1
|
Chen W, Wu S, Wang S, Li Z, Yang J, Yao H, Tian Q, Song X. Multi-contrast image super-resolution with deformable attention and neighborhood-based feature aggregation (DANCE): Applications in anatomic and metabolic MRI. Med Image Anal 2024; 99:103359. [PMID: 39378569 DOI: 10.1016/j.media.2024.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/03/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Multi-contrast magnetic resonance imaging (MRI) reflects information about human tissues from different perspectives and has wide clinical applications. By utilizing the auxiliary information from reference images (Refs) in the easy-to-obtain modality, multi-contrast MRI super-resolution (SR) methods can synthesize high-resolution (HR) images from their low-resolution (LR) counterparts in the hard-to-obtain modality. In this study, we systematically discussed the potential impacts caused by cross-modal misalignments between LRs and Refs and, based on this discussion, proposed a novel deep-learning-based method with Deformable Attention and Neighborhood-based feature aggregation to be Computationally Efficient (DANCE) and insensitive to misalignments. Our method has been evaluated in two public MRI datasets, i.e., IXI and FastMRI, and an in-house MR metabolic imaging dataset with amide proton transfer weighted (APTW) images. Experimental results reveal that our method consistently outperforms baselines in various scenarios, with significant superiority observed in the misaligned group of IXI dataset and the prospective study of the clinical dataset. The robustness study proves that our method is insensitive to misalignments, maintaining an average PSNR of 30.67 dB when faced with a maximum range of ±9°and ±9 pixels of rotation and translation on Refs. Given our method's desirable comprehensive performance, good robustness, and moderate computational complexity, it possesses substantial potential for clinical applications.
Collapse
Affiliation(s)
- Wenxuan Chen
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Sirui Wu
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China; Digital Government Joint Institute, Xi'an Jiaotong University- China Mobile Communications Group Co., Ltd., China
| | - Shuai Wang
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhongsen Li
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jia Yang
- School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Huifeng Yao
- Department of Computer Science and Engineering, Hongkong University of Science and Technology, Hongkong 999077, China
| | - Qiyuan Tian
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Xiaolei Song
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Lyu J, Li G, Wang C, Cai Q, Dou Q, Zhang D, Qin J. Multicontrast MRI Super-Resolution via Transformer-Empowered Multiscale Contextual Matching and Aggregation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:12004-12014. [PMID: 37028326 DOI: 10.1109/tnnls.2023.3250491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Magnetic resonance imaging (MRI) possesses the unique versatility to acquire images under a diverse array of distinct tissue contrasts, which makes multicontrast super-resolution (SR) techniques possible and needful. Compared with single-contrast MRI SR, multicontrast SR is expected to produce higher quality images by exploiting a variety of complementary information embedded in different imaging contrasts. However, existing approaches still have two shortcomings: 1) most of them are convolution-based methods and, hence, weak in capturing long-range dependencies, which are essential for MR images with complicated anatomical patterns and 2) they ignore to make full use of the multicontrast features at different scales and lack effective modules to match and aggregate these features for faithful SR. To address these issues, we develop a novel multicontrast MRI SR network via transformer-empowered multiscale feature matching and aggregation, dubbed McMRSR ++ . First, we tame transformers to model long-range dependencies in both reference and target images at different scales. Then, a novel multiscale feature matching and aggregation method is proposed to transfer corresponding contexts from reference features at different scales to the target features and interactively aggregate them. Furthermore, a texture-preserving branch and a contrastive constraint are incorporated into our framework for enhancing the textural details in the SR images. Experimental results on both public and clinical in vivo datasets show that McMRSR ++ outperforms state-of-the-art methods under peak signal to noise ratio (PSNR), structure similarity index measure (SSIM), and root mean square error (RMSE) metrics significantly. Visual results demonstrate the superiority of our method in restoring structures, demonstrating its great potential to improve scan efficiency in clinical practice.
Collapse
|
3
|
Lei P, Hu L, Fang F, Zhang G. Joint Under-Sampling Pattern and Dual-Domain Reconstruction for Accelerating Multi-Contrast MRI. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; 33:4686-4701. [PMID: 39178087 DOI: 10.1109/tip.2024.3445729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Multi-Contrast Magnetic Resonance Imaging (MCMRI) utilizes the short-time reference image to facilitate the reconstruction of the long-time target one, providing a new solution for fast MRI. Although various methods have been proposed, they still have certain limitations. 1) existing methods featuring the preset under-sampling patterns give rise to redundancy between multi-contrast images and limit their model performance; 2) most methods focus on the information in the image domain, prior knowledge in the k-space domain has not been fully explored; and 3) most networks are manually designed and lack certain physical interpretability. To address these issues, we propose a joint optimization of the under-sampling pattern and a deep-unfolding dual-domain network for accelerating MCMRI. Firstly, to reduce the redundant information and sample more contrast-specific information, we propose a new framework to learn the optimal under-sampling pattern for MCMRI. Secondly, a dual-domain model is established to reconstruct the target image in both the image domain and the k-space frequency domain. The model in the image domain introduces a spatial transformation to explicitly model the inconsistent and unaligned structures of MCMRI. The model in the k-space learns prior knowledge from the frequency domain, enabling the model to capture more global information from the input images. Thirdly, we employ the proximal gradient algorithm to optimize the proposed model and then unfold the iterative results into a deep-unfolding network, called MC-DuDoN. We evaluate the proposed MC-DuDoN on MCMRI super-resolution and reconstruction tasks. Experimental results give credence to the superiority of the current model. In particular, since our approach explicitly models the inconsistent structures, it shows robustness on spatially misaligned MCMRI. In the reconstruction task, compared with conventional masks, the learned mask restores more realistic images, even under an ultra-high acceleration ratio ( ×30 ). Code is available at https://github.com/lpcccc-cv/MC-DuDoNet.
Collapse
|
4
|
Sun J, Yuan Q, Shen H, Li J, Zhang L. A Single-Frame and Multi-Frame Cascaded Image Super-Resolution Method. SENSORS (BASEL, SWITZERLAND) 2024; 24:5566. [PMID: 39275476 PMCID: PMC11397888 DOI: 10.3390/s24175566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
The objective of image super-resolution is to reconstruct a high-resolution (HR) image with the prior knowledge from one or several low-resolution (LR) images. However, in the real world, due to the limited complementary information, the performance of both single-frame and multi-frame super-resolution reconstruction degrades rapidly as the magnification increases. In this paper, we propose a novel two-step image super resolution method concatenating multi-frame super-resolution (MFSR) with single-frame super-resolution (SFSR), to progressively upsample images to the desired resolution. The proposed method consisting of an L0-norm constrained reconstruction scheme and an enhanced residual back-projection network, integrating the flexibility of the variational model-based method and the feature learning capacity of the deep learning-based method. To verify the effectiveness of the proposed algorithm, extensive experiments with both simulated and real world sequences were implemented. The experimental results show that the proposed method yields superior performance in both objective and perceptual quality measurements. The average PSNRs of the cascade model in set5 and set14 are 33.413 dB and 29.658 dB respectively, which are 0.76 dB and 0.621 dB more than the baseline method. In addition, the experiment indicates that this cascade model can be robustly applied to different SFSR and MFSR methods.
