the words, and adjusts the importance of different feature information in the training process by means of weight control. The multi-objective sample data set is used to verify the effectiveness of the proposed model in the sentiment analysis task of related objects from the classification effect and training performance.
Collapse
Affiliation(s)
- Qiuyun Cheng
- School of Intelligent Engineering, Zhengzhou University of Aeronautics, Henan Zhengzhou, China
| | - Yun Ke
- Wuhan Technology and Business University College of Humanity&Law, Wuhan, China
| | - Ahmed Abdelmouty
- Faculty of Computers and Informatics, Zagazig University, Alsharkiya, Egypt
| |
Collapse
|
23
|
Radiomics at a Glance: A Few Lessons Learned from Learning Approaches. Cancers (Basel) 2020; 12:cancers12092453. [PMID: 32872466 PMCID: PMC7563283 DOI: 10.3390/cancers12092453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Radiomics has become a prominent component of medical imaging research and many studies show its specific value as a support tool for clinical decision-making processes. Radiomic data are typically analyzed with statistical and machine learning methods, which change depending on the disease context and the imaging modality. We found a certain bias in the literature towards the use of such methods and believe that this limitation may influence the capacity of producing accurate and reliable decisions. Therefore, in view of the relevance of various types of learning methods, we report their significance and discuss their unrevealed potential. Abstract Processing and modeling medical images have traditionally represented complex tasks requiring multidisciplinary collaboration. The advent of radiomics has assigned a central role to quantitative data analytics targeting medical image features algorithmically extracted from large volumes of images. Apart from the ultimate goal of supporting diagnostic, prognostic, and therapeutic decisions, radiomics is computationally attractive due to specific strengths: scalability, efficiency, and precision. Optimization is achieved by highly sophisticated statistical and machine learning algorithms, but it is especially deep learning that stands out as the leading inference approach. Various types of hybrid learning can be considered when building complex integrative approaches aimed to deliver gains in accuracy for both classification and prediction tasks. This perspective reviews some selected learning methods by focusing on both their significance for radiomics and their unveiled potential.
Collapse
|
24
|
Zhou Y, Yen GG, Yi Z. Evolutionary Compression of Deep Neural Networks for Biomedical Image Segmentation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:2916-2929. [PMID: 31536016 DOI: 10.1109/tnnls.2019.2933879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomedical image segmentation is lately dominated by deep neural networks (DNNs) due to their surpassing expert-level performance. However, the existing DNN models for biomedical image segmentation are generally highly parameterized, which severely impede their deployment on real-time platforms and portable devices. To tackle this difficulty, we propose an evolutionary compression method (ECDNN) to automatically discover efficient DNN architectures for biomedical image segmentation. Different from the existing studies, ECDNN can optimize network loss and number of parameters simultaneously during the evolution, and search for a set of Pareto-optimal solutions in a single run, which is useful for quantifying the tradeoff in satisfying different objectives, and flexible for compressing DNN when preference information is uncertain. In particular, a set of novel genetic operators is proposed for automatically identifying less important filters over the whole network. Moreover, a pruning operator is designed for eliminating convolutional filters from layers involved in feature map concatenation, which is commonly adopted in DNN architectures for capturing multi-level features from biomedical images. Experiments carried out on compressing DNN for retinal vessel and neuronal membrane segmentation tasks show that ECDNN can not only improve the performance without any retraining but also discover efficient network architectures that well maintain the performance. The superiority of the proposed method is further validated by comparison with the state-of-the-art methods.
Collapse
|
25
|
A Prediction Model Based on Deep Belief Network and Least Squares SVR Applied to Cross-Section Water Quality. WATER 2020. [DOI: 10.3390/w12071929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the quality of fresh water resources is threatened by numerous pollutants. Prediction of water quality is an important tool for controlling and reducing water pollution. By employing superior big data processing ability of deep learning it is possible to improve the accuracy of prediction. This paper proposes a method for predicting water quality based on the deep belief network (DBN) model. First, the particle swarm optimization (PSO) algorithm is used to optimize the network parameters of the deep belief network, which is to extract feature vectors of water quality time series data at multiple scales. Then, combined with the least squares support vector regression (LSSVR) machine which is taken as the top prediction layer of the model, a new water quality prediction model referred to as PSO-DBN-LSSVR is put forward. The developed model is valued in terms of the mean absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination ( R 2 ). Results illustrate that the model proposed in this paper can accurately predict water quality parameters and better robustness of water quality parameters compared with the traditional back propagation (BP) neural network, LSSVR, the DBN neural network, and the DBN-LSSVR combined model.
