1
|
Yang S, Zemzemi C, Escudero DS, Vela DC, Haworth KJ, Holland CK. Histotripsy and Catheter-Directed Lytic: Efficacy in Highly Retracted Porcine Clots In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1167-1177. [PMID: 38777639 DOI: 10.1016/j.ultrasmedbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Standard treatment for deep vein thrombosis (DVT) involves catheter-directed anticoagulants or thrombolytics, but the chronic thrombi present in many DVT cases are often resistant to this therapy. Histotripsy has been found to be a promising adjuvant treatment, using the mechanical action of cavitating bubble clouds to enhance thrombolytic activity. The objective of this study was to determine if histotripsy enhanced recombinant tissue plasminogen activator (rt-PA) thrombolysis in highly retracted porcine clots in vitro in a flow model of occlusive DVT. METHODS Highly retracted porcine whole blood clots were treated for 1 h with either catheter-directed saline (negative control), rt-PA (lytic control), histotripsy, DEFINITY and histotripsy or the combination of rt-PA and histotripsy with or without DEFINITY. Five-cycle, 1.5 MHz histotripsy pulses with a peak negative pressure of 33.2 MPa and pulse repetition frequency of 40 Hz were applied along the clot. B-Mode and passive cavitation images were acquired during histotripsy insonation to monitor bubble activity. RESULTS Clots subjected to histotripsy with and without rt-PA exhibited greater thrombolytic efficacy than controls (7.0% flow recovery or lower), and histotripsy with rt-PA was more efficacious than histotripsy with saline (86.1 ± 10.2% compared with 61.7 ± 19.8% flow recovery). The addition of DEFINITY to histotripsy with or without rt-PA did not enhance either thrombolytic efficacy or cavitation dose. Cavitation dose generally did not correlate with thrombolytic efficacy. CONCLUSION Enhancement of thrombolytic efficacy was achieved using histotripsy, with and without catheter-directed rt-PA, in the presence of physiologic flow. This suggests these treatments may be effective as therapy for DVT.
Collapse
Affiliation(s)
- Shumeng Yang
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Chadi Zemzemi
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Deborah C Vela
- Cardiovascular Pathology, Texas Heart Institute, Houston, TX, USA
| | - Kevin J Haworth
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Xu Z, Khokhlova TD, Cho CS, Khokhlova VA. Histotripsy: A Method for Mechanical Tissue Ablation with Ultrasound. Annu Rev Biomed Eng 2024; 26:141-167. [PMID: 38346277 DOI: 10.1146/annurev-bioeng-073123-022334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA;
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vera A Khokhlova
- Department of Acoustics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Miao K, Basterrechea KF, Hernandez SL, Ahmed OS, Patel MV, Bader KB. Development of Convolutional Neural Network to Segment Ultrasound Images of Histotripsy Ablation. IEEE Trans Biomed Eng 2024; 71:1789-1797. [PMID: 38198256 DOI: 10.1109/tbme.2024.3352538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
OBJECTIVE Histotripsy is a focused ultrasound therapy that ablates tissue via the action of bubble clouds. It is under investigation to treat a number of ailments, including renal tumors. Ultrasound imaging is used to monitor histotripsy, though there remains a lack of definitive imaging metrics to confirm successful treatment outcomes. In this study, a convolutional neural network (CNN) was developed to segment ablation on ultrasound images. METHODS A transfer learning approach was used to replace classification layers of the residual network ResNet-18. Inputs to the classification layers were based on ultrasound images of ablated red blood cell phantoms. Digital photographs served as the ground truth. The efficacy of the CNN was compared to subtraction imaging, and manual segmentation of images by two board-certified radiologists. RESULTS The CNN had a similar performance to manual segmentation, though was improved relative to segmentation with subtraction imaging. Predictions of the network improved over the course of treatment, with the Dice similarity coefficient less than 20% for fewer than 500 applied pulses, but 85% for more than 750 applied pulses. The network was also applied to ultrasound images of ex vivo kidney exposed to histotripsy, which indicated a morphological shift in the treatment profile relative to the phantoms. These findings were consistent with histology that confirmed ablation of the targeted tissue. CONCLUSION Overall, the CNN showed promise as a rapid means to assess outcomes of histotripsy and automate treatment. SIGNIFICANCE Data collected in this study indicate integration of CNN image segmentation to gauge outcomes for histotripsy ablation holds promise for automating treatment procedures.
Collapse
|
4
|
Landry TG, Brown JA. Ultrasound imaging guided precision histotripsy: Effects of pulse settings on ablation properties in rat brain. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2860-2874. [PMID: 38682916 PMCID: PMC11175660 DOI: 10.1121/10.0025832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
A high-frequency 6 MHz miniature handheld histotripsy device with an endoscopic form factor and co-registered high-resolution ultrasound imaging was developed. This device could allow precision histotripsy ablation during minimally invasive brain tumor surgeries with real-time image guidance. This study characterized the outcome of acute histotripsy in the normal in vivo rat brain using the device with a range of histotripsy pulse settings, including number of cycles, pulse repetition frequency, and pressure, as well as other experimental factors. The stability and shape of the bubble cloud were measured during ablations, as well as the post-histotripsy ablation shape in ultrasound B-mode and histology. The results were compared between histological images and the ultrasound imaging data to determine how well ultrasound data reflected observable damage in histology. The results indicated that while pulse settings can have some influence on ablation shape, sample-to-sample variation had a larger influence on ablation shape. This suggests that real-time ablation monitoring is essential for accurate knowledge of outcomes. Ultrasound imaging provided an accurate real-time indication of ablation shape both during ablation and post-ablation.
Collapse
Affiliation(s)
- Thomas G Landry
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Surgery, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Jeremy A Brown
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Surgery, Nova Scotia Health, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Izak Ghasemian S, Reuter F, Fan Y, Rose G, Ohl CD. Shear wave generation from non-spherical bubble collapse in a tissue phantom. SOFT MATTER 2023. [PMID: 37990644 DOI: 10.1039/d3sm01077e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Elastography is a non-invasive technique to detect tissue anomalies via the local elastic modulus using shear waves. Commonly shear waves are produced via acoustic focusing or the use of mechanical external sources, shear waves may result also naturally from cavitation bubbles during medical intervention, for example from thermal ablation. Here, we measure the shear wave emitted from a well-controlled single laser-induced cavitation bubble oscillating near a rigid boundary. The bubbles are generated in a transparent tissue-mimicking hydrogel embedded with tracer particles. High-speed imaging of the tracer particles and the bubble shape allow quantifying the shear wave and relate it to the bubble dynamics. It is found that different stages of the bubble dynamics contribute to the shear wave generation and the mechanism of shear wave emission, its direction and the efficiency of energy converted into the shear wave depend crucially on the bubble to wall stand-off distance.
Collapse
Affiliation(s)
- Saber Izak Ghasemian
- Institute of Physics, Otto-von-Guericke Universität, Magdeburg, Germany.
- Research Campus STIMULATE, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Fabian Reuter
- Institute of Physics, Otto-von-Guericke Universität, Magdeburg, Germany.
| | - Yuzhe Fan
- Research Campus STIMULATE, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Georg Rose
- Research Campus STIMULATE, Otto-von-Guericke Universität, Magdeburg, Germany
- Institute of Medical Engineering, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Claus-Dieter Ohl
- Institute of Physics, Otto-von-Guericke Universität, Magdeburg, Germany.
- Research Campus STIMULATE, Otto-von-Guericke Universität, Magdeburg, Germany
| |
Collapse
|
6
|
Trivedi VV, Wallach EL, Bader KB, Shekhar H. Contrast-Enhanced Imaging of Histotripsy Bubble Clouds Using Chirp-Coded Excitation and Volterra Filtering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:989-998. [PMID: 37379172 DOI: 10.1109/tuffc.2023.3289918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Histotripsy is a focused ultrasound therapy that ablates tissue via bubble cloud activity. Real-time ultrasound image guidance is used to ensure safe and effective treatment. Plane-wave imaging enables tracking of histotripsy bubble clouds at a high frame rate but lacks adequate contrast. Furthermore, bubble cloud hyperechogenicity is reduced in abdominal targets, making the development of contrast-specific sequences for deep-seated targets an active area of research. Chirp-coded subharmonic imaging was reported previously to enhance histotripsy bubble cloud detection by a modest 4-6 dB compared to the conventional sequence. Incorporating additional steps into the signal processing pipeline could enhance bubble cloud detection and tracking. In this study, we evaluated the feasibility of combining chirp-coded subharmonic imaging with Volterra filtering for enhancing bubble cloud detection in vitro. Chirped imaging pulses were used to track bubble clouds generated in scattering phantoms at a 1-kHz frame rate. Fundamental and subharmonic matched filters were applied to the received radio frequency signals, followed by a tuned Volterra filter to extract bubble-specific signatures. For subharmonic imaging, the application of the quadratic Volterra filter improved the contrast-to-tissue ratio from 5.18 ± 1.29 to 10.90 ± 3.76 dB, relative to the application of the subharmonic matched filter. These findings demonstrate the utility of the Volterra filter for histotripsy image guidance.