Collapse
Affiliation(s)
- Jing Sun
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Qiangqiang Yuan
- School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
| | - Huanfeng Shen
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Jie Li
- School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
| | - Liangpei Zhang
- The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
| |
Collapse
|
5
|
Yoon D, Myong Y, Kim YG, Sim Y, Cho M, Oh BM, Kim S. Latent diffusion model-based MRI superresolution enhances mild cognitive impairment prognostication and Alzheimer's disease classification. Neuroimage 2024; 296:120663. [PMID: 38843963 DOI: 10.1016/j.neuroimage.2024.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
INTRODUCTION Timely diagnosis and prognostication of Alzheimer's disease (AD) and mild cognitive impairment (MCI) are pivotal for effective intervention. Artificial intelligence (AI) in neuroradiology may aid in such appropriate diagnosis and prognostication. This study aimed to evaluate the potential of novel diffusion model-based AI for enhancing AD and MCI diagnosis through superresolution (SR) of brain magnetic resonance (MR) images. METHODS 1.5T brain MR scans of patients with AD or MCI and healthy controls (NC) from Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) were superresolved to 3T using a novel diffusion model-based generative AI (d3T*) and a convolutional neural network-based model (c3T*). Comparisons of image quality to actual 1.5T and 3T MRI were conducted based on signal-to-noise ratio (SNR), naturalness image quality evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE). Voxel-based volumetric analysis was then conducted to study whether 3T* images offered more accurate volumetry than 1.5T images. Binary and multiclass classifications of AD, MCI, and NC were conducted to evaluate whether 3T* images offered superior AD classification performance compared to actual 1.5T MRI. Moreover, CNN-based classifiers were used to predict conversion of MCI to AD, to evaluate the prognostication performance of 3T* images. The classification performances were evaluated using accuracy, sensitivity, specificity, F1 score, Matthews correlation coefficient (MCC), and area under the receiver-operating curves (AUROC). RESULTS Analysis of variance (ANOVA) detected significant differences in image quality among the 1.5T, c3T*, d3T*, and 3T groups across all metrics. Both c3T* and d3T* showed superior image quality compared to 1.5T MRI in NIQE and BRISQUE with statistical significance. While the hippocampal volumes measured in 3T* and 3T images were not significantly different, the hippocampal volume measured in 1.5T images showed significant difference. 3T*-based AD classifications showed superior performance across all performance metrics compared to 1.5T-based AD classification. Classification performance between d3T* and actual 3T was not significantly different. 3T* images offered superior accuracy in predicting the conversion of MCI to AD than 1.5T images did. CONCLUSIONS The diffusion model-based MRI SR enhances the resolution of brain MR images, significantly improving diagnostic and prognostic accuracy for AD and MCI. Superresolved 3T* images closely matched actual 3T MRIs in quality and volumetric accuracy, and notably improved the prediction performance of conversion from MCI to AD.
Collapse
Affiliation(s)
- Dan Yoon
- Interdisciplinary Program in Bioengineering, Seoul National University Graduate School, Seoul 03080, Republic of Korea
| | - Youho Myong
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Young Gyun Kim
- Interdisciplinary Program in Bioengineering, Seoul National University Graduate School, Seoul 03080, Republic of Korea
| | - Yongsik Sim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Minwoo Cho
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - Sungwan Kim
- Interdisciplinary Program in Bioengineering, Seoul National University Graduate School, Seoul 03080, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
6
|
Javadi M, Sharma R, Tsiamyrtzis P, Webb AG, Leiss E, Tsekos NV. Let UNet Play an Adversarial Game: Investigating the Effect of Adversarial Training in Enhancing Low-Resolution MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01205-8. [PMID: 39085718 DOI: 10.1007/s10278-024-01205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Adversarial training has attracted much attention in enhancing the visual realism of images, but its efficacy in clinical imaging has not yet been explored. This work investigated adversarial training in a clinical context, by training 206 networks on the OASIS-1 dataset for improving low-resolution and low signal-to-noise ratio (SNR) magnetic resonance images. Each network corresponded to a different combination of perceptual and adversarial loss weights and distinct learning rate values. For each perceptual loss weighting, we identified its corresponding adversarial loss weighting that minimized structural disparity. Each optimally weighted adversarial loss yielded an average SSIM reduction of 1.5%. We further introduced a set of new metrics to assess other clinically relevant image features: Gradient Error (GE) to measure structural disparities; Sharpness to compute edge clarity; and Edge-Contrast Error (ECE) to quantify any distortion of the pixel distribution around edges. Including adversarial loss increased structural enhancement in visual inspection, which correlated with statistically consistent GE reductions (p-value << 0.05). This also resulted in increased Sharpness; however, the level of statistical significance was dependent on the perceptual loss weighting. Additionally, adversarial loss yielded ECE reductions for smaller perceptual loss weightings, while showing non-significant increases (p-value >> 0.05) when these weightings were higher, demonstrating that the increased Sharpness does not adversely distort the pixel distribution around the edges in the image. These studies clearly suggest that adversarial training significantly improves the performance of an MRI enhancement pipeline, and highlights the need for systematic studies of hyperparameter optimization and investigation of alternative image quality metrics.
Collapse
Affiliation(s)
- Mohammad Javadi
- Medical Robotics and Imaging Lab, Department of Computer Science, University of Houston, 501, Philip G. Hoffman Hall, 4800 Calhoun Road, Houston, TX, 77204, USA
| | - Rishabh Sharma
- Medical Robotics and Imaging Lab, Department of Computer Science, University of Houston, 501, Philip G. Hoffman Hall, 4800 Calhoun Road, Houston, TX, 77204, USA
| | - Panagiotis Tsiamyrtzis
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ernst Leiss
- Department of Computer Science, University of Houston, Houston, TX, USA
| | - Nikolaos V Tsekos
- Medical Robotics and Imaging Lab, Department of Computer Science, University of Houston, 501, Philip G. Hoffman Hall, 4800 Calhoun Road, Houston, TX, 77204, USA.
| |
Collapse
|
7
|
Sharma R, Tsiamyrtzis P, Webb AG, Leiss EL, Tsekos NV. Learning to deep learning: statistics and a paradigm test in selecting a UNet architecture to enhance MRI. MAGMA (NEW YORK, N.Y.) 2024; 37:507-528. [PMID: 37989921 DOI: 10.1007/s10334-023-01127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE This study aims to assess the statistical significance of training parameters in 240 dense UNets (DUNets) used for enhancing low Signal-to-Noise Ratio (SNR) and undersampled MRI in various acquisition protocols. The objective is to determine the validity of differences between different DUNet configurations and their impact on image quality metrics. MATERIALS AND METHODS To achieve this, we trained all DUNets using the same learning rate and number of epochs, with variations in 5 acquisition protocols, 24 loss function weightings, and 2 ground truths. We calculated evaluation metrics for two metric regions of interest (ROI). We employed both Analysis of Variance (ANOVA) and Mixed Effects Model (MEM) to assess the statistical significance of the independent parameters, aiming to compare their efficacy in revealing differences and interactions among fixed parameters. RESULTS ANOVA analysis showed that, except for the acquisition protocol, fixed variables were statistically insignificant. In contrast, MEM analysis revealed that all fixed parameters and their interactions held statistical significance. This emphasizes the need for advanced statistical analysis in comparative studies, where MEM can uncover finer distinctions often overlooked by ANOVA. DISCUSSION These findings highlight the importance of utilizing appropriate statistical analysis when comparing different deep learning models. Additionally, the surprising effectiveness of the UNet architecture in enhancing various acquisition protocols underscores the potential for developing improved methods for characterizing and training deep learning models. This study serves as a stepping stone toward enhancing the transparency and comparability of deep learning techniques for medical imaging applications.