Collapse
|
26
|
Mansoor A, Cerrolaza JJ, Perez G, Biggs E, Okada K, Nino G, Linguraru MG. A Generic Approach to Lung Field Segmentation From Chest Radiographs Using Deep Space and Shape Learning. IEEE Trans Biomed Eng 2020; 67:1206-1220. [PMID: 31425015 PMCID: PMC7293875 DOI: 10.1109/tbme.2019.2933508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Computer-aided diagnosis (CAD) techniques for lung field segmentation from chest radiographs (CXR) have been proposed for adult cohorts, but rarely for pediatric subjects. Statistical shape models (SSMs), the workhorse of most state-of-the-art CXR-based lung field segmentation methods, do not efficiently accommodate shape variation of the lung field during the pediatric developmental stages. The main contributions of our work are: 1) a generic lung field segmentation framework from CXR accommodating large shape variation for adult and pediatric cohorts; 2) a deep representation learning detection mechanism, ensemble space learning, for robust object localization; and 3) marginal shape deep learning for the shape deformation parameter estimation. Unlike the iterative approach of conventional SSMs, the proposed shape learning mechanism transforms the parameter space into marginal subspaces that are solvable efficiently using the recursive representation learning mechanism. Furthermore, our method is the first to include the challenging retro-cardiac region in the CXR-based lung segmentation for accurate lung capacity estimation. The framework is evaluated on 668 CXRs of patients between 3 month to 89 year of age. We obtain a mean Dice similarity coefficient of 0.96 ±0.03 (including the retro-cardiac region). For a given accuracy, the proposed approach is also found to be faster than conventional SSM-based iterative segmentation methods. The computational simplicity of the proposed generic framework could be similarly applied to the fast segmentation of other deformable objects.
Collapse
|
27
|
Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai W, Rueckert D. Deep Learning for Cardiac Image Segmentation: A Review. Front Cardiovasc Med 2020; 7:25. [PMID: 32195270 PMCID: PMC7066212 DOI: 10.3389/fcvm.2020.00025] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Deep learning has become the most widely used approach for cardiac image segmentation in recent years. In this paper, we provide a review of over 100 cardiac image segmentation papers using deep learning, which covers common imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound and major anatomical structures of interest (ventricles, atria, and vessels). In addition, a summary of publicly available cardiac image datasets and code repositories are included to provide a base for encouraging reproducible research. Finally, we discuss the challenges and limitations with current deep learning-based approaches (scarcity of labels, model generalizability across different domains, interpretability) and suggest potential directions for future research.
Collapse
Affiliation(s)
- Chen Chen
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Chen Qin
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Huaqi Qiu
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Giacomo Tarroni
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
- CitAI Research Centre, Department of Computer Science, City University of London, London, United Kingdom
| | - Jinming Duan
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Wenjia Bai
- Data Science Institute, Imperial College London, London, United Kingdom
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Sezer A, Sezer HB. Deep Convolutional Neural Network-Based Automatic Classification of Neonatal Hip Ultrasound Images: A Novel Data Augmentation Approach with Speckle Noise Reduction. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:735-749. [PMID: 31882168 DOI: 10.1016/j.ultrasmedbio.2019.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Neonatal hip ultrasound imaging has been widely used for a few decades in the diagnosis of developmental dysplasia of the hip (DDH). Graf's method of hip ultrasonography is still the most reproducible because of its classification system; yet, the reproducibility is questionable as a result of the high dependency on the skills of the sonographer and the evaluator. A computer-aided diagnosis system may help evaluators increase their precision in the diagnosis of DDH using Graf's method. This study describes a fully automatic computer-aided diagnosis system for the classification of hip ultrasound images captured in Graf's standard plane based on convolutional neural networks (CNNs). Automatically segmented image patches containing all of the necessary anatomical structures were given to the proposed CNN system to extract discriminative features and classify the recorded hips. For ease of evaluation, the data set was divided into three groups: normal, mild dysplasia and severe dysplasia. This study proposes a different approach to data augmentation using speckle noise reduction with an optimized Bayesian non-local mean filter. Data augmentation with this filter increased the accuracy of the proposed CNN system from 92.29% to 97.70%. This new approach for automatic classification of DDH, classifies dysplastic neonatal hips with a high accuracy rate and might help evaluators to increase their evaluation success.
Collapse
Affiliation(s)
- Aysun Sezer
- United'Informatique et d'Ingenierie des Systemes, ENSTA-ParisTech, Universite de Paris-Saclay, Villefranche Sur Mer, Provence-Alpes-Côte d'azur, France.