Collapse
|
7
|
Lu S, Su R, Wan C, Guo S, Wan M. Passive acoustic mapping with absolute time-of-flight information and delay-multiply-sum beamforming. Med Phys 2023; 50:2323-2335. [PMID: 36704970 DOI: 10.1002/mp.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Passive acoustic mapping (PAM) is showing increasing application potential in monitoring ultrasound therapy by spatially resolving cavitation activity. PAM with the relative time-of-flight information leads to poor axial resolution when implemented with ultrasound diagnostic transducers. Through utilizing the absolute time-of-flight information preserved by the transmit-receive synchronization and applying the common delay-sum (DS) beamforming algorithm, PAM axial resolution can be greatly improved in the short-pulse excitation scenario, as with active ultrasound imaging. However, PAM with the absolute time-of-flight information (referred as AtPAM) suffers from low imaging resolution and weak interference suppression when the DS algorithm is applied. PURPOSE This study aims to propose an enhanced AtPAM algorithm based on delay-multiply-sum (DMS) beamforming, to address the shortcomings of the DS-based AtPAM algorithm. METHODS In DMS beamforming, the element signals delayed by the absolute time delays are first processed with a signed square-root operation and then multiplied in pairs and finally summed, the resulting beamformed output is further band-pass filtered. The performances of DS- and DMS-based AtPAMs are compared by experiments, in which an ultrasound diagnostic transducer (a linear array) is employed to passively sense the wire signals generated by an unfocused ultrasound transducer and the cavitation signals generated by a focused therapeutic ultrasound transducer in a flow phantom. The AtPAM image quality is assessed by main-lobe width (MLW), intensity valley value (IVV), area of pixels (AOP), signal-to-interference ratio (SIR), and signal-to-noise ratio (SNR). RESULTS The single-wire experimental results show that compared to the DS algorithm, the DMS algorithm leads to an enhanced AtPAM image with a decreased transverse MLW of 0.15 mm and an improved SIR and SNR of 31.50 and 18.77 dB. For the four-wire images, the transverse (axial) IVV is decreased by 18.37 dB (13.11 dB) and the SIR (the SNR) is increased by 26.13 dB (18.47 dB) when using the DMS algorithm. The cavitation activity is better highlighted by DMS-based AtPAM, which decreases the AOP by 0.81 mm2 (-10-dB level) and 4.43 mm2 (-20-dB level) and increases the SIR and SNR by 20.14 and 10.48 dB respectively. The pixel distributions of AtPAM images of both wires and cavitation activity also indicate a better suppression of the DMS algorithm in sidelobe and noise. CONCLUSIONS The experimental results illustrate that the DMS algorithm can improve the image quality of AtPAM compared to the DS algorithm. DMS-based AtPAM is beneficial for detecting cavitation activity during short-pulse ultrasound exposure with high resolution, and further for monitoring short-pulse ultrasound therapy.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ruibo Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chunye Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
8
|
Haskell SC, Lu N, Stocker GE, Xu Z, Sukovich JR. Monitoring cavitation dynamics evolution in tissue mimicking hydrogels for repeated exposures via acoustic cavitation emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:237. [PMID: 36732269 PMCID: PMC10162839 DOI: 10.1121/10.0016849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 05/07/2023]
Abstract
A 700 kHz histotripsy array is used to generate repeated cavitation events in agarose, gelatin, and polyacrylamide hydrogels. High-speed optical imaging, a broadband hydrophone, and the narrow-band receive elements of the histotripsy array are used to capture bubble dynamics and acoustic cavitation emissions. Bubble radii, lifespan, shockwave amplitudes are noted to be measured in close agreement between the different observation methods. These features also decrease with increasing hydrogel stiffness for all of the tested materials. However, the evolutions of these properties during the repeated irradiations vary significantly across the different material subjects. Bubble maximum radius initially increases, then plateaus, and finally decreases in agarose, but remains constant across exposures in gelatin and polyacrylamide. The bubble lifespan increases monotonically in agarose and gelatin but decreases in polyacrylamide. Collapse shockwave amplitudes were measured to have different-shaped evolutions between all three of the tested materials. Bubble maximum radii, lifespans, and collapse shockwave amplitudes were observed to express evolutions that are dependent on the structure and stiffness of the nucleation medium.
Collapse
Affiliation(s)
- Scott C Haskell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Greyson E Stocker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
9
|
Song M, Thomas GPL, Khokhlova VA, Sapozhnikov OA, Bailey MR, Maxwell AD, Yuldashev PV, Khokhlova TD. Quantitative Assessment of Boiling Histotripsy Progression Based on Color Doppler Measurements. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3255-3269. [PMID: 36197870 PMCID: PMC9741864 DOI: 10.1109/tuffc.2022.3212266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Boiling histotripsy (BH) is a mechanical tissue liquefaction method that uses sequences of millisecond-long high intensity focused ultrasound (HIFU) pulses with shock fronts. The BH treatment generates bubbles that move within the sonicated volume due to acoustic radiation force. Since the velocity of the bubbles and tissue debris is expected to depend on the lesion size and liquefaction completeness, it could provide a quantitative metric of the treatment progression. In this study, the motion of bubble remnants and tissue debris immediately following BH pulses was investigated using high-pulse repetition frequency (PRF) plane-wave color Doppler ultrasound in ex vivo myocardium tissue. A 256-element 1.5 MHz spiral HIFU array with a coaxially integrated ultrasound imaging probe (ATL P4-2) produced 10 ms BH pulses to form volumetric lesions with electronic beam steering. Prior to performing volumetric BH treatments, the motion of intact myocardium tissue and anticoagulated bovine blood following isolated BH pulses was assessed as two limiting cases. In the liquid blood the velocity of BH-induced streaming at the focus reached over 200 cm/s, whereas the intact tissue was observed to move toward the HIFU array consistent with elastic rebound of tissue. Over the course of volumetric BH treatments tissue motion at the focus locations was dependent on the axial size of the forming lesion relative to the corresponding size of the HIFU focal area. For axially small lesions, the maximum velocity after the BH pulse was directed toward the HIFU transducer and monotonically increased over time from about 20-100 cm/s as liquefaction progressed, then saturated when tissue was fully liquefied. For larger lesions obtained by merging multiple smaller lesions in the axial direction, the high-speed streaming away from the HIFU transducer was observed at the point of full liquefaction. Based on these observations, the maximum directional velocity and its location along the HIFU propagation axis were proposed and evaluated as candidate metrics of BH treatment completeness.
Collapse
|
10
|
Bhargava A, Huang S, McPherson DD, Bader KB. Assessment of bubble activity generated by histotripsy combined with echogenic liposomes. Phys Med Biol 2022; 67:215015. [PMID: 36220055 DOI: 10.1088/1361-6560/ac994f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Objective.Histotripsy is a form of focused ultrasound therapy that uses the mechanical activity of bubbles to ablate tissue. While histotripsy alone degrades the cellular content of tissue, recent studies have demonstrated it effectively disrupts the extracellular structure of pathologic conditions such as venous thrombosis when combined with a thrombolytic drug. Rather than relying on standard administration methods, associating thrombolytic drugs with an ultrasound-triggered echogenic liposome vesicle will enable targeted, systemic drug delivery. To date, histotripsy has primarily relied on nano-nuclei inherent to the medium for bubble cloud generation, and microbubbles associated with echogenic liposomes may alter the histotripsy bubble dynamics. The objective of this work was to investigate the interaction of histotripsy pulse with echogenic liposomes.Approach.Bubble clouds were generated using a focused source in anin vitromodel of venous flow. Acoustic emissions generated during the insonation were passively acquired to assess the mechanical activity of the bubble cloud. High frame rate, pulse inversion imaging was used to track the change in echogenicity of the liposomes following histotripsy exposure.Main results.For peak negative pressures less than 20 MPa, acoustic emissions indicative of stable and inertial bubble activity were observed. As the peak negative pressure of the histotripsy excitation increased, harmonics of the excitation were observed in OFP t-ELIP solutions and plasma alone. Additional observations with high frame rate imaging indicated a transition of bubble behavior as the pulse pressure transitioned to shock wave formation.Significance.These observations suggest that a complex interaction between histotripsy pulses and echogenic liposomes that may be exploited for combination treatment approaches.