Collapse
Affiliation(s)
- Rishabh Sharma
- Medical Robotics and Imaging Lab, Department of Computer Science, 501, Philip G. Hoffman Hall, University of Houston, 4800 Calhoun Road, Houston, TX, 77204, USA
| | - Panagiotis Tsiamyrtzis
- Department of Mechanical Engineering, Politecnico Di Milano, Milan, Italy
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ernst L Leiss
- Department of Computer Science, University of Houston, Houston, TX, USA
| | - Nikolaos V Tsekos
- Medical Robotics and Imaging Lab, Department of Computer Science, 501, Philip G. Hoffman Hall, University of Houston, 4800 Calhoun Road, Houston, TX, 77204, USA.
| |
Collapse
|
8
|
Meng X, Sun K, Xu J, He X, Shen D. Multi-Modal Modality-Masked Diffusion Network for Brain MRI Synthesis With Random Modality Missing. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2587-2598. [PMID: 38393846 DOI: 10.1109/tmi.2024.3368664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Synthesis of unavailable imaging modalities from available ones can generate modality-specific complementary information and enable multi-modality based medical images diagnosis or treatment. Existing generative methods for medical image synthesis are usually based on cross-modal translation between acquired and missing modalities. These methods are usually dedicated to specific missing modality and perform synthesis in one shot, which cannot deal with varying number of missing modalities flexibly and construct the mapping across modalities effectively. To address the above issues, in this paper, we propose a unified Multi-modal Modality-masked Diffusion Network (M2DN), tackling multi-modal synthesis from the perspective of "progressive whole-modality inpainting", instead of "cross-modal translation". Specifically, our M2DN considers the missing modalities as random noise and takes all the modalities as a unity in each reverse diffusion step. The proposed joint synthesis scheme performs synthesis for the missing modalities and self-reconstruction for the available ones, which not only enables synthesis for arbitrary missing scenarios, but also facilitates the construction of common latent space and enhances the model representation ability. Besides, we introduce a modality-mask scheme to encode availability status of each incoming modality explicitly in a binary mask, which is adopted as condition for the diffusion model to further enhance the synthesis performance of our M2DN for arbitrary missing scenarios. We carry out experiments on two public brain MRI datasets for synthesis and downstream segmentation tasks. Experimental results demonstrate that our M2DN outperforms the state-of-the-art models significantly and shows great generalizability for arbitrary missing modalities.
Collapse
|
9
|
Zhang D, Duan C, Anazodo U, Wang ZJ, Lou X. Self-supervised anatomical continuity enhancement network for 7T SWI synthesis from 3T SWI. Med Image Anal 2024; 95:103184. [PMID: 38723320 DOI: 10.1016/j.media.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/13/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024]
Abstract
Synthesizing 7T Susceptibility Weighted Imaging (SWI) from 3T SWI could offer significant clinical benefits by combining the high sensitivity of 7T SWI for neurological disorders with the widespread availability of 3T SWI in diagnostic routines. Although methods exist for synthesizing 7T Magnetic Resonance Imaging (MRI), they primarily focus on traditional MRI modalities like T1-weighted imaging, rather than SWI. SWI poses unique challenges, including limited data availability and the invisibility of certain tissues in individual 3T SWI slices. To address these challenges, we propose a Self-supervised Anatomical Continuity Enhancement (SACE) network to synthesize 7T SWI from 3T SWI using plentiful 3T SWI data and limited 3T-7T paired data. The SACE employs two specifically designed pretext tasks to utilize low-level representations from abundant 3T SWI data for assisting 7T SWI synthesis in a downstream task with limited paired data. One pretext task emphasizes input-specific morphology by balancing the elimination of redundant patterns with the preservation of essential morphology, preventing the blurring of synthetic 7T SWI images. The other task improves the synthesis of tissues that are invisible in a single 3T SWI slice by aligning adjacent slices with the current slice and predicting their difference fields. The downstream task innovatively combines clinical knowledge with brain substructure diagrams to selectively enhance clinically relevant features. When evaluated on a dataset comprising 97 cases (5495 slices), the proposed method achieved a Peak Signal-to-Noise Ratio (PSNR) of 23.05 dB and a Structural Similarity Index (SSIM) of 0.688. Due to the absence of specific methods for 7T SWI, our method was compared with existing enhancement techniques for general 7T MRI synthesis, outperforming these techniques in the context of 7T SWI synthesis. Clinical evaluations have shown that our synthetic 7T SWI is clinically effective, demonstrating its potential as a clinical tool.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Caohui Duan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Udunna Anazodo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Z Jane Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Ren J, Li J, Liu C, Chen S, Liang L, Liu Y. Deep Learning With Physics-Embedded Neural Network for Full Waveform Ultrasonic Brain Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2332-2346. [PMID: 38329866 DOI: 10.1109/tmi.2024.3363144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The convenience, safety, and affordability of ultrasound imaging make it a vital non-invasive diagnostic technique for examining soft tissues. However, significant differences in acoustic impedance between the skull and soft tissues hinder the successful application of traditional ultrasound for brain imaging. In this study, we propose a physics-embedded neural network with deep learning based full waveform inversion (PEN-FWI), which can achieve reliable quantitative imaging of brain tissues. The network consists of two fundamental components: forward convolutional neural network (FCNN) and inversion sub-neural network (ISNN). The FCNN explores the nonlinear mapping relationship between the brain model and the wavefield, replacing the tedious wavefield calculation process based on the finite difference method. The ISNN implements the mapping from the wavefield to the model. PEN-FWI includes three iterative steps, each embedding the F CNN into the ISNN, ultimately achieving tomography from wavefield to brain models. Simulation and laboratory tests indicate that PEN-FWI can produce high-quality imaging of the skull and soft tissues, even starting from a homogeneous water model. PEN-FWI can achieve excellent imaging of clot models with constant uniform distribution of velocity, randomly Gaussian distribution of velocity, and irregularly shaped randomly distributed velocity. Robust differentiation can also be achieved for brain slices of various tissues and skulls, resulting in high-quality imaging. The imaging time for a horizontal cross-sectional imag e of the brain is only 1.13 seconds. This algorithm can effectively promote ultrasound-based brain tomography and provide feasible solutions in other fields.