| | - Hasan Basri Sezer
- Orthopaedics and Traumatology Clinic, Şişli Hamidiye Etfal Training and Research Hospital, University of Medical Sciences, Istanbul, Turkey
| |
Collapse
|
29
|
Jun Guo B, He X, Lei Y, Harms J, Wang T, Curran WJ, Liu T, Jiang Zhang L, Yang X. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U‐net for coronary computed tomography angiography; CT myocardium segmentation. Med Phys 2020; 47:1775-1785. [DOI: 10.1002/mp.14066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 01/30/2023] Open
Affiliation(s)
- Bang Jun Guo
- Department of Medical Imaging Jinling Hospital The First School of Clinical Medicine Southern Medical University Nanjing210002China
- Department of Radiation Oncology and Winship Cancer Institute Emory University Atlanta GA 30322USA
| | - Xiuxiu He
- Department of Radiation Oncology and Winship Cancer Institute Emory University Atlanta GA 30322USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute Emory University Atlanta GA 30322USA
| | - Joseph Harms
- Department of Radiation Oncology and Winship Cancer Institute Emory University Atlanta GA 30322USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute Emory University Atlanta GA 30322USA
| | - Walter J. Curran
- Department of Radiation Oncology and Winship Cancer Institute Emory University Atlanta GA 30322USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute Emory University Atlanta GA 30322USA
| | - Long Jiang Zhang
- Department of Medical Imaging Jinling Hospital The First School of Clinical Medicine Southern Medical University Nanjing210002China
- Department of Medical Imaging Jinling Hospital Medical School of Nanjing University Nanjing210002China
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute Emory University Atlanta GA 30322USA
| |
Collapse
|
30
|
NF-RCNN: Heart localization and right ventricle wall motion abnormality detection in cardiac MRI. Phys Med 2020; 70:65-74. [DOI: 10.1016/j.ejmp.2020.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/31/2019] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
|
31
|
Jeyaraj PR, Nadar ERS. Deep Boltzmann machine algorithm for accurate medical image analysis for classification of cancerous region. COGNITIVE COMPUTATION AND SYSTEMS 2019. [DOI: 10.1049/ccs.2019.0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Pandia Rajan Jeyaraj
- Department of Electrical and Electronics EngineeringMepco Schlenk Engineering College (Autonomous)Sivakasi626005Tamil NaduIndia
| | - Edward Rajan Samuel Nadar
- Department of Electrical and Electronics EngineeringMepco Schlenk Engineering College (Autonomous)Sivakasi626005Tamil NaduIndia
| |
Collapse
|
32
|
Mobiny A, Singh A, Van Nguyen H. Risk-Aware Machine Learning Classifier for Skin Lesion Diagnosis. J Clin Med 2019; 8:E1241. [PMID: 31426482 PMCID: PMC6723257 DOI: 10.3390/jcm8081241] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023] Open
Abstract
Knowing when a machine learning system is not confident about its prediction is crucial in medical domains where safety is critical. Ideally, a machine learning algorithm should make a prediction only when it is highly certain about its competency, and refer the case to physicians otherwise. In this paper, we investigate how Bayesian deep learning can improve the performance of the machine-physician team in the skin lesion classification task. We used the publicly available HAM10000 dataset, which includes samples from seven common skin lesion categories: Melanoma (MEL), Melanocytic Nevi (NV), Basal Cell Carcinoma (BCC), Actinic Keratoses and Intraepithelial Carcinoma (AKIEC), Benign Keratosis (BKL), Dermatofibroma (DF), and Vascular (VASC) lesions. Our experimental results show that Bayesian deep networks can boost the diagnostic performance of the standard DenseNet-169 model from 81.35% to 83.59% without incurring additional parameters or heavy computation. More importantly, a hybrid physician-machine workflow reaches a classification accuracy of 90 % while only referring 35 % of the cases to physicians. The findings are expected to generalize to other medical diagnosis applications. We believe that the availability of risk-aware machine learning methods will enable a wider adoption of machine learning technology in clinical settings.
Collapse
Affiliation(s)
- Aryan Mobiny
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA.
| | - Aditi Singh
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
| | - Hien Van Nguyen
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
33
|
Yu Z, Xiang Q, Meng J, Kou C, Ren Q, Lu Y. Retinal image synthesis from multiple-landmarks input with generative adversarial networks. Biomed Eng Online 2019; 18:62. [PMID: 31113438 PMCID: PMC6528202 DOI: 10.1186/s12938-019-0682-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/10/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Medical datasets, especially medical images, are often imbalanced due to the different incidences of various diseases. To address this problem, many methods have been proposed to synthesize medical images using generative adversarial networks (GANs) to enlarge training datasets for facilitating medical image analysis. For instance, conventional methods such as image-to-image translation techniques are used to synthesize fundus images with their respective vessel trees in the field of fundus image. METHODS In order to improve the image quality and details of the synthetic images, three key aspects of the pipeline are mainly elaborated: the input mask, architecture of GANs, and the resolution of paired images. We propose a new preprocessing pipeline named multiple-channels-multiple-landmarks (MCML), aiming to synthesize color fundus images from a combination of vessel tree, optic disc, and optic cup images. We compared both single vessel mask input and MCML mask input on two public fundus image datasets (DRIVE and DRISHTI-GS) with different kinds of Pix2pix and Cycle-GAN architectures. A new Pix2pix structure with ResU-net generator is also designed, which has been compared with the other models. RESULTS AND CONCLUSION As shown in the results, the proposed MCML method outperforms the single vessel-based methods for each architecture of GANs. Furthermore, we find that our Pix2pix model with ResU-net generator achieves superior PSNR and SSIM performance than the other GANs. High-resolution paired images are also beneficial for improving the performance of each GAN in this work. Finally, a Pix2pix network with ResU-net generator using MCML and high-resolution paired images are able to generate good and realistic fundus images in this work, indicating that our MCML method has great potential in the field of glaucoma computer-aided diagnosis based on fundus image.