Collapse
Affiliation(s)
- Aarushi Bhargava
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Shaoling Huang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Sciences Center-Houston, Houston, TX, United States of America
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Sciences Center-Houston, Houston, TX, United States of America
| | - Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
11
|
Padilla F, Ter Haar G. Recommendations for Reporting Therapeutic Ultrasound Treatment Parameters. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1299-1308. [PMID: 35461726 DOI: 10.1016/j.ultrasmedbio.2022.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
These recommendations are intended to provide guidance and to encourage best practice in reporting therapeutic ultrasound treatment parameters. Detailed uniform reporting will allow testing of therapy ultrasound systems and protocols, cross-comparison of studies between different teams using different systems and validation of therapeutic bio-effects. These recommendations have been divided into two sets, one for clinical and one for preclinical studies, each with stratified reporting categories, to account for the disparities in expertise and access to equipment between sites. The recommendations are intended to be useful for clinicians and researchers, for ethical and funding review boards and for the editors and reviewers of scientific journals.
Collapse
Affiliation(s)
- Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA; Department of Radiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Gail Ter Haar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
12
|
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers (Basel) 2022; 14:2577. [PMID: 35681557 PMCID: PMC9179649 DOI: 10.3390/cancers14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) diagnosis accompanies a somber prognosis for the patient, with dismal survival odds: 5% at 5 years. Despite extensive research, PDAC is expected to become the second leading cause of mortality by cancer by 2030. Ultrasound (US) has been used successfully in treating other types of cancer and evidence is flourishing that it could benefit PDAC patients. High-intensity focused US (HIFU) is currently used for pain management in palliative care. In addition, clinical work is being performed to use US to downstage borderline resectable tumors and increase the proportion of patients eligible for surgical ablation. Focused US (FUS) can also induce mechanical effects, which may elicit an anti-tumor response through disruption of the stroma and can be used for targeted drug delivery. More recently, sonodynamic therapy (akin to photodynamic therapy) and immunomodulation have brought new perspectives in treating PDAC. The aim of this review is to summarize the current state of those techniques and share our opinion on their future and challenges.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Thomas Lambin
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - Robert Andrew Drainville
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Aurélien Dupré
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Mathieu Pioche
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - David Melodelima
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Cyril Lafon
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| |
Collapse
|
13
|
Jeong MK, Choi MJ. A Novel Approach for the Detection of Every Significant Collapsing Bubble in Passive Cavitation Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1288-1300. [PMID: 35167448 DOI: 10.1109/tuffc.2022.3151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Passive cavitation image (PCI) shows the power distribution of the acoustic emissions resulting from cavitation bubble collapses. The conventional PCI convolves the emitted cavitation signals with the point spread function of an imaging system, and it suffers from a low spatial resolution and contrast due to the increased sidelobe artifacts accumulated during the temporal integral process. To overcome the problems, the present study considers a 3-D time history of instantaneous PCIs where cavitation occurs at the local maxima of the main lobes of the beamformed cavitation field surrounded by the sidelobes largely spreading out in a time-space domain. A spatial and temporal gating technique was employed to detect the local maxima so that cavitation bubbles can be identified with their collapsing strength. The proposed approach was verified by the simulation for single and multiple cavitation bubbles, proving that it accurately detects the location and strength of the collapsing bubbles. An experimental test was also carried out for the cavitation bubbles produced by a clinical extracorporeal shock wave therapeutic device, which underpins that the proposed method successfully identifies every individual cavitation bubble.
Collapse
|
14
|
Wallach EL, Shekhar H, Flores-Guzman F, Hernandez SL, Bader KB. Histotripsy Bubble Cloud Contrast With Chirp-Coded Excitation in Preclinical Models. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:787-794. [PMID: 34748487 DOI: 10.1109/tuffc.2021.3125922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Histotripsy is a focused ultrasound therapy for tissue ablation via the generation of bubble clouds. These effects can be achieved noninvasively, making sensitive and specific bubble imaging essential for histotripsy guidance. Plane-wave ultrasound imaging can track bubble clouds with an excellent temporal resolution, but there is a significant reduction in echoes when deep-seated organs are targeted. Chirp-coded excitation uses wideband, long-duration imaging pulses to increase signals at depth and promote nonlinear bubble oscillations. In this study, we evaluated histotripsy bubble contrast with chirp-coded excitation in scattering gel phantoms and a subcutaneous mouse tumor model. A range of imaging pulse durations were tested, and compared to a standard plane-wave pulse sequence. Received chirped signals were processed with matched filters to highlight components associated with either fundamental or subharmonic (bubble-specific) frequency bands. The contrast-to-tissue ratio (CTR) was improved in scattering media for subharmonic contrast relative to fundamental contrast (both chirped and standard imaging pulses) with the longest-duration chirped-pulse tested (7.4 [Formula: see text] pulse duration). The CTR was improved for subharmonic contrast relative to fundamental contrast (both chirped and standard imaging pulses) by 4.25 dB ± 1.36 dB in phantoms and 3.84 dB ± 6.42 dB in vivo. No systematic changes were observed in the bubble cloud size or dissolution rate between sequences, indicating image resolution was maintained with the long-duration imaging pulses. Overall, this study demonstrates the feasibility of specific histotripsy bubble cloud visualization with chirp-coded excitation.
Collapse
|
15
|
Maxwell AD, Haworth KJ, Holland CK, Hendley SA, Kreider W, Bader KB. Design and Characterization of an Ultrasound Transducer for Combined Histotripsy-Thrombolytic Therapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:156-165. [PMID: 34534078 PMCID: PMC8802531 DOI: 10.1109/tuffc.2021.3113635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic thrombi of the deep veins of the leg are resistant to dissolution or removal by current interventions and can act as thrombogenic sources. Histotripsy, a focused ultrasound therapy, uses the mechanical activity of bubble clouds to liquefy target tissues. In vitro experiments have shown that histotripsy enhances thrombolytic agent recombinant tissue plasminogen activator in a highly retracted clot model resistant to lytic therapy alone. Although these results are promising, further refinement of the acoustic source is necessary for in vivo studies and clinical translation. The source parameters for use in vivo were defined, and a transducer was fabricated for transcutaneous exposure of porcine and human iliofemoral deep-vein thrombosis (DVT) as the target. Based on the design criteria, a 1.5-MHz elliptical source with a 6-cm focal length and a focal gain of 60 was selected. The source was characterized by fiber-optic hydrophone and holography. High-speed photography showed that the cavitation cloud could be confined to dimensions smaller than the specified vessel lumen. The source was also demonstrated in vitro to create confined lesions within clots. The results support that this design offers an appropriate clinical prototype for combined histotripsy-thrombolytic therapy.