Collapse
|
11
|
Lin H, Zou J, Wang K, Feng Y, Xu C, Lyu J, Qin J. Dual-space high-frequency learning for transformer-based MRI super-resolution. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108165. [PMID: 38631131 DOI: 10.1016/j.cmpb.2024.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND OBJECTIVE Magnetic resonance imaging (MRI) can provide rich and detailed high-contrast information of soft tissues, while the scanning of MRI is time-consuming. To accelerate MR imaging, a variety of Transformer-based single image super-resolution methods are proposed in recent years, achieving promising results thanks to their superior capability of capturing long-range dependencies. Nevertheless, most existing works prioritize the design of transformer attention blocks to capture global information. The local high-frequency details, which are pivotal to faithful MRI restoration, are unfortunately neglected. METHODS In this work, we propose a high-frequency enhanced learning scheme to effectively improve the awareness of high frequency information in current Transformer-based MRI single image super-resolution methods. Specifically, we present two entirely plug-and-play modules designed to equip Transformer-based networks with the ability to recover high-frequency details from dual spaces: 1) in the feature space, we design a high-frequency block (Hi-Fe block) paralleled with Transformer-based attention layers to extract rich high-frequency features; while 2) in the image intensity space, we tailor a high-frequency amplification module (HFA) to further refine the high-frequency details. By fully exploiting the merits of the two modules, our framework can recover abundant and diverse high-frequency information, rendering faithful MRI super-resolved results with fine details. RESULTS We integrated our modules with six Transformer-based models and conducted experiments across three datasets. The results indicate that our plug-and-play modules can enhance the super-resolution performance of all foundational models to varying degrees, surpassing the capabilities of existing state-of-the-art single image super-resolution networks. CONCLUSION Comprehensive comparison of super-resolution images and high-frequency maps from various methods, clearly demonstrating that our module possesses the capability to restore high-frequency information, showing huge potential in clinical practice for accelerated MRI reconstruction.
Collapse
Affiliation(s)
- Haoneng Lin
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| | - Jing Zou
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong.
| | - Kang Wang
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| | - Yidan Feng
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| | - Cheng Xu
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| | - Jun Lyu
- Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Jing Qin
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
12
|
Yoon YH, Chun J, Kiser K, Marasini S, Curcuru A, Gach HM, Kim JS, Kim T. Inter-scanner super-resolution of 3D cine MRI using a transfer-learning network for MRgRT. Phys Med Biol 2024; 69:115038. [PMID: 38663411 DOI: 10.1088/1361-6560/ad43ab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Objective. Deep-learning networks for super-resolution (SR) reconstruction enhance the spatial-resolution of 3D magnetic resonance imaging (MRI) for MR-guided radiotherapy (MRgRT). However, variations between MRI scanners and patients impact the quality of SR for real-time 3D low-resolution (LR) cine MRI. In this study, we present a personalized super-resolution (psSR) network that incorporates transfer-learning to overcome the challenges in inter-scanner SR of 3D cine MRI.Approach: Development of the proposed psSR network comprises two-stages: (1) a cohort-specific SR (csSR) network using clinical patient datasets, and (2) a psSR network using transfer-learning to target datasets. The csSR network was developed by training on breath-hold and respiratory-gated high-resolution (HR) 3D MRIs and their k-space down-sampled LR MRIs from 53 thoracoabdominal patients scanned at 1.5 T. The psSR network was developed through transfer-learning to retrain the csSR network using a single breath-hold HR MRI and a corresponding 3D cine MRI from 5 healthy volunteers scanned at 0.55 T. Image quality was evaluated using the peak-signal-noise-ratio (PSNR) and the structure-similarity-index-measure (SSIM). The clinical feasibility was assessed by liver contouring on the psSR MRI using an auto-segmentation network and quantified using the dice-similarity-coefficient (DSC).Results. Mean PSNR and SSIM values of psSR MRIs were increased by 57.2% (13.8-21.7) and 94.7% (0.38-0.74) compared to cine MRIs, with the reference 0.55 T breath-hold HR MRI. In the contour evaluation, DSC was increased by 15% (0.79-0.91). Average time consumed for transfer-learning was 90 s, psSR was 4.51 ms per volume, and auto-segmentation was 210 ms, respectively.Significance. The proposed psSR reconstruction substantially increased image and segmentation quality of cine MRI in an average of 215 ms across the scanners and patients with less than 2 min of prerequisite transfer-learning. This approach would be effective in overcoming cohort- and scanner-dependency of deep-learning for MRgRT.
Collapse
Affiliation(s)
- Young Hun Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Radiation Oncology, Washington University in St. Louis, St Louis, MO, United States of America
| | | | - Kendall Kiser
- Department of Radiation Oncology, Washington University in St. Louis, St Louis, MO, United States of America
| | - Shanti Marasini
- Department of Radiation Oncology, Washington University in St. Louis, St Louis, MO, United States of America
| | - Austen Curcuru
- Department of Radiation Oncology, Washington University in St. Louis, St Louis, MO, United States of America
| | - H Michael Gach
- Department of Radiation Oncology, Washington University in St. Louis, St Louis, MO, United States of America
- Departments of Radiology and Biomedical Engineering, Washington University in St. Louis, St Louis, MO, United States of America
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, Republic of Korea
- Oncosoft Inc., Seoul, Republic of Korea
| | - Taeho Kim
- Department of Radiation Oncology, Washington University in St. Louis, St Louis, MO, United States of America
| |
Collapse
|
13
|
Kang L, Tang B, Huang J, Li J. 3D-MRI super-resolution reconstruction using multi-modality based on multi-resolution CNN. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 248:108110. [PMID: 38452685 DOI: 10.1016/j.cmpb.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND OBJECTIVE High-resolution (HR) MR images provide rich structural detail to assist physicians in clinical diagnosis and treatment plan. However, it is arduous to acquire HR MRI due to equipment limitations, scanning time or patient comfort. Instead, HR MRI could be obtained through a number of computer assisted post-processing methods that have proven to be effective and reliable. This paper aims to develop a convolutional neural network (CNN) based super-resolution reconstruction framework for low-resolution (LR) T2w images. METHOD In this paper, we propose a novel multi-modal HR MRI generation framework based on deep learning techniques. Specifically, we construct a CNN based on multi-resolution analysis to learn an end-to-end mapping between LR T2w and HR T2w, where HR T1w is fed into the network to offer detailed a priori information to help generate HR T2w. Furthermore, a low-frequency filtering module is introduced to filter out the interference from HR-T1w during high-frequency information extraction. Based on the idea of multi-resolution analysis, detailed features extracted from HR T1w and LR T2w are fused at two scales in the network and then HR T2w is reconstructed by upsampling and dense connectivity module. RESULTS Extensive quantitative and qualitative evaluations demonstrate that the proposed method enhances the recovered HR T2w details and outperforms other state-of-the-art methods. In addition, the experimental results also suggest that our network has a lightweight structure and favorable generalization performance. CONCLUSION The results show that the proposed method is capable of reconstructing HR T2w with higher accuracy. Meanwhile, the super-resolution reconstruction results on other dataset illustrate the excellent generalization ability of the method.