Collapse
Affiliation(s)
- Zekuan Yu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Qing Xiang
- Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Jiahao Meng
- Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Caixia Kou
- Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Yanye Lu
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| |
Collapse
|
34
|
Lin Z, Gong T, Wang K, Li Z, He H, Tong Q, Yu F, Zhong J. Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network. Med Phys 2019; 46:3101-3116. [PMID: 31009085 DOI: 10.1002/mp.13555] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE In diffusion-weighted magnetic resonance imaging (DW-MRI), the fiber orientation distribution function (fODF) is of great importance for solving complex fiber configurations to achieve reliable tractography throughout the brain, which ultimately facilitates the understanding of brain connectivity and exploration of neurological dysfunction. Recently, multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) method has been explored for reconstructing full fODFs. To achieve a reliable fitting, similar to other model-based approaches, a large number of diffusion measurements is typically required for MSMT-CSD method. The prolonged acquisition is, however, not feasible in practical clinical routine and is prone to motion artifacts. To accelerate the acquisition, we proposed a method to reconstruct the fODF from downsampled diffusion-weighted images (DWIs) by leveraging the strong inference ability of the deep convolutional neural network (CNN). METHODS The method treats spherical harmonics (SH)-represented DWI signals and fODF coefficients as inputs and outputs, respectively. To compensate for the reduced gradient directions with reduced number of DWIs in acquisition in each voxel, its surrounding voxels are incorporated by the network for exploiting their spatial continuity. The resulting fODF coefficients are fitted with applying the CNN in a multi-target regression model. The network is composed of two convolutional layers and three fully connected layers. To obtain an initial evaluation of the method, we quantitatively measured its performance on a simulated dataset. Then, for in vivo tests, we employed data from 24 subjects from the Human Connectome Project (HCP) as training set and six subjects as test set. The performance of the proposed method was primarily compared to the super-resolved MSMT-CSD with the decreasing number of DWIs. The fODFs reconstructed by MSMT-CSD from all available 288 DWIs were used as training labels and the reference standard. The performance was quantitatively measured by the angular correlation coefficient (ACC) and the mean angular error (MAE). RESULTS For the simulated dataset, the proposed method exhibited the potential advantage over the model reconstruction. For the in vivo dataset, it achieved superior results over the MSMT-CSD in all the investigated cases, with its advantage more obvious when a limited number of DWIs were used. As the number of DWIs was reduced from 95 to 25, the median ACC ranged from 0.96 to 0.91 for the CNN, but 0.93 to 0.77 for the MSMT-CSD (with perfect score of 1). The angular error in the typical regions of interest (ROIs) was also much lower, especially in multi-fiber regions. The average MAE for the CNN method in regions containing one, two, three fibers was, respectively, 1.09°, 2.75°, and 8.35° smaller than the MSMT-CSD method. The visual inception of the fODF further confirmed this superiority. Moreover, the tractography results validated the effectiveness of the learned fODF, in preserving known major branching fibers with only 25 DWIs. CONCLUSION Experiments on HCP datasets demonstrated the feasibility of the proposed method in recovering fODFs from up to 11-fold reduced number of DWIs. The proposed method offers a new streamlined reconstruction procedure and exhibits promising potential in acquisition acceleration for the reconstruction of fODFs with good accuracy.
Collapse
Affiliation(s)
- Zhichao Lin
- Department of Instrument Science & Technology, Zhejiang University, Hangzhou, 310027, China
| | - Ting Gong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kewen Wang
- College of Natural Science, Computer Science, The University of Texas at Austin, Austin, TX, USA
| | - Zhiwei Li
- Department of Instrument Science & Technology, Zhejiang University, Hangzhou, 310027, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiqi Tong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yu
- Department of Instrument Science & Technology, Zhejiang University, Hangzhou, 310027, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China.,University of Rochester, Rochester, NY, USA
| |
Collapse
|
35
|
A gentle introduction to deep learning in medical image processing. Z Med Phys 2019; 29:86-101. [DOI: 10.1016/j.zemedi.2018.12.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
|
36
|
Jafari MH, Girgis H, Van Woudenberg N, Liao Z, Rohling R, Gin K, Abolmaesumi P, Tsang T. Automatic biplane left ventricular ejection fraction estimation with mobile point-of-care ultrasound using multi-task learning and adversarial training. Int J Comput Assist Radiol Surg 2019; 14:1027-1037. [PMID: 30941679 DOI: 10.1007/s11548-019-01954-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Left ventricular ejection fraction (LVEF) is one of the key metrics to assess the heart functionality, and cardiac ultrasound (echo) is a standard imaging modality for EF measurement. There is an emerging interest to exploit the point-of-care ultrasound (POCUS) usability due to low cost and ease of access. In this work, we aim to present a computationally efficient mobile application for accurate LVEF estimation. METHODS Our proposed mobile application for LVEF estimation runs in real time on Android mobile devices that have either a wired or wireless connection to a cardiac POCUS device. We propose a pipeline for biplane ejection fraction estimation using apical two-chamber (AP2) and apical four-chamber (AP4) echo views. A computationally efficient multi-task deep fully convolutional network is proposed for simultaneous LV segmentation and landmark detection in these views, which is integrated into the LVEF estimation pipeline. An adversarial critic model is used in the training phase to impose a shape prior on the LV segmentation output. RESULTS The system is evaluated on a dataset of 427 patients. Each patient has a pair of captured AP2 and AP4 echo studies, resulting in a total of more than 40,000 echo frames. The mobile system reaches a noticeably high average Dice score of 92% for LV segmentation, an average Euclidean distance error of 2.85 pixels for the detection of anatomical landmarks used in LVEF calculation, and a median absolute error of 6.2% for LVEF estimation compared to the expert cardiologist's annotations and measurements. CONCLUSION The proposed system runs in real time on mobile devices. The experiments show the effectiveness of the proposed system for automatic LVEF estimation by demonstrating an adequate correlation with the cardiologist's examination.