Collapse
|
16
|
Hendley SA, Paul JD, Maxwell AD, Haworth KJ, Holland CK, Bader KB. Clot Degradation Under the Action of Histotripsy Bubble Activity and a Lytic Drug. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2942-2952. [PMID: 33460375 PMCID: PMC8445066 DOI: 10.1109/tuffc.2021.3052393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Deep vein thrombosis is a major source of morbidity worldwide. For critical obstructions, catheter-directed thrombolytics are the frontline therapy to achieve vessel recanalization. Techniques that aid lytic therapy are under development to improve treatment efficacy and reduce procedure-related complications. Histotripsy is one such adjuvant under development that relies on focused ultrasound for in situ nucleation of bubble clouds. Prior studies have demonstrated synergistic effects for clot dissolution when histotripsy is combined with lytic therapy. The success of this combination approach is hypothesized to promote thrombolytic efficacy via two mechanisms: erythrocyte fractionation (hemolysis) and increased lytic activity (fibrinolysis). In this study, the contributions of hemolysis and fibrinolysis to clot degradation under histotripsy and a lytic were quantified with measurements of hemoglobin and D-dimer, respectively. A linear regression analysis was used to determine the relationship between hemoglobin, D-dimer, and the overall treatment efficacy (clot mass loss). A similar analysis was conducted to gauge the role of bubble activity, which was assessed with passive cavitation imaging, on hemolysis and fibrinolysis. Tabulation of these data demonstrated hemolysis and fibrinolysis contributed equally to clot mass loss. Furthermore, bubble cloud activity promoted the generation of hemoglobin and D-dimer in equal proportion. These studies indicate a multifactorial process for clot degradation under the action of histotripsy and a lytic therapy.
Collapse
|
17
|
Bader KB, Wallach EL, Shekhar H, Flores-Guzman F, Halpern HJ, Hernandez SL. Estimating the mechanical energy of histotripsy bubble clouds with high frame rate imaging. Phys Med Biol 2021; 66:10.1088/1361-6560/ac155d. [PMID: 34271560 PMCID: PMC10680990 DOI: 10.1088/1361-6560/ac155d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
Mechanical ablation with the focused ultrasound therapy histotripsy relies on the generation and action of bubble clouds. Despite its critical role for ablation, quantitative metrics of bubble activity to gauge treatment outcomes are still lacking. Here, plane wave imaging was used to track the dissolution of bubble clouds following initiation with the histotripsy pulse. Information about the rate of change in pixel intensity was coupled with an analytic diffusion model to estimate bubble size. Accuracy of the hybrid measurement/model was assessed by comparing the predicted and measured dissolution time of the bubble cloud. Good agreement was found between predictions and measurements of bubble cloud dissolution times in agarose phantoms and murine subcutaneous SCC VII tumors. The analytic diffusion model was extended to compute the maximum bubble size as well as energy imparted to the tissue due to bubble expansion. Regions within tumors predicted to have undergone strong bubble expansion were collocated with ablation. Further, the dissolution time was found to correlate with acoustic emissions generated by the bubble cloud during histotripsy insonation. Overall, these results indicate a combination of modeling and high frame rate imaging may provide means to quantify mechanical energy imparted to the tissue due to bubble expansion for histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Emily L Wallach
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Himanshu Shekhar
- Discipline of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | | | - Howard J Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL United States of America
| | - Sonia L Hernandez
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
18
|
Knott EA, Longo KC, Vlaisavljevich E, Zhang X, Swietlik JF, Xu Z, Rodgers AC, Zlevor AM, Laeseke PF, Hall TL, Lee FT, Ziemlewicz TJ. Transcostal Histotripsy Ablation in an In Vivo Acute Hepatic Porcine Model. Cardiovasc Intervent Radiol 2021; 44:1643-1650. [PMID: 34244841 DOI: 10.1007/s00270-021-02914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To determine whether histotripsy can create human-scale transcostal ablations in porcine liver without causing severe thermal wall injuries along the beam path. MATERIALS AND METHODS Histotripsy was applied to the liver using a preclinical prototype robotic system through a transcostal window in six female swine. A 3.0 cm spherical ablation zone was prescribed. Duration of treatment (75 min) was longer than a prior subcostal treatment study (24 min, 15 s) to minimize beam path heating. Animals then underwent contrast-enhanced MRI, necropsy, and histopathology. Images and tissue were analyzed for ablation zone size, shape, completeness of necrosis, and off-target effects. RESULTS Ablation zones demonstrated complete necrosis with no viable tissue remaining in 6/6 animals by histopathology. Ablation zone volume was close to prescribed (13.8 ± 1.8 cm3 vs. prescribed 14.1 cm3). Edema was noted in the body wall overlying the ablation on T2 MRI in 5/5 (one animal did not receive MRI), though there was no gross or histologic evidence of injury to the chest wall at necropsy. At gross inspection, lung discoloration in the right lower lobe was present in 5/6 animals (mean size: 1 × 2 × 4 cm) with alveolar hemorrhage, preservation of blood vessels and bronchioles, and minor injuries to pneumocytes noted at histology. CONCLUSION Transcostal hepatic histotripsy ablation appears feasible, effective, and no severe injuries were identified in an acute porcine model when prolonged cooling time is added to minimize body wall heating.
Collapse
Affiliation(s)
- Emily A Knott
- Department of Radiology, University of Wiscosin-Madison, E3/311 CSC, 600 Highland Ave, Madison, WI, 53792, USA
| | - Katherine C Longo
- Department of Radiology, University of Wiscosin-Madison, E3/311 CSC, 600 Highland Ave, Madison, WI, 53792, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, 325 Stanger St, Blacksburg, VA, USA
| | - Xaiofei Zhang
- Department of Pathology and Laboratory Medicine, University of Wiscosin-Madison, 600 Highland Ave, Madison, WI, USA
| | - John F Swietlik
- Department of Radiology, University of Wiscosin-Madison, E3/311 CSC, 600 Highland Ave, Madison, WI, 53792, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, USA
| | - Allison C Rodgers
- Department of Medicine, University of Wiscosin-Madison, 600 Highland Ave, Madison, WI, USA
| | - Annie M Zlevor
- Department of Radiology, University of Wiscosin-Madison, E3/311 CSC, 600 Highland Ave, Madison, WI, 53792, USA
| | - Paul F Laeseke
- Department of Radiology, University of Wiscosin-Madison, E3/311 CSC, 600 Highland Ave, Madison, WI, 53792, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, USA
| | - Fred T Lee
- Department of Radiology, University of Wiscosin-Madison, E3/311 CSC, 600 Highland Ave, Madison, WI, 53792, USA
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wiscosin-Madison, E3/311 CSC, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
19
|
Perra E, Lampsijärvi E, Barreto G, Arif M, Puranen T, Hæggström E, Pritzker KPH, Nieminen HJ. Ultrasonic actuation of a fine-needle improves biopsy yield. Sci Rep 2021; 11:8234. [PMID: 33859220 PMCID: PMC8050323 DOI: 10.1038/s41598-021-87303-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the ubiquitous use over the past 150 years, the functions of the current medical needle are facilitated only by mechanical shear and cutting by the needle tip, i.e. the lancet. In this study, we demonstrate how nonlinear ultrasonics (NLU) extends the functionality of the medical needle far beyond its present capability. The NLU actions were found to be localized to the proximity of the needle tip, the SonoLancet, but the effects extend to several millimeters from the physical needle boundary. The observed nonlinear phenomena, transient cavitation, fluid streams, translation of micro- and nanoparticles and atomization, were quantitatively characterized. In the fine-needle biopsy application, the SonoLancet contributed to obtaining tissue cores with an increase in tissue yield by 3-6× in different tissue types compared to conventional needle biopsy technique using the same 21G needle. In conclusion, the SonoLancet could be of interest to several other medical applications, including drug or gene delivery, cell modulation, and minimally invasive surgical procedures.