Collapse
Affiliation(s)
- Li Kang
- College of Electronics and Information Engineering, Shenzhen University, the Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, 518060, China
| | - Bin Tang
- College of Electronics and Information Engineering, Shenzhen University, the Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, 518060, China
| | - Jianjun Huang
- College of Electronics and Information Engineering, Shenzhen University, the Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, 518060, China.
| | - Jianping Li
- College of Electronics and Information Engineering, Shenzhen University, the Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, 518060, China
| |
Collapse
|
14
|
Lyu J, Wang S, Tian Y, Zou J, Dong S, Wang C, Aviles-Rivero AI, Qin J. STADNet: Spatial-Temporal Attention-Guided Dual-Path Network for cardiac cine MRI super-resolution. Med Image Anal 2024; 94:103142. [PMID: 38492252 DOI: 10.1016/j.media.2024.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Cardiac cine magnetic resonance imaging (MRI) is a commonly used clinical tool for evaluating cardiac function and morphology. However, its diagnostic accuracy may be compromised by the low spatial resolution. Current methods for cine MRI super-resolution reconstruction still have limitations. They typically rely on 3D convolutional neural networks or recurrent neural networks, which may not effectively capture long-range or non-local features due to their limited receptive fields. Optical flow estimators are also commonly used to align neighboring frames, which may cause information loss and inaccurate motion estimation. Additionally, pre-warping strategies may involve interpolation, leading to potential loss of texture details and complicated anatomical structures. To overcome these challenges, we propose a novel Spatial-Temporal Attention-Guided Dual-Path Network (STADNet) for cardiac cine MRI super-resolution. We utilize transformers to model long-range dependencies in cardiac cine MR images and design a cross-frame attention module in the location-aware spatial path, which enhances the spatial details of the current frame by using complementary information from neighboring frames. We also introduce a recurrent flow-enhanced attention module in the motion-aware temporal path that exploits the correlation between cine MRI frames and extracts the motion information of the heart. Experimental results demonstrate that STADNet outperforms SOTA approaches and has significant potential for clinical practice.
Collapse
Affiliation(s)
- Jun Lyu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Shuo Wang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yapeng Tian
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Jing Zou
- Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| | - Shunjie Dong
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Angelica I Aviles-Rivero
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Jing Qin
- Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
15
|
Safari M, Eidex Z, Chang CW, Qiu RL, Yang X. Fast MRI Reconstruction Using Deep Learning-based Compressed Sensing: A Systematic Review. ARXIV 2024:arXiv:2405.00241v1. [PMID: 38745700 PMCID: PMC11092677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Magnetic resonance imaging (MRI) has revolutionized medical imaging, providing a non-invasive and highly detailed look into the human body. However, the long acquisition times of MRI present challenges, causing patient discomfort, motion artifacts, and limiting real-time applications. To address these challenges, researchers are exploring various techniques to reduce acquisition time and improve the overall efficiency of MRI. One such technique is compressed sensing (CS), which reduces data acquisition by leveraging image sparsity in transformed spaces. In recent years, deep learning (DL) has been integrated with CS-MRI, leading to a new framework that has seen remarkable growth. DL-based CS-MRI approaches are proving to be highly effective in accelerating MR imaging without compromising image quality. This review comprehensively examines DL-based CS-MRI techniques, focusing on their role in increasing MR imaging speed. We provide a detailed analysis of each category of DL-based CS-MRI including end-to-end, unroll optimization, self-supervised, and federated learning. Our systematic review highlights significant contributions and underscores the exciting potential of DL in CS-MRI. Additionally, our systematic review efficiently summarizes key results and trends in DL-based CS-MRI including quantitative metrics, the dataset used, acceleration factors, and the progress of and research interest in DL techniques over time. Finally, we discuss potential future directions and the importance of DL-based CS-MRI in the advancement of medical imaging. To facilitate further research in this area, we provide a GitHub repository that includes up-to-date DL-based CS-MRI publications and publicly available datasets - https://github.com/mosaf/Awesome-DL-based-CS-MRI.
Collapse
Affiliation(s)
- Mojtaba Safari
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Zach Eidex
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
16
|
Kong W, Li B, Wei K, Li D, Zhu J, Yu G. Dual contrast attention-guided multi-frequency fusion for multi-contrast MRI super-resolution. Phys Med Biol 2023; 69:015010. [PMID: 37944482 DOI: 10.1088/1361-6560/ad0b65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Objective. Multi-contrast magnetic resonance (MR) imaging super-resolution (SR) reconstruction is an effective solution for acquiring high-resolution MR images. It utilizes anatomical information from auxiliary contrast images to improve the quality of the target contrast images. However, existing studies have simply explored the relationships between auxiliary contrast and target contrast images but did not fully consider different anatomical information contained in multi-contrast images, resulting in texture details and artifacts unrelated to the target contrast images.Approach. To address these issues, we propose a dual contrast attention-guided multi-frequency fusion (DCAMF) network to reconstruct SR MR images from low-resolution MR images, which adaptively captures relevant anatomical information and processes the texture details and low-frequency information from multi-contrast images in parallel. Specifically, after the feature extraction, a feature selection module based on a dual contrast attention mechanism is proposed to focus on the texture details of the auxiliary contrast images and the low-frequency features of the target contrast images. Then, based on the characteristics of the selected features, a high- and low-frequency fusion decoder is constructed to fuse these features. In addition, a texture-enhancing module is embedded in the high-frequency fusion decoder, to highlight and refine the texture details of the auxiliary contrast and target contrast images. Finally, the high- and low-frequency fusion process is constrained by integrating a deeply-supervised mechanism into the DCAMF network.Main results. The experimental results show that the DCAMF outperforms other state-of-the-art methods. The peak signal-to-noise ratio and structural similarity of DCAMF are 39.02 dB and 0.9771 on the IXI dataset and 37.59 dB and 0.9770 on the BraTS2018 dataset, respectively. The image recovery is further validated in segmentation tasks.Significance. Our proposed SR model can enhance the quality of MR images. The results of the SR study provide a reliable basis for clinical diagnosis and subsequent image-guided treatment.
Collapse
Affiliation(s)
- Weipeng Kong
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Baosheng Li
- Department of Radiation Oncology Physics, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital affiliate to Shandong University, Jinan, People's Republic of China
| | - Kexin Wei
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Dengwang Li
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| | - Jian Zhu
- Department of Radiation Oncology Physics, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital affiliate to Shandong University, Jinan, People's Republic of China
| | - Gang Yu
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China
| |
Collapse
|
17
|
Liu X, Yao C, Chen H, Xiang R, Wu H, Du P, Yu Z, Liu W, Liu J, Geng D. BTSC-TNAS: A neural architecture search-based transformer for brain tumor segmentation and classification. Comput Med Imaging Graph 2023; 110:102307. [PMID: 37913635 DOI: 10.1016/j.compmedimag.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Glioblastoma (GBM), isolated brain metastasis (SBM), and primary central nervous system lymphoma (PCNSL) possess a high level of similarity in histomorphology and clinical manifestations on multimodal MRI. Such similarities have led to challenges in the clinical diagnosis of these three malignant tumors. However, many existing models solely focus on either the task of segmentation or classification, which limits the application of computer-aided diagnosis in clinical diagnosis and treatment. To solve this problem, we propose a multi-task learning transformer with neural architecture search (NAS) for brain tumor segmentation and classification (BTSC-TNAS). In the segmentation stage, we use a nested transformer U-shape network (NTU-NAS) with NAS to directly predict brain tumor masks from multi-modal MRI images. In the tumor classification stage, we use the multiscale features obtained from the encoder of NTU-NAS as the input features of the classification network (MSC-NET), which are integrated and corrected by the classification feature correction enhancement (CFCE) block to improve the accuracy of classification. The proposed BTSC-TNAS achieves an average Dice coefficient of 80.86% and 87.12% for the segmentation of tumor region and the maximum abnormal region in clinical data respectively. The model achieves a classification accuracy of 0.941. The experiments performed on the BraTS 2019 dataset show that the proposed BTSC-TNAS has excellent generalizability and can provide support for some challenging tasks in the diagnosis and treatment of brain tumors.