Collapse
Affiliation(s)
| | - Hany Girgis
- The University of British Columbia, Vancouver, Canada.,Vancouver General Hospital, Vancouver, Canada
| | | | - Zhibin Liao
- The University of British Columbia, Vancouver, Canada
| | | | - Ken Gin
- The University of British Columbia, Vancouver, Canada.,Vancouver General Hospital, Vancouver, Canada
| | | | - Terasa Tsang
- The University of British Columbia, Vancouver, Canada.,Vancouver General Hospital, Vancouver, Canada
| |
Collapse
|
37
|
Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, Summers RM, Giger ML. Deep learning in medical imaging and radiation therapy. Med Phys 2019; 46:e1-e36. [PMID: 30367497 PMCID: PMC9560030 DOI: 10.1002/mp.13264] [Citation(s) in RCA: 388] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
The goals of this review paper on deep learning (DL) in medical imaging and radiation therapy are to (a) summarize what has been achieved to date; (b) identify common and unique challenges, and strategies that researchers have taken to address these challenges; and (c) identify some of the promising avenues for the future both in terms of applications as well as technical innovations. We introduce the general principles of DL and convolutional neural networks, survey five major areas of application of DL in medical imaging and radiation therapy, identify common themes, discuss methods for dataset expansion, and conclude by summarizing lessons learned, remaining challenges, and future directions.
Collapse
Affiliation(s)
- Berkman Sahiner
- DIDSR/OSEL/CDRH U.S. Food and Drug AdministrationSilver SpringMD20993USA
| | - Aria Pezeshk
- DIDSR/OSEL/CDRH U.S. Food and Drug AdministrationSilver SpringMD20993USA
| | | | - Xiaosong Wang
- Imaging Biomarkers and Computer‐aided Diagnosis LabRadiology and Imaging SciencesNIH Clinical CenterBethesdaMD20892‐1182USA
| | - Karen Drukker
- Department of RadiologyUniversity of ChicagoChicagoIL60637USA
| | - Kenny H. Cha
- DIDSR/OSEL/CDRH U.S. Food and Drug AdministrationSilver SpringMD20993USA
| | - Ronald M. Summers
- Imaging Biomarkers and Computer‐aided Diagnosis LabRadiology and Imaging SciencesNIH Clinical CenterBethesdaMD20892‐1182USA
| | | |
Collapse
|
38
|
Ghesu FC, Georgescu B, Zheng Y, Grbic S, Maier A, Hornegger J, Comaniciu D. Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2019; 41:176-189. [PMID: 29990011 DOI: 10.1109/tpami.2017.2782687] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans.
Collapse
|
39
|
Abstract
The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction, and intervention. Deep learning is a representation learning method that consists of layers that transform data nonlinearly, thus, revealing hierarchical relationships and structures. In this review, we survey deep learning application papers that use structured data, and signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.
Collapse
|
40
|
Military Object Real-Time Detection Technology Combined with Visual Salience and Psychology. ELECTRONICS 2018. [DOI: 10.3390/electronics7100216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents a method of military object detection through the combination of human visual salience and visual psychology, so as to achieve rapid and accurate detection of military objects on the vast and complex battlefield. Inspired by the process of human visual information processing, this paper establishes a salient region detection model based on double channel and feature fusion. In this model the pre-attention channel is to process information on the position and contrast of images, and the sub-attention channel is to integrate information on primary visual features first and then merges results of the two channels to determine the salient region. The main theory of Gestalt visual psychology is then used as the constraint condition to integrate the candidate salient regions and to obtain the object figure with overall perception. After that, the efficient sub-window search method is used to detect and filter the object in order to determine the location and range of objects. The experimental results show that, when compared with the existing algorithms, the algorithm proposed in this paper has prominent advantages in precision, effectiveness, and simplicity, which not only significantly reduces the effectiveness of battlefield camouflage and deception but also achieves the rapid and accurate detection of military objects, thus promoting its application prospect.