Collapse
Affiliation(s)
- Emanuele Perra
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland
| | - Eetu Lampsijärvi
- Electronics Research Laboratory, Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | - Gonçalo Barreto
- Translational Immunology Research Program, University of Helsinki, 00100, Helsinki, Finland
- Orton, 00280, Helsinki, Finland
| | - Muhammad Arif
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland
| | - Tuomas Puranen
- Electronics Research Laboratory, Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | - Edward Hæggström
- Electronics Research Laboratory, Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | - Kenneth P H Pritzker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, M5G 1X5, Canada
| | - Heikki J Nieminen
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland.
| |
Collapse
|
20
|
Telichko AV, Lee T, Hyun D, Chowdhury SM, Bachawal S, Herickhoff CD, Paulmurugan R, Dahl JJ. Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part II: Phantom and In Vivo Experiments. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1198-1212. [PMID: 33141666 PMCID: PMC8528486 DOI: 10.1109/tuffc.2020.3035709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Passive cavitation mapping (PCM) techniques typically utilize a time-exposure acoustic (TEA) approach, where the received radio frequency data are beamformed, squared, and integrated over time. Such PCM-TEA cavitation maps typically suffer from long-tail artifacts and poor axial resolution with pulse-echo diagnostic arrays. Here, we utilize a recently developed PCM technique based on cavitation source localization (CSL), which fits a hyperbolic function to the received cavitation wavefront. A filtering method based on the root-mean-square error (rmse) of the hyperbolic fit is utilized to filter out spurious signals. We apply a wavefront correction technique to the signals with poor fit quality to recover additional cavitation signals and improve cavitation localization. Validation of the PCM-CSL technique with rmse filtering and wavefront correction was conducted in experiments with a tissue-mimicking flow phantom and an in vivo mouse model of cancer. It is shown that the quality of the hyperbolic fit, necessary for the PCM-CSL, requires an rmse < 0.05 mm2 in order to accurately localize the cavitation sources. A detailed study of the wavefront correction technique was carried out, and it was shown that, when applied to experiments with high noise and interference from multiple cavitating microbubbles, it was capable of effectively correcting noisy wavefronts without introducing spurious cavitation sources, thereby improving the quality of the PCM-CSL images. In phantom experiments, the PCM-CSL was capable of precisely localizing sources on the therapy beam axis and off-axis sources. In vivo cavitation experiments showed that PMC-CSL showed a significant improvement over PCM-TEA and yielded acceptable localization of cavitation signals in mice.
Collapse
|
21
|
Polichetti M, Varray F, Gilles B, Bera JC, Nicolas B. Use of the Cross-Spectral Density Matrix for Enhanced Passive Ultrasound Imaging of Cavitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:910-925. [PMID: 33079648 DOI: 10.1109/tuffc.2020.3032345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Passive ultrasound imaging is of great interest for cavitation monitoring. Spatiotemporal monitoring of cavitation bubbles in therapeutic applications is possible using an ultrasound imaging probe to passively receive the acoustic signals from the bubbles. Fourier-domain (FD) beamformers have been proposed to process the signals received into maps of the spatial localization of cavitation activity, with reduced computing times with respect to the time-domain approach, and to take advantage of frequency selectivity for cavitation regime characterization. The approaches proposed have been mainly nonadaptive, and these have suffered from low resolution and contrast, due to the many reconstruction artifacts. Inspired by the array-processing literature and in the context of passive ultrasound imaging of cavitation, we propose here a robust estimation of the second-order statistics of data through spatial covariance matrices in the FD or cross-spectral density matrices (CSMs). The benefits of such formalism are illustrated using advanced reconstruction algorithms, such as the robust Capon beamformer, the Pisarenko class beamformer, and the multiple signal classification approach. Through both simulations and experiments in a water tank, we demonstrate that enhanced localization of cavitation activity (i.e., improved resolution and contrast with respect to nonadaptive approaches) is compatible with the rapid and frequency-selective approaches of the FD. Robust estimation of the CSM and the derived adaptive beamformers paves the way to the development of powerful passive ultrasound imaging tools.
Collapse
|
22
|
Bader KB, Hendley SA, Bollen V. Assessment of Collaborative Robot (Cobot)-Assisted Histotripsy for Venous Clot Ablation. IEEE Trans Biomed Eng 2021; 68:1220-1228. [PMID: 32915723 PMCID: PMC8018710 DOI: 10.1109/tbme.2020.3023630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The application of bubble-based ablation with the focus ultrasound therapy histotripsy is gaining traction for the treatment of venous thrombosis, among other pathologies. For extensive clot burden, the histotripsy source must be translated to ensure uniform bubble activity throughout the vascular obstruction. The purpose of this study was to evaluate the targeting accuracy of a histotripsy system comprised of a focused source, ultrasound image guidance, and a collaborative robot (cobot) positioner. The system was designed with a primary emphasis for treating deep vein thrombosis. METHODS Studies to test treatment planning and targeting bubble activity with the histotripsy-cobot system were conducted in an in vitro clot model. A tissue-mimicking phantom was also targeted with the system, and the predicted and actual areas of liquefaction were compared to gauge the spatial accuracy of ablation. RESULTS The system provided submillimeter accuracy for both tracking along an intended path (within 0.6 mm of a model vessel) and targeting bubble activity within the venous clot model (0.7 mm from the center of the clot). Good correlation was observed between the planned and actual liquefaction locations in the tissue phantom, with an average Dice similarity coefficient of 77.8%, and average Hausdorff distance of 1.6 mm. CONCLUSION Cobots provide an effective means to apply histotripsy pulses over a treatment volume, with the ablation precision contingent on the quality of image guidance. SIGNIFICANCE Overall, these results demonstrate cobots can be used to guide histotripsy ablation for targets that extend beyond the natural focus of the transducer.
Collapse
|
23
|
Jones RM, McMahon D, Hynynen K. Ultrafast three-dimensional microbubble imaging in vivo predicts tissue damage volume distributions during nonthermal brain ablation. Theranostics 2020; 10:7211-7230. [PMID: 32641988 PMCID: PMC7330857 DOI: 10.7150/thno.47281] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic resonance imaging (MRI)-guided focused ultrasound (FUS) thermal ablation is under clinical investigation for non-invasive neurosurgery, though its use is restricted to central brain targets due primarily to skull heating effects. The combination of FUS and contrast agent microbubbles greatly reduces the ultrasound exposure levels needed to ablate brain tissue and may help facilitate the use of transcranial FUS ablation throughout the brain. However, sources of variability exist during microbubble-mediated FUS procedures that necessitate the continued development of systems and methods for online treatment monitoring and control, to ensure that excessive and/or off-target bioeffects are not induced from the exposures. Methods: Megahertz-rate three-dimensional (3D) microbubble imaging in vivo was performed during nonthermal ablation in rabbit brain using a clinical-scale prototype transmit/receive hemispherical phased array system. Results:In-vivo volumetric acoustic imaging over microsecond timescales uncovered spatiotemporal microbubble dynamics hidden by conventional whole-burst temporal averaging. Sonication-aggregate ultrafast 3D source field intensity data were predictive of microbubble-mediated tissue damage volume distributions measured post-treatment using MRI and confirmed via histopathology. Temporal under-sampling of acoustic emissions, which is common practice in the field, was found to impede performance and highlighted the importance of capturing adequate data for treatment monitoring and control purposes. Conclusion: The predictive capability of ultrafast 3D microbubble imaging, reported here for the first time, will enable future microbubble-mediated FUS treatments with unparalleled precision and accuracy, and will accelerate the clinical translation of nonthermal tissue ablation procedures both in the brain and throughout the body.
Collapse
Affiliation(s)
- Ryan M. Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Dallan McMahon
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Lu S, Li R, Zhao Y, Yu X, Wang D, Wan M. Dual apodization with cross‐correlation combined with robust Capon beamformer applied to ultrasound passive cavitation mapping. Med Phys 2020; 47:2182-2196. [DOI: 10.1002/mp.14093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| | - Renyan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| | - Yan Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| | - Xianbo Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| | - Diya Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education Department of Biomedical Engineering School of Life Science and Technology Xi’an Jiaotong University Xi’an710049People’s Republic of China
| |
Collapse
|
25
|
Smith CAB, Coussios CC. Spatiotemporal Assessment of the Cellular Safety of Cavitation-Based Therapies by Passive Acoustic Mapping. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1235-1243. [PMID: 32111455 DOI: 10.1016/j.ultrasmedbio.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 05/09/2023]
Abstract
Many useful therapeutic bio-effects can be generated using ultrasound-induced cavitation. However, cavitation is also capable of causing unwanted cellular and vascular damage, which should be monitored to ensure treatment safety. In this work, the unique opportunity provided by passive acoustic mapping (PAM) to quantify cavitation dose across an entire volume of interest during therapy is utilised to provide setup-independent measures of spatially localised cavitation dose. This spatiotemporally quantifiable cavitation dose is then related to the level of cellular damage generated. The cavitation-mediated destruction of equine red blood cells mixed with one of two types of cavitation nuclei at a variety of concentrations is investigated. The blood is placed within a 0.5-MHz ultrasound field and exposed to a range of peak rarefactional pressures up to 2 MPa, with 50 to 50,000 cycle pulses maintaining a 5% duty cycle. Two co-planar linear arrays at 90° to each other are used to generate 400-µm-resolution frequency domain robust capon beamforming PAM maps, which are then used to generate estimates of cavitation dose. A relationship between this cavitation dose and the levels of haemolysis generated was found which was comparable regardless of the applied acoustic pressure, pulse length, cavitation agent type or concentration used. PAM was then used to monitor cellular damage in multiple locations within a tissue phantom simultaneously, with the damage-cavitation dose relationship being similar for the two experimental models tested. These results lay the groundwork for this method to be applied to other measures of safety, allowing for improved ultrasound monitoring of cavitation-based therapies.