Collapse
Affiliation(s)
- Xiao Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Chong Yao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongyi Chen
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Rui Xiang
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Hao Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Peng Du
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zekuan Yu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Weifan Liu
- College of Science, Beijing Forestry University, Beijing, 100083, China
| | - Jie Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China.
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
18
|
Yang G, Zhang L, Liu A, Fu X, Chen X, Wang R. MGDUN: An interpretable network for multi-contrast MRI image super-resolution reconstruction. Comput Biol Med 2023; 167:107605. [PMID: 37925907 DOI: 10.1016/j.compbiomed.2023.107605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Magnetic resonance imaging (MRI) Super-Resolution (SR) aims to obtain high resolution (HR) images with more detailed information for precise diagnosis and quantitative image analysis. Deep unfolding networks outperform general MRI SR reconstruction methods by providing better performance and improved interpretability, which enhance the trustworthiness required in clinical practice. Additionally, current SR reconstruction techniques often rely on a single contrast or a simple multi-contrast fusion mechanism, ignoring the complex relationships between different contrasts. To address these issues, in this paper, we propose a Model-Guided multi-contrast interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction, which explicitly incorporates the well-studied multi-contrast MRI observation model into an unfolding iterative network. Specifically, we manually design an objective function for MGDUN that can be iteratively computed by the half-quadratic splitting algorithm. The iterative MGDUN algorithm is unfolded into a special model-guided deep unfolding network that explicitly takes into account both the multi-contrast relationship matrix and the MRI observation matrix during the end-to-end optimization process. Extensive experimental results on the multi-contrast IXI dataset and the BraTs 2019 dataset demonstrate the superiority of our proposed model, with PSNR reaching 37.3366 and 35.9690 respectively. Our proposed MGDUN provides a promising solution for multi-contrast MR image super-resolution reconstruction. Code is available at https://github.com/yggame/MGDUN.
Collapse
Affiliation(s)
- Gang Yang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Li Zhang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China; Institute of Intelligent Machines, and Hefei Institute of Physical Science, Chinese Academy Sciences, Hefei 230031, China
| | - Aiping Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Xueyang Fu
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xun Chen
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Rujing Wang
- Institute of Intelligent Machines, and Hefei Institute of Physical Science, Chinese Academy Sciences, Hefei 230031, China
| |
Collapse
|
19
|
Chen Z, Stapleton MC, Xie Y, Li D, Wu YL, Christodoulou AG. Physics-informed deep learning for T2-deblurred superresolution turbo spin echo MRI. Magn Reson Med 2023; 90:2362-2374. [PMID: 37578085 DOI: 10.1002/mrm.29814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE Deep learning superresolution (SR) is a promising approach to reduce MRI scan time without requiring custom sequences or iterative reconstruction. Previous deep learning SR approaches have generated low-resolution training images by simple k-space truncation, but this does not properly model in-plane turbo spin echo (TSE) MRI resolution degradation, which has variable T2 relaxation effects in different k-space regions. To fill this gap, we developed a T2 -deblurred deep learning SR method for the SR of 3D-TSE images. METHODS A SR generative adversarial network was trained using physically realistic resolution degradation (asymmetric T2 weighting of raw high-resolution k-space data). For comparison, we trained the same network structure on previous degradation models without TSE physics modeling. We tested all models for both retrospective and prospective SR with 3 × 3 acceleration factor (in the two phase-encoding directions) of genetically engineered mouse embryo model TSE-MR images. RESULTS The proposed method can produce high-quality 3 × 3 SR images for a typical 500-slice volume with 6-7 mouse embryos. Because 3 × 3 SR was performed, the image acquisition time can be reduced from 15 h to 1.7 h. Compared to previous SR methods without TSE modeling, the proposed method achieved the best quantitative imaging metrics for both retrospective and prospective evaluations and achieved the best imaging-quality expert scores for prospective evaluation. CONCLUSION The proposed T2 -deblurring method improved accuracy and image quality of deep learning-based SR of TSE MRI. This method has the potential to accelerate TSE image acquisition by a factor of up to 9.
Collapse
Affiliation(s)
- Zihao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Margaret Caroline Stapleton
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Yijen L Wu
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Anthony G Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
20
|
Wang H, Hu Z, Jiang D, Lin R, Zhao C, Zhao X, Zhou Y, Zhu Y, Zeng H, Liang D, Liao J, Li Z. Predicting Antiseizure Medication Treatment in Children with Rare Tuberous Sclerosis Complex-Related Epilepsy Using Deep Learning. AJNR Am J Neuroradiol 2023; 44:1373-1383. [PMID: 38081677 PMCID: PMC10714846 DOI: 10.3174/ajnr.a8053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/03/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND AND PURPOSE Tuberous sclerosis complex disease is a rare, multisystem genetic disease, but appropriate drug treatment allows many pediatric patients to have positive outcomes. The purpose of this study was to predict the effectiveness of antiseizure medication treatment in children with tuberous sclerosis complex-related epilepsy. MATERIALS AND METHODS We conducted a retrospective study involving 300 children with tuberous sclerosis complex-related epilepsy. The study included the analysis of clinical data and T2WI and FLAIR images. The clinical data consisted of sex, age of onset, age at imaging, infantile spasms, and antiseizure medication numbers. To forecast antiseizure medication treatment, we developed a multitechnique deep learning method called WAE-Net. This method used multicontrast MR imaging and clinical data. The T2WI and FLAIR images were combined as FLAIR3 to enhance the contrast between tuberous sclerosis complex lesions and normal brain tissues. We trained a clinical data-based model using a fully connected network with the above-mentioned variables. After that, a weighted-average ensemble network built from the ResNet3D architecture was created as the final model. RESULTS The experiments had shown that age of onset, age at imaging, infantile spasms, and antiseizure medication numbers were significantly different between the 2 drug-treatment outcomes (P < .05). The hybrid technique of FLAIR3 could accurately localize tuberous sclerosis complex lesions, and the proposed method achieved the best performance (area under the curve = 0.908 and accuracy of 0.847) in the testing cohort among the compared methods. CONCLUSIONS The proposed method could predict antiseizure medication treatment of children with rare tuberous sclerosis complex-related epilepsy and could be a strong baseline for future studies.