Collapse
|
41
|
Huang R, Xie W, Alison Noble J. VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography. Med Image Anal 2018; 47:127-139. [PMID: 29715691 PMCID: PMC5988265 DOI: 10.1016/j.media.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 11/19/2022]
Abstract
Three-dimensional (3D) fetal neurosonography is used clinically to detect cerebral abnormalities and to assess growth in the developing brain. However, manual identification of key brain structures in 3D ultrasound images requires expertise to perform and even then is tedious. Inspired by how sonographers view and interact with volumes during real-time clinical scanning, we propose an efficient automatic method to simultaneously localize multiple brain structures in 3D fetal neurosonography. The proposed View-based Projection Networks (VP-Nets), uses three view-based Convolutional Neural Networks (CNNs), to simplify 3D localizations by directly predicting 2D projections of the key structures onto three anatomical views. While designed for efficient use of data and GPU memory, the proposed VP-Nets allows for full-resolution 3D prediction. We investigated parameters that influence the performance of VP-Nets, e.g. depth and number of feature channels. Moreover, we demonstrate that the model can pinpoint the structure in 3D space by visualizing the trained VP-Nets, despite only 2D supervision being provided for a single stream during training. For comparison, we implemented two other baseline solutions based on Random Forest and 3D U-Nets. In the reported experiments, VP-Nets consistently outperformed other methods on localization. To test the importance of loss function, two identical models are trained with binary corss-entropy and dice coefficient loss respectively. Our best VP-Net model achieved prediction center deviation: 1.8 ± 1.4 mm, size difference: 1.9 ± 1.5 mm, and 3D Intersection Over Union (IOU): 63.2 ± 14.7% when compared to the ground truth. To make the whole pipeline intervention free, we also implement a skull-stripping tool using 3D CNN, which achieves high segmentation accuracy. As a result, the proposed processing pipeline takes a raw ultrasound brain image as input, and output a skull-stripped image with five detected key brain structures.
Collapse
Affiliation(s)
- Ruobing Huang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK.
| | - Weidi Xie
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - J Alison Noble
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| |
Collapse
|
42
|
Ghesu FC, Georgescu B, Grbic S, Maier A, Hornegger J, Comaniciu D. Towards intelligent robust detection of anatomical structures in incomplete volumetric data. Med Image Anal 2018; 48:203-213. [PMID: 29966940 DOI: 10.1016/j.media.2018.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/27/2022]
Abstract
Robust and fast detection of anatomical structures represents an important component of medical image analysis technologies. Current solutions for anatomy detection are based on machine learning, and are generally driven by suboptimal and exhaustive search strategies. In particular, these techniques do not effectively address cases of incomplete data, i.e., scans acquired with a partial field-of-view. We address these challenges by following a new paradigm, which reformulates the detection task to teaching an intelligent artificial agent how to actively search for an anatomical structure. Using the principles of deep reinforcement learning with multi-scale image analysis, artificial agents are taught optimal navigation paths in the scale-space representation of an image, while accounting for structures that are missing from the field-of-view. The spatial coherence of the observed anatomical landmarks is ensured using elements from statistical shape modeling and robust estimation theory. Experiments show that our solution outperforms marginal space deep learning, a powerful deep learning method, at detecting different anatomical structures without any failure. The dataset contains 5043 3D-CT volumes from over 2000 patients, totaling over 2,500,000 image slices. In particular, our solution achieves 0% false-positive and 0% false-negative rates at detecting whether the landmarks are captured in the field-of-view of the scan (excluding all border cases), with an average detection accuracy of 2.78 mm. In terms of runtime, we reduce the detection-time of the marginal space deep learning method by 20-30 times to under 40 ms, an unmatched performance for high resolution incomplete 3D-CT data.
Collapse
Affiliation(s)
- Florin C Ghesu
- Siemens Healthineers, Medical Imaging Technologies, Princeton, NJ, USA; Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| | - Bogdan Georgescu
- Siemens Healthineers, Medical Imaging Technologies, Princeton, NJ, USA
| | - Sasa Grbic
- Siemens Healthineers, Medical Imaging Technologies, Princeton, NJ, USA
| | - Andreas Maier
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Joachim Hornegger
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Dorin Comaniciu
- Siemens Healthineers, Medical Imaging Technologies, Princeton, NJ, USA
| |
Collapse
|
43
|
Wurfl T, Hoffmann M, Christlein V, Breininger K, Huang Y, Unberath M, Maier AK. Deep Learning Computed Tomography: Learning Projection-Domain Weights From Image Domain in Limited Angle Problems. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1454-1463. [PMID: 29870373 DOI: 10.1109/tmi.2018.2833499] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we present a new deep learning framework for 3-D tomographic reconstruction. To this end, we map filtered back-projection-type algorithms to neural networks. However, the back-projection cannot be implemented as a fully connected layer due to its memory requirements. To overcome this problem, we propose a new type of cone-beam back-projection layer, efficiently calculating the forward pass. We derive this layer's backward pass as a projection operation. Unlike most deep learning approaches for reconstruction, our new layer permits joint optimization of correction steps in volume and projection domain. Evaluation is performed numerically on a public data set in a limited angle setting showing a consistent improvement over analytical algorithms while keeping the same computational test-time complexity by design. In the region of interest, the peak signal-to-noise ratio has increased by 23%. In addition, we show that the learned algorithm can be interpreted using known concepts from cone beam reconstruction: the network is able to automatically learn strategies such as compensation weights and apodization windows.