Collapse
Affiliation(s)
- Cameron A B Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
26
|
Xu S, Ye D, Wan L, Shentu Y, Yue Y, Wan M, Chen H. Correlation Between Brain Tissue Damage and Inertial Cavitation Dose Quantified Using Passive Cavitation Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2758-2766. [PMID: 31378549 DOI: 10.1016/j.ultrasmedbio.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 05/15/2019] [Accepted: 07/05/2019] [Indexed: 05/24/2023]
Abstract
Focused ultrasound (FUS)-induced cavitation-mediated brain therapies have become emerging therapeutic modalities for neurologic diseases. Cavitation monitoring is essential to ensure the safety of all cavitation-mediated therapeutic techniques as inertial cavitation can be associated with tissue damage. The objective of this study was to reveal the correlation between the inertial cavitation dose, quantified by passive cavitation imaging (PCI), and brain tissue histologic-level damage induced by FUS in combination with microbubbles. An ultrasound image-guided FUS system consisting of a single-element FUS transducer (1.5 MHz) and a co-axially aligned 128-element linear ultrasound imaging array was used to perform FUS treatment of mice. Mice were sonicated by FUS with different peak negative pressures (0.5 MPa, 1.1 MPa, 4.0 MPa and 6.5 MPa) in the presence of systemically injected microbubbles. The acoustic emissions from the FUS-activated microbubbles were passively detected by the imaging array. The pre-beamformed channel data were acquired and processed offline using the frequency-domain delay, sum and integration algorithm to generate inertial cavitation maps. All the mice were sacrificed after the FUS treatment, and their brains were harvested and processed for hematoxylin and eosin staining. The obtained inertial cavitation maps revealed the dynamic changes of microbubble behaviors during FUS treatment at different pressure levels. It was found that the inertial cavitation dose quantified based on PCI had a linear correlation with the scale of histologic-level tissue damage. Findings from this study suggested that PCI can be used to predict histologic-level tissue damage associated with the FUS-induced cavitation.
Collapse
Affiliation(s)
- Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dezhuang Ye
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Leighton Wan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yujia Shentu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
27
|
Lu S, Li R, Yu X, Wang D, Wan M. Delay multiply and sum beamforming method applied to enhance linear-array passive acoustic mapping of ultrasound cavitation. Med Phys 2019; 46:4441-4454. [PMID: 31309568 DOI: 10.1002/mp.13714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/25/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Passive acoustic mapping (PAM) has been proposed as a means of monitoring ultrasound therapy, particularly nonthermal cavitation-mediated applications. In PAM, the most common beamforming algorithm is a delay, sum, and integrate (DSAI) approach. However, using DSAI leads to low-quality images for the case where a narrow-aperture receiving array such as a standard B-mode linear array is used. This study aims to propose an enhanced linear-array PAM algorithm based on delay, multiply, sum, and integrate (DMSAI). METHODS In the proposed algorithm, before summation, the delayed signals are combinatorially coupled and multiplied, which means that the beamformed output of the proposed algorithm is the spatial coherence of received acoustic emissions. We tested the performance of the proposed DMSAI using both simulated and experimental data and compared it with DSAI. The reconstructed cavitation images were evaluated quantitatively by using source location errors between the two algorithms, full width at half maximum (FWHM), size of point spread function (A50 area), signal-to-noise ratio (SNR), and computational time. RESULTS The results of simulations and experiments for single cavitation source show that, by introducing DMSAI, the FWHM and the A50 area are reduced and the SNR is improved compared with those obtained by DSAI. The simulation results for two symmetric or nonsymmetric cavitation sources and multiple cavitation sources show that DMSAI can significantly reduce the A50 area and improve the SNR, therefore improving the detectability of multiple cavitation sources. CONCLUSIONS The results indicate that the proposed DMSAI algorithm outperforms the conventionally used DSAI algorithm. This work may have the potential of providing an appropriate method for ultrasound therapy monitoring.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Renyan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xianbo Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Diya Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| |
Collapse
|
28
|
Hendley SA, Bollen V, Anthony GJ, Paul JD, Bader KB. In vitro assessment of stiffness-dependent histotripsy bubble cloud activity in gel phantoms and blood clots. Phys Med Biol 2019; 64:145019. [PMID: 31146275 DOI: 10.1088/1361-6560/ab25a6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As a bubble-based ablative therapy, the efficacy of histotripsy has been demonstrated in healthy or acutely diseased models. Chronic conditions associated with stiff tissues may require additional bubble activity prior to histotripsy liquefaction. In this study, histotripsy pulses were generated in agarose phantoms of Young's moduli ranging from 12.3 to 142 kPa, and in vitro clot models with mild and strong platelet-activated retraction. Bubble cloud emissions were tracked with passive cavitation imaging, and the threshold acoustic power associated with phantom liquefaction was extracted with receiver operator characteristic analysis. The power of histotripsy-generated emissions and the degree of liquefaction were tabulated for both clot models. For the agarose phantoms, the acoustic power associated with liquefaction increased with Young's modulus. When grouped based on agarose concentration, only two arms displayed a significant difference in the liquefaction threshold acoustic power (22.1 kPa versus 142 kPa Young's modulus). The bubble cloud dynamics tracked with passive cavitation imaging indicated no strong changes in the bubble dynamics based on the phantom stiffness. For identical histotripsy exposure, the power of acoustic emissions and degree of clot lysis did not vary based on the clot model. Overall, these results indicate that a fixed threshold acoustic power mapped with passive cavitation imaging can be utilized for predicting histotripsy liquefaction over a wide range of tissue stiffness.
Collapse
Affiliation(s)
- Samuel A Hendley
- The University of Chicago, Chicago, IL, United States of America. 5812 S Ellis Ave, IB-016, Chicago, IL 60637, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
29
|
Kim P, Bae S, Song JH, Song TK. Comparison study of passive acoustic mapping and high-speed photography for monitoring in situ cavitation bubbles. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL604. [PMID: 31255107 DOI: 10.1121/1.5113961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
The spatiotemporal accuracy of passive acoustic mapping (PAM) for monitoring in situ cavitation bubbles has not been assessed directly via optical means. Here, the cavitation bubbles are monitored from two image sequences obtained simultaneously with PAM and high-speed photography (HSP). The temporal accuracy of PAM for detecting cavitation nucleation and the spatial resolution for cavitation localization are compared with those measured from HSP. The results show that PAM has a temporal accuracy of 20 μs. Mean differences in the spatial locations of PAM and HSP are as small as 10.0 and 30.5 μm along the lateral and axial directions, respectively.