Collapse
Affiliation(s)
- Haifeng Wang
- From the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Zhanqi Hu
- Department of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
- Department of Pediatric Neurology (Z.H.), Boston Children's Hospital, Boston, Massachusetts
| | - Dian Jiang
- From the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Rongbo Lin
- Department of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Cailei Zhao
- Department of Radiology (C.Z., H.Z.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Xia Zhao
- Department of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yihang Zhou
- From the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Research Department (Y. Zhou), Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Yanjie Zhu
- Shenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Paul C. Lauterbur Research Center for Biomedical Imaging (Y.Zhu, D.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hongwu Zeng
- Department of Radiology (C.Z., H.Z.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Dong Liang
- From the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Paul C. Lauterbur Research Center for Biomedical Imaging (Y.Zhu, D.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jianxiang Liao
- Department of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Zhicheng Li
- From the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
You S, Lei B, Wang S, Chui CK, Cheung AC, Liu Y, Gan M, Wu G, Shen Y. Fine Perceptive GANs for Brain MR Image Super-Resolution in Wavelet Domain. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:8802-8814. [PMID: 35254996 DOI: 10.1109/tnnls.2022.3153088] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic resonance (MR) imaging plays an important role in clinical and brain exploration. However, limited by factors such as imaging hardware, scanning time, and cost, it is challenging to acquire high-resolution MR images clinically. In this article, fine perceptive generative adversarial networks (FP-GANs) are proposed to produce super-resolution (SR) MR images from the low-resolution counterparts. By adopting the divide-and-conquer scheme, FP-GANs are designed to deal with the low-frequency (LF) and high-frequency (HF) components of MR images separately and parallelly. Specifically, FP-GANs first decompose an MR image into LF global approximation and HF anatomical texture subbands in the wavelet domain. Then, each subband generative adversarial network (GAN) simultaneously concentrates on super-resolving the corresponding subband image. In generator, multiple residual-in-residual dense blocks are introduced for better feature extraction. In addition, the texture-enhancing module is designed to trade off the weight between global topology and detailed textures. Finally, the reconstruction of the whole image is considered by integrating inverse discrete wavelet transformation in FP-GANs. Comprehensive experiments on the MultiRes_7T and ADNI datasets demonstrate that the proposed model achieves finer structure recovery and outperforms the competing methods quantitatively and qualitatively. Moreover, FP-GANs further show the value by applying the SR results in classification tasks.
Collapse
|
22
|
Li Y, Yang J, Yu T, Chi J, Liu F. Global attention-enabled texture enhancement network for MR image reconstruction. Magn Reson Med 2023; 90:1919-1931. [PMID: 37382206 DOI: 10.1002/mrm.29785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE Although recent convolutional neural network (CNN) methodologies have shown promising results in fast MR imaging, there is still a desire to explore how they can be used to learn the frequency characteristics of multicontrast images and reconstruct texture details. METHODS A global attention-enabled texture enhancement network (GATE-Net) with a frequency-dependent feature extraction module (FDFEM) and convolution-based global attention module (GAM) is proposed to address the highly under-sampling MR image reconstruction problem. First, FDFEM enables GATE-Net to effectively extract high-frequency features from shareable information of multicontrast images to improve the texture details of reconstructed images. Second, GAM with less computation complexity has the receptive field of the entire image, which can fully explore useful shareable information of multi-contrast images and suppress less beneficial shareable information. RESULTS The ablation studies are conducted to evaluate the effectiveness of the proposed FDFEM and GAM. Experimental results under various acceleration rates and datasets consistently demonstrate the superiority of GATE-Net, in terms of peak signal-to-noise ratio, structural similarity and normalized mean square error. CONCLUSION A global attention-enabled texture enhancement network is proposed. it can be applied to multicontrast MR image reconstruction tasks with different acceleration rates and datasets and achieves superior performance in comparison with state-of-the-art methods.
Collapse
Affiliation(s)
- Yingnan Li
- College of Electronics and Information, Qingdao University, Qingdao, Shandong, China
| | - Jie Yang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, Shandong, China
| | - Teng Yu
- College of Electronics and Information, Qingdao University, Qingdao, Shandong, China
| | - Jieru Chi
- College of Electronics and Information, Qingdao University, Qingdao, Shandong, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Yang S, Li H, Chen S, Huang W, Liu D, Ruan G, Huang Q, Gong Q, Liu L, Chen H. Multiscale feature fusion network for 3D head MRI image registration. Med Phys 2023; 50:5609-5620. [PMID: 36970887 DOI: 10.1002/mp.16387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Image registration technology has become an important medical image preprocessing step with the wide application of computer-aided diagnosis technology in various medical image analysis tasks. PURPOSE We propose a multiscale feature fusion registration based on deep learning to achieve the accurate registration and fusion of head magnetic resonance imaging (MRI) and solve the problem that general registration methods cannot handle the complex spatial information and position information of head MRI. METHODS Our proposed multiscale feature fusion registration network consists of three sequentially trained modules. The first is an affine registration module that implements affine transformation; the second is to realize non-rigid transformation, a deformable registration module composed of top-down and bottom-up feature fusion subnetworks in parallel; and the third is a deformable registration module that also realizes non-rigid transformation and is composed of two feature fusion subnetworks in series. The network decomposes the deformation field of large displacement into multiple deformation fields of small displacement by multiscale registration and registration, which reduces the difficulty of registration. Moreover, multiscale information in head MRI is learned in a targeted manner, which improves the registration accuracy, by connecting the two feature fusion subnetworks. RESULTS We used 29 3D head MRIs for training and seven volumes for testing and calculated the values of the registration evaluation metrics for the new algorithm to register anterior and posterior lateral pterygoid muscles. The Dice similarity coefficient was 0.745 ± 0.021, the Hausdorff distance was 3.441 ± 0.935 mm, the Average surface distance was 0.738 ± 0.098 mm, and the Standard deviation of the Jacobian matrix was 0.425 ± 0.043. Our new algorithm achieved a higher registration accuracy compared with state-of-the-art registration methods. CONCLUSIONS Our proposed multiscale feature fusion registration network can realize end-to-end deformable registration of 3D head MRI, which can effectively cope with the characteristics of large deformation displacement and the rich details of head images and provide reliable technical support for the diagnosis and analysis of head diseases.
Collapse
Affiliation(s)
- Shixin Yang
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Haojiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuchao Chen
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Wenjie Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Demin Liu
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Guangying Ruan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiangyang Huang
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Qiong Gong
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Lizhi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongbo Chen
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, China
| |
Collapse
|
24
|
Wang W, Shen H, Chen J, Xing F. MHAN: Multi-Stage Hybrid Attention Network for MRI reconstruction and super-resolution. Comput Biol Med 2023; 163:107181. [PMID: 37352637 DOI: 10.1016/j.compbiomed.2023.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
High-quality magnetic resonance imaging (MRI) affords clear body tissue structure for reliable diagnosing. However, there is a principal problem of the trade-off between acquisition speed and image quality. Image reconstruction and super-resolution are crucial techniques to solve these problems. In the main field of MR image restoration, most researchers mainly focus on only one of these aspects, namely reconstruction or super-resolution. In this paper, we propose an efficient model called Multi-Stage Hybrid Attention Network (MHAN) that performs the multi-task of recovering high-resolution (HR) MR images from low-resolution (LR) under-sampled measurements. Our model is highlighted by three major modules: (i) an Amplified Spatial Attention Block (ASAB) capable of enhancing the differences in spatial information, (ii) a Self-Attention Block with a Data-Consistency Layer (DC-SAB), which can improve the accuracy of the extracted feature information, (iii) an Adaptive Local Residual Attention Block (ALRAB) that focuses on both spatial and channel information. MHAN employs an encoder-decoder architecture to deeply extract contextual information and a pipeline to provide spatial accuracy. Compared with the recent multi-task model T2Net, our MHAN improves by 2.759 dB in PSNR and 0.026 in SSIM with scaling factor ×2 and acceleration factor 4× on T2 modality.