Collapse
|
44
|
Abstract
Care providers today routinely obtain valuable clinical multimedia with mobile devices, scope cameras, ultrasound, and many other modalities at the point of care. Image capture and storage workflows may be heterogeneous across an enterprise, and as a result, they often are not well incorporated in the electronic health record. Enterprise Imaging refers to a set of strategies, initiatives, and workflows implemented across a healthcare enterprise to consistently and optimally capture, index, manage, store, distribute, view, exchange, and analyze all clinical imaging and multimedia content to enhance the electronic health record. This paper is intended to introduce Enterprise Imaging as an important initiative to clinical and informatics leadership, and outline its key elements of governance, strategy, infrastructure, common multimedia content, acquisition workflows, enterprise image viewers, and image exchange services.
Collapse
|
45
|
|
46
|
Delmoral JC, Rua Ventura SM, Tavares JMR. Segmentation of tongue shapes during vowel production in magnetic resonance images based on statistical modelling. Proc Inst Mech Eng H 2018; 232:271-281. [PMID: 29350087 DOI: 10.1177/0954411917751000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quantification of the anatomic and functional aspects of the tongue is pertinent to analyse the mechanisms involved in speech production. Speech requires dynamic and complex articulation of the vocal tract organs, and the tongue is one of the main articulators during speech production. Magnetic resonance imaging has been widely used in speech-related studies. Moreover, the segmentation of such images of speech organs is required to extract reliable statistical data. However, standard solutions to analyse a large set of articulatory images have not yet been established. Therefore, this article presents an approach to segment the tongue in two-dimensional magnetic resonance images and statistically model the segmented tongue shapes. The proposed approach assesses the articulator morphology based on an active shape model, which captures the shape variability of the tongue during speech production. To validate this new approach, a dataset of mid-sagittal magnetic resonance images acquired from four subjects was used, and key aspects of the shape of the tongue during the vocal production of relevant European Portuguese vowels were evaluated.
Collapse
Affiliation(s)
- Jessica C Delmoral
- 1 Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Sandra M Rua Ventura
- 2 Centro de Estudo do Movimento e Atividade Humana, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - João Manuel Rs Tavares
- 3 Departamento de Engenharia Mecânica, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
47
|
Meiburger KM, Acharya UR, Molinari F. Automated localization and segmentation techniques for B-mode ultrasound images: A review. Comput Biol Med 2017; 92:210-235. [PMID: 29247890 DOI: 10.1016/j.compbiomed.2017.11.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022]
Abstract
B-mode ultrasound imaging is used extensively in medicine. Hence, there is a need to have efficient segmentation tools to aid in computer-aided diagnosis, image-guided interventions, and therapy. This paper presents a comprehensive review on automated localization and segmentation techniques for B-mode ultrasound images. The paper first describes the general characteristics of B-mode ultrasound images. Then insight on the localization and segmentation of tissues is provided, both in the case in which the organ/tissue localization provides the final segmentation and in the case in which a two-step segmentation process is needed, due to the desired boundaries being too fine to locate from within the entire ultrasound frame. Subsequenly, examples of some main techniques found in literature are shown, including but not limited to shape priors, superpixel and classification, local pixel statistics, active contours, edge-tracking, dynamic programming, and data mining. Ten selected applications (abdomen/kidney, breast, cardiology, thyroid, liver, vascular, musculoskeletal, obstetrics, gynecology, prostate) are then investigated in depth, and the performances of a few specific applications are compared. In conclusion, future perspectives for B-mode based segmentation, such as the integration of RF information, the employment of higher frequency probes when possible, the focus on completely automatic algorithms, and the increase in available data are discussed.