Collapse
Affiliation(s)
- Pilsu Kim
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of ,
| | - Sua Bae
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of ,
| | - Jae Hee Song
- Queensland Brain Institute, University of Queensland, St. Lucia Campus, Brisbane, QLD 4072,
| | - Tai-Kyong Song
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of
| |
Collapse
|
30
|
Lu S, Yu X, Li R, Zong Y, Wan M. Passive cavitation mapping using dual apodization with cross-correlation in ultrasound therapy monitoring. ULTRASONICS SONOCHEMISTRY 2019; 54:18-31. [PMID: 30827905 DOI: 10.1016/j.ultsonch.2019.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Recently, passive acoustic mapping (PAM) has been successfully applied for dynamic monitoring of ultrasound therapy by beamforming acoustic emissions of cavitation activity during ultrasound exposure. The most widely used PAM algorithm in the literature is time exposure acoustics (TEA), which is a standard delay, sum, and integrate algorithm. However, it results in large point spread function (PSF) and serious imaging artifacts for the case where a narrow-aperture receiving array such as a standard B-mode linear array is used, therefore degrading the quality of cavitation image. To address these challenges, in this paper, we proposed a novel PAM algorithm namely dual apodization with cross-correlation (DAX)-based TEA, in which DAX was originally used as a reconstruction algorithm in medical ultrasound imaging. In the proposed algorithm, two sets of signals were beamformed by two receive apodization functions with alternating elements enabled, and the cross-correlation coefficient of the two signals served as a weighting factor that would be multiplied to the sum of the two signals. The performance of the proposed algorithm was tested on simulated channel data obtained using a multi-bubble model, and experiments were also performed in an in vitro vessel phantom with flowing microbubbles as cavitation nuclei. The reconstructed cavitation images were evaluated quantitatively using established quality metrics including full width at half maximum (FWHM), A-6dB area, and signal-to-noise ratio (SNR). The results suggested that the proposed algorithm significantly outperformed the conventionally used TEA algorithm. This work may have the potential of providing a useful tool for highly accurate localization of cavitation activity during ultrasound therapy.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xianbo Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Renyan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
31
|
Bader KB, Hendley SA, Anthony GJ, Bollen V. Observation and modulation of the dissolution of histotripsy-induced bubble clouds with high-frame rate plane wave imaging. Phys Med Biol 2019; 64:115012. [PMID: 30995623 DOI: 10.1088/1361-6560/ab1a64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Focused ultrasound therapies are a noninvasive means to ablate tissue. Histotripsy utilizes short ultrasound pulses with sufficient tension to nucleate bubble clouds that impart lethal strain to the surrounding tissues. Tracking bubble cloud dissolution between the application of histotripsy pulses is critical to ensure treatment efficacy. In this study, plane wave B-mode imaging was employed to monitor bubble cloud motion and grayscale at frame rates up to 11.25 kHz. Minimal changes in the area or position of the bubble clouds were observed 50 ms post excitation. The bubble cloud grayscale was observed to decrease with the square root of time, indicating a diffusion-driven process. These results were qualitatively consistent with an analytic model of gas diffusion during the histotripsy process. Finally, the rate of bubble cloud dissolution was found to be dependent on the output of the imaging pulse, indicating an interaction between the bubble cloud and imaging parameters. Overall, these results highlight the utility of plane wave B-mode imaging for monitoring histotripsy bubble clouds.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America. Committee on Medical Physics, University of Chicago, Chicago, IL, United States of America. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
32
|
Anthony GJ, Bollen V, Hendley S, Antic T, Sammet S, Bader KB. Assessment of histotripsy-induced liquefaction with diagnostic ultrasound and magnetic resonance imaging in vitro and ex vivo. Phys Med Biol 2019; 64:095023. [PMID: 30921780 DOI: 10.1088/1361-6560/ab143f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Histotripsy is a therapeutic ultrasound modality under development to liquefy tissue mechanically via bubble clouds. Image guidance of histotripsy requires both quantification of the bubble cloud activity and accurate delineation of the treatment zone. In this study, magnetic resonance (MR) and diagnostic ultrasound imaging were combined to assess histotripsy treatment in vitro and ex vivo. Mechanically ablative histotripsy pulses were applied to agarose phantoms or porcine livers. Bubble cloud emissions were monitored with passive cavitation imaging (PCI), and hyperechogenicity via plane wave imaging. Changes in the medium structure due to bubble activity were assessed with diagnostic ultrasound using conventional B-mode imaging and T 1-, T 2-, and diffusion-weighted MR images acquired at 3 Tesla. Liquefaction zones were correlated with diagnostic ultrasound and MR imaging via receiver operating characteristic (ROC) analysis and Dice similarity coefficient (DSC) analysis. Diagnostic ultrasound indicated strong bubble activity for all samples. Histotripsy-induced changes in sample structure were evident on conventional B-mode and T 2-weighted images for all samples, and were dependent on the sample type for T 1- and diffusion-weighted imaging. The greatest changes observed on conventional B-mode or MR imaging relative to baseline in the samples did not necessarily indicate the regions of strongest bubble activity. Areas under the ROC curve for predicting phantom or liver liquefaction were significantly greater than 0.5 for PCI power, plane wave and conventional B-mode grayscale, T 1, T 2, and ADC. The acoustic power mapped via PCI provided a better prediction of liquefaction than assessment of the liquefaction zone via conventional B-mode or MR imaging for all samples. The DSC values for T 2-weighted images were greater than those derived from conventional B-mode images. These results indicate diagnostic ultrasound and MR imaging provide complimentary sets of information, demonstrating that multimodal imaging is useful for assessment of histotripsy liquefaction.
Collapse
|
33
|
Bader KB, Vlaisavljevich E, Maxwell AD. For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1056-1080. [PMID: 30922619 PMCID: PMC6524960 DOI: 10.1016/j.ultrasmedbio.2018.10.035] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 05/04/2023]
Abstract
Histotripsy is a focused ultrasound therapy for non-invasive tissue ablation. Unlike thermally ablative forms of therapeutic ultrasound, histotripsy relies on the mechanical action of bubble clouds for tissue destruction. Although acoustic bubble activity is often characterized as chaotic, the short-duration histotripsy pulses produce a unique and consistent type of cavitation for tissue destruction. In this review, the action of histotripsy-induced bubbles is discussed. Sources of bubble nuclei are reviewed, and bubble activity over the course of single and multiple pulses is outlined. Recent innovations in terms of novel acoustic excitations, exogenous nuclei for targeted ablation and histotripsy-enhanced drug delivery and image guidance metrics are discussed. Finally, gaps in knowledge of the histotripsy process are highlighted, along with suggested means to expedite widespread clinical utilization of histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, Illinois, USA.
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech University, Blacksburg, Virginia, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
34
|
Anthony GJ, Bader KB, Wang J, Zamora M, Ostdiek A, Antic T, Krueger S, Weiss S, Trogler WC, Blair SL, Kummel AC, Sammet S. MRI-guided transurethral insonation of silica-shell phase-shift emulsions in the prostate with an advanced navigation platform. Med Phys 2019; 46:774-788. [PMID: 30414276 PMCID: PMC6367027 DOI: 10.1002/mp.13279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 02/05/2023] Open
Abstract
PURPOSE In this study, the efficacy of transurethral prostate ablation in the presence of silica-shell ultrasound-triggered phase-shift emulsions (sUPEs) doped with MR contrast was evaluated. The influence of sUPEs on MR imaging assessment of the ablation zone was also investigated. METHODS sUPEs were doped with a magnetic resonance (MR) contrast agent, Gd2 O3 , to assess ultrasound transition. Injections of saline (sham), saline and sUPEs alone, and saline and sUPEs with Optison microbubbles were performed under guidance of a prototype interventional MRI navigation platform in a healthy canine prostate. Treatment arms were evaluated for differences in lesion size, T1 contrast, and temperature. In addition, non-perfused areas (NPAs) on dynamic contrast-enhanced (DCE) MRI, 55°C isotherms, and areas of 240 cumulative equivalent minutes at 43°C (CEM43 ) dose or greater computed from MR thermometry were measured and correlated with ablated areas indicated by histology. RESULTS For treatment arms including sUPEs, the computed correlation coefficients between the histological ablation zone and the NPA, 55°C isotherm, and 240 CEM43 area ranged from 0.96-0.99, 0.98-0.99, and 0.91-0.99, respectively. In the absence of sUPEs, the computed correlation coefficients between the histological ablation zone and the NPA, 55°C isotherm, and 240 CEM43 area were 0.69, 0.54, and 0.50, respectively. Across all treatment arms, the areas of thermal tissue damage and NPAs were not significantly different (P = 0.47). Areas denoted by 55°C isotherms and 240 CEM43 dose boundaries were significantly larger than the areas of thermal damage, again for all treatment arms (P = 0.009 and 0.003, respectively). No significant differences in lesion size, T1 contrast, or temperature were observed between any of the treatment arms (P > 0.0167). Lesions exhibiting thermal fixation on histological analysis were present in six of nine insonations involving sUPE injections and one of five insonations involving saline sham injections. Significantly larger areas (P = 0.002), higher temperatures (P = 0.004), and more frequent ring patterns of restricted diffusion on ex vivo diffusion-weighted imaging (P = 0.005) were apparent in lesions with thermal fixation. CONCLUSIONS T1 contrast suggesting sUPE transition was not evident in sUPE treatment arms. The use of MR imaging metrics to predict prostate ablation was not diminished by the presence of sUPEs. Lesions generated in the presence of sUPEs exhibited more frequent thermal fixation, though there were no significant changes in the ablation areas when comparing arms with and without sUPEs. Thermal fixation corresponded to some qualitative imaging features.