Collapse
Affiliation(s)
- Kristen M Meiburger
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - U Rajendra Acharya
- Department of Electronic & Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore; Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Filippo Molinari
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy.
| |
Collapse
|
48
|
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal 2017; 42:60-88. [PMID: 28778026 DOI: 10.1016/j.media.2017.07.005] [Citation(s) in RCA: 4576] [Impact Index Per Article: 572.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Geert Litjens
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Thijs Kooi
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Francesco Ciompi
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohsen Ghafoorian
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Bram van Ginneken
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Clara I Sánchez
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Liu J, Wang D, Lu L, Wei Z, Kim L, Turkbey EB, Sahiner B, Petrick NA, Summers RM. Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks. Med Phys 2017; 44:4630-4642. [PMID: 28594460 DOI: 10.1002/mp.12399] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/05/2017] [Accepted: 05/24/2017] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Colitis refers to inflammation of the inner lining of the colon that is frequently associated with infection and allergic reactions. In this paper, we propose deep convolutional neural networks methods for lesion-level colitis detection and a support vector machine (SVM) classifier for patient-level colitis diagnosis on routine abdominal CT scans. METHODS The recently developed Faster Region-based Convolutional Neural Network (Faster RCNN) is utilized for lesion-level colitis detection. For each 2D slice, rectangular region proposals are generated by region proposal networks (RPN). Then, each region proposal is jointly classified and refined by a softmax classifier and bounding-box regressor. Two convolutional neural networks, eight layers of ZF net and 16 layers of VGG net are compared for colitis detection. Finally, for each patient, the detections on all 2D slices are collected and a SVM classifier is applied to develop a patient-level diagnosis. We trained and evaluated our method with 80 colitis patients and 80 normal cases using 4 × 4-fold cross validation. RESULTS For lesion-level colitis detection, with ZF net, the mean of average precisions (mAP) were 48.7% and 50.9% for RCNN and Faster RCNN, respectively. The detection system achieved sensitivities of 51.4% and 54.0% at two false positives per patient for RCNN and Faster RCNN, respectively. With VGG net, Faster RCNN increased the mAP to 56.9% and increased the sensitivity to 58.4% at two false positive per patient. For patient-level colitis diagnosis, with ZF net, the average areas under the ROC curve (AUC) were 0.978 ± 0.009 and 0.984 ± 0.008 for RCNN and Faster RCNN method, respectively. The difference was not statistically significant with P = 0.18. At the optimal operating point, the RCNN method correctly identified 90.4% (72.3/80) of the colitis patients and 94.0% (75.2/80) of normal cases. The sensitivity improved to 91.6% (73.3/80) and the specificity improved to 95.0% (76.0/80) for the Faster RCNN method. With VGG net, Faster RCNN increased the AUC to 0.986 ± 0.007 and increased the diagnosis sensitivity to 93.7% (75.0/80) and specificity was unchanged at 95.0% (76.0/80). CONCLUSION Colitis detection and diagnosis by deep convolutional neural networks is accurate and promising for future clinical application.
Collapse
Affiliation(s)
- Jiamin Liu
- Imaging Biomarkers and Computer-aided Diagnosis Laboratory and Clinical Image Processing Service, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, USA
| | - David Wang
- Imaging Biomarkers and Computer-aided Diagnosis Laboratory and Clinical Image Processing Service, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, USA
| | - Le Lu
- Imaging Biomarkers and Computer-aided Diagnosis Laboratory and Clinical Image Processing Service, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, USA
| | - Zhuoshi Wei
- Imaging Biomarkers and Computer-aided Diagnosis Laboratory and Clinical Image Processing Service, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, USA
| | - Lauren Kim
- Imaging Biomarkers and Computer-aided Diagnosis Laboratory and Clinical Image Processing Service, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, USA
| | - Evrim B Turkbey
- Imaging Biomarkers and Computer-aided Diagnosis Laboratory and Clinical Image Processing Service, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, USA
| | | | | | - Ronald M Summers
- Imaging Biomarkers and Computer-aided Diagnosis Laboratory and Clinical Image Processing Service, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, USA
| |
Collapse
|
50
|
de Vos BD, Wolterink JM, de Jong PA, Leiner T, Viergever MA, Isgum I. ConvNet-Based Localization of Anatomical Structures in 3-D Medical Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1470-1481. [PMID: 28252392 DOI: 10.1109/tmi.2017.2673121] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Localization of anatomical structures is a prerequisite for many tasks in a medical image analysis. We propose a method for automatic localization of one or more anatomical structures in 3-D medical images through detection of their presence in 2-D image slices using a convolutional neural network (ConvNet). A single ConvNet is trained to detect the presence of the anatomical structure of interest in axial, coronal, and sagittal slices extracted from a 3-D image. To allow the ConvNet to analyze slices of different sizes, spatial pyramid pooling is applied. After detection, 3-D bounding boxes are created by combining the output of the ConvNet in all slices. In the experiments, 200 chest CT, 100 cardiac CT angiography (CTA), and 100 abdomen CT scans were used. The heart, ascending aorta, aortic arch, and descending aorta were localized in chest CT scans, the left cardiac ventricle in cardiac CTA scans, and the liver in abdomen CT scans. Localization was evaluated using the distances between automatically and manually defined reference bounding box centroids and walls. The best results were achieved in the localization of structures with clearly defined boundaries (e.g., aortic arch) and the worst when the structure boundary was not clearly visible (e.g., liver). The method was more robust and accurate in localization multiple structures.
Collapse
|