Collapse
Affiliation(s)
| | | | - James Wang
- The University of California San DiegoSan DiegoCA92093USA
| | | | | | | | | | | | | | - Sarah L. Blair
- The University of California San DiegoSan DiegoCA92093USA
| | | | | |
Collapse
|
35
|
Suarez Escudero D, Goudot G, Vion M, Tanter M, Pernot M. 2D and 3D real-time passive cavitation imaging of pulsed cavitation ultrasound therapy in moving tissues. Phys Med Biol 2018; 63:235028. [PMID: 30520419 DOI: 10.1088/1361-6560/aaef68] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pulsed cavitation ultrasound therapy (PCUT) is an effective non-invasive therapeutic approach in various medical indications that relies on the mechanical effects generated by cavitation bubbles. Even though limited by the poor contrast, conventional ultrasound B-Mode imaging has been widely used for the guidance and monitoring of the therapeutic procedure, allowing the visualization of the cavitation bubble cloud. However, the visualization of the bubble cloud is often limited in deep organs such as the liver and the heart and remains moreover completely subjective for the operator. Our goal is to develop a new imaging mode to better identify the cavitation cloud. Active and passive cavitation imaging methods have been developed but none of them has been able to locate the cavitation bubble created by PCUT in real-time and in moving organs. In this paper we propose a passive ultrasound imaging approach combined with a spatiotemporal singular value decomposition filter to detect and map the bubble cloud with high sensitivity and high contrast. In moving applications at a maximal motion speed of 10 mm s-1, the contrast-to-noise ratio for passive cavitation imaging is up to 10 times higher than for active cavitation imaging, with a temporal resolution of about 100 ms. The mapping of the bubble cloud can be overlaid in real-time to the conventional B-Mode, which permits to locate the cavitation phenomena in relation to the anatomic image. Finally, we extend the technique to volumetric imaging and show its feasibility on moving phantoms.
Collapse
Affiliation(s)
- Daniel Suarez Escudero
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Paris 7, 17 rue Moreau, 75012 Paris, France. Cardiawave SA, 29 rue du Faubourg Saint Jacques, 75014, Paris, France
| | | | | | | | | |
Collapse
|
36
|
Lyka E, Coviello CM, Paverd C, Gray MD, Coussios CC. Passive Acoustic Mapping Using Data-Adaptive Beamforming Based on Higher Order Statistics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2582-2592. [PMID: 29994701 DOI: 10.1109/tmi.2018.2843291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sources of nonlinear acoustic emissions, particularly those associated with cavitation activity, play a key role in the safety and efficacy of current and emerging therapeutic ultrasound applications, such as oncological drug delivery, blood-brain barrier opening, and histotripsy. Passive acoustic mapping (PAM) is the first technique to enable real-time and non-invasive imaging of cavitation activity during therapeutic ultrasound exposure, through the recording and passive beamforming of broadband acoustic emissions using an array of ultrasound detectors. Initial limitations in PAM spatial resolution led to the adoption of optimal data-adaptive beamforming algorithms, such as the robust capon beamformer (RCB), that provide improved interference suppression and calibration error mitigation compared to non-adaptive beamformers. However, such approaches are restricted by the assumption that the recorded signals have a Gaussian distribution. To overcome this limitation and further improve the source resolvability of PAM, we propose a new beamforming approach termed robust beamforming by linear programming (RLPB). Along with the variance, this optimization-based method uses higher-order-statistics of the recorded signals, making no prior assumption on the statistical distribution of the acoustic signals. The RLPB is found via numerical simulations to improve resolvability over time exposure acoustics and RCB. In vitro experimentation yielded improved resolvability with respect to the source-to-array distance on the order of 22% axially and 13% transversely relative to RCB, whilst successfully accounting for array calibration errors. The improved resolution and decreased dependence on accurate calibration of RLPB is expected to facilitate the clinical translation of PAM for diagnostic, including super-resolution, and therapeutic ultrasound applications.
Collapse
|
37
|
Abadi SH, Haworth KJ, Mercado-Shekhar KP, Dowling DR. Frequency-sum beamforming for passive cavitation imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:198. [PMID: 30075672 PMCID: PMC6927771 DOI: 10.1121/1.5045328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/04/2018] [Accepted: 06/17/2018] [Indexed: 05/12/2023]
Abstract
Beamforming includes a variety of spatial filtering techniques that may be used for determining sound source locations from near-field sensor array recordings. For this scenario, beamforming resolution depends on the acoustic frequency, array geometry, and target location. Random scattering in the medium between the source and the array may degrade beamforming resolution with higher frequencies being more susceptible to degradation. The performance of frequency-sum (FS) beamforming for reducing such sensitivity to mild scattering while increasing resolution is reported here. FS beamforming was used with a data-dependent [minimum variance (MV)] or data-independent (delay-and-sum, DAS) weight vector to produce higher frequency information from lower frequency signal components via a quadratic product of complex signal amplitudes. The current findings and comparisons are based on simulations and passive cavitation imaging experiments using 3 MHz and 6 MHz emissions recorded by a 128-element linear array. FS beamforming results are compared to conventional DAS and MV beamforming using four metrics: point spread function (PSF) size, axial and lateral contrast, and computation time. FS beamforming produces a smaller PSF than conventional DAS beamforming with less computation time than MV beamforming in free space and mild scattering environments. However, it may fail when multiple unknown sound sources are present.
Collapse
Affiliation(s)
- Shima H Abadi
- School of STEM, University of Washington, Bothell, Washington 98011, USA
| | - Kevin J Haworth
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | - David R Dowling
- Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
38
|
Bader KB, Bollen V. The influence of gas diffusion on bubble persistence in shock-scattering histotripsy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:EL481. [PMID: 29960422 PMCID: PMC6013299 DOI: 10.1121/1.5043081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bubble cloud persistence reduces the efficacy of mechanical liquefaction with shock-scattering histotripsy. In this study, the contribution of gas transfer to bubble longevity was investigated in silico by solving the equations for bubble oscillations and diffusion in parallel. The bubble gas content increased more than 5 orders of magnitude during the expansion phase, arresting the inertial collapse. The residual gas bubble required more than 15 ms for passive dissolution post excitation, consistent with experimental observation. These results demonstrate gas diffusion is an important factor in the persistence of histotripsy-induced cavitation.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and the Committee on Medical Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Viktor Bollen
- Department of Radiology, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
39
|
Bader KB. The influence of medium elasticity on the prediction of histotripsy-induced bubble expansion and erythrocyte viability. Phys Med Biol 2018; 63:095010. [PMID: 29553049 PMCID: PMC5959013 DOI: 10.1088/1361-6560/aab79b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histotripsy is a form of therapeutic ultrasound that liquefies tissue mechanically via acoustic cavitation. Bubble expansion is paramount in the efficacy of histotripsy therapy, and the cavitation dynamics are strongly influenced by the medium elasticity. In this study, an analytic model to predict histotripsy-induced bubble expansion in a fluid was extended to include the effects of medium elasticity. Good agreement was observed between the predictions of the analytic model and numerical computations utilizing highly nonlinear excitations (shock-scattering histotripsy) and purely tensile pulses (microtripsy). No bubble expansion was computed for either form of histotripsy when the elastic modulus was greater than 20 MPa and the peak negative pressure was less than 50 MPa. Strain in the medium due to the expansion of a single bubble was also tabulated. The viability of red blood cells was calculated as a function of distance from the bubble wall based on empirical data of impulsive stretching of erythrocytes. Red blood cells remained viable at distances further than 44 µm from the bubble wall. As the medium elasticity increased, the distance over which bubble expansion-induced strain influenced red blood cells was found to decrease sigmoidally. These results highlight the relationship between tissue elasticity and the efficacy of histotripsy. In addition, an upper medium elasticity limit was identified, above which histotripsy may not be effective for tissue liquefaction.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and the Committee on Medical Physics, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
40
|
Burgess MT, Apostolakis I, Konofagou EE. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles. Phys Med Biol 2018; 63:065009. [PMID: 29457587 PMCID: PMC5881390 DOI: 10.1088/1361-6560/aab05c] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.
Collapse
Affiliation(s)
- M T Burgess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | | | | |
Collapse
|