Collapse
Affiliation(s)
- Wanliang Wang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Haoxin Shen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Jiacheng Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Fangsen Xing
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| |
Collapse
|
25
|
Lin J, Miao QI, Surawech C, Raman SS, Zhao K, Wu HH, Sung K. High-Resolution 3D MRI With Deep Generative Networks via Novel Slice-Profile Transformation Super-Resolution. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2023; 11:95022-95036. [PMID: 37711392 PMCID: PMC10501177 DOI: 10.1109/access.2023.3307577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
High-resolution magnetic resonance imaging (MRI) sequences, such as 3D turbo or fast spin-echo (TSE/FSE) imaging, are clinically desirable but suffer from long scanning time-related blurring when reformatted into preferred orientations. Instead, multi-slice two-dimensional (2D) TSE imaging is commonly used because of its high in-plane resolution but is limited clinically by poor through-plane resolution due to elongated voxels and the inability to generate multi-planar reformations due to staircase artifacts. Therefore, multiple 2D TSE scans are acquired in various orthogonal imaging planes, increasing the overall MRI scan time. In this study, we propose a novel slice-profile transformation super-resolution (SPTSR) framework with deep generative learning for through-plane super-resolution (SR) of multi-slice 2D TSE imaging. The deep generative networks were trained by synthesized low-resolution training input via slice-profile downsampling (SP-DS), and the trained networks inferred on the slice profile convolved (SP-conv) testing input for 5.5x through-plane SR. The network output was further slice-profile deconvolved (SP-deconv) to achieve an isotropic super-resolution. Compared to SMORE SR method and the networks trained by conventional downsampling, our SPTSR framework demonstrated the best overall image quality from 50 testing cases, evaluated by two abdominal radiologists. The quantitative analysis cross-validated the expert reader study results. 3D simulation experiments confirmed the quantitative improvement of the proposed SPTSR and the effectiveness of the SP-deconv step, compared to 3D ground-truths. Ablation studies were conducted on the individual contributions of SP-DS and SP-conv, networks structure, training dataset size, and different slice profiles.
Collapse
Affiliation(s)
- Jiahao Lin
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Electrical and Computer Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Q I Miao
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chuthaporn Surawech
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Diagnostic Radiology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Steven S Raman
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Kai Zhao
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Holden H Wu
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Kyunghyun Sung
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Wu Z, Chen X, Xie S, Shen J, Zeng Y. Super-resolution of brain MRI images based on denoising diffusion probabilistic model. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
27
|
Jiang D, Liao J, Zhao C, Zhao X, Lin R, Yang J, Li Z, Zhou Y, Zhu Y, Liang D, Hu Z, Wang H. Recognizing Pediatric Tuberous Sclerosis Complex Based on Multi-Contrast MRI and Deep Weighted Fusion Network. Bioengineering (Basel) 2023; 10:870. [PMID: 37508897 PMCID: PMC10375986 DOI: 10.3390/bioengineering10070870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Multi-contrast magnetic resonance imaging (MRI) is wildly applied to identify tuberous sclerosis complex (TSC) children in a clinic. In this work, a deep convolutional neural network with multi-contrast MRI is proposed to diagnose pediatric TSC. Firstly, by combining T2W and FLAIR images, a new synthesis modality named FLAIR3 was created to enhance the contrast between TSC lesions and normal brain tissues. After that, a deep weighted fusion network (DWF-net) using a late fusion strategy is proposed to diagnose TSC children. In experiments, a total of 680 children were enrolled, including 331 healthy children and 349 TSC children. The experimental results indicate that FLAIR3 successfully enhances the visibility of TSC lesions and improves the classification performance. Additionally, the proposed DWF-net delivers a superior classification performance compared to previous methods, achieving an AUC of 0.998 and an accuracy of 0.985. The proposed method has the potential to be a reliable computer-aided diagnostic tool for assisting radiologists in diagnosing TSC children.
Collapse
Affiliation(s)
- Dian Jiang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen 518000, China; (J.L.); (X.Z.)
| | - Cailei Zhao
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen 518000, China;
| | - Xia Zhao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen 518000, China; (J.L.); (X.Z.)
| | - Rongbo Lin
- Department of Emergency, Shenzhen Children’s Hospital, Shenzhen 518000, China;
| | - Jun Yang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Zhichen Li
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yihang Zhou
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.L.); (Y.Z.); (D.L.)
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong 999077, China
| | - Yanjie Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Dong Liang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Zhanqi Hu
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen 518000, China; (J.L.); (X.Z.)
| | - Haifeng Wang
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| |
Collapse
|
28
|
Cai X, Hou X, Sun R, Chang X, Zhu H, Jia S, Nie S. Accelerating image reconstruction for multi-contrast MRI based on Y-Net3. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023:XST230012. [PMID: 37248943 DOI: 10.3233/xst-230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND As one of the significant preoperative imaging modalities in medical diagnosis, Magnetic resonance imaging (MRI) takes a long scanning time due to its special imaging principle. OBJECTIVE We propose an innovative MRI reconstruction strategy and data consistency method based on deep learning to reconstruct high-quality brain MRIs from down-sampled data and accelerate the MR imaging process. METHODS Sixteen healthy subjects undergoing T1-weighted spin-echo (SE) and T2-weighted fast spin-echo (FSE) sequences by a 1.5T MRI scanner were recruited. A Y-Net3+ network was used to facilitate the high-quality MRI reconstruction through context information. In addition, the existing data consistency fidelity method was improved. The difference between the reconstructed K-space and the original K-space was shorten by the linear regression algorithm. Therefore, the redundant artifacts derived from under-sampling were avoided. The Structural Similarity (SSIM) and Peak Signal to Noise Ratio (PSNR) were applied to quantitatively evaluate image reconstruction performance of different down-sampling patterns. RESULTS Compared with the classical Y-Net, Y-Net3+ network improved SSIM and PSNR of MRI images from 0.9164±0.0178 and 33.2216±3.2919 to 0.9387±0.0363 and 35.1785±3.3105, respectively, under compressed sensing reconstruction with acceleration factor of 4. The improved network increases signal-to-noise ratio and adds more image texture information in the reconstructed images. Furthermore, in the process of data consistency, linear regression analysis was used to reduce the difference between the reconstructed K-space and the original K-space, so that the SSIM and PSNR were increased to 0.9808±0.0081 and 40.9254±1.1911, respectively. CONCLUSIONS The improved Y-Net combined with data consistency fidelity method elucidates its potential in reconstructing high-quality T2-weighted images from the down-sampled data by fully exploring the T1-weighted information. With the advantage of avoiding down-sampled artifacts, the improved network exhibits remarkable clinical promise for fast MRI applications.
Collapse
Affiliation(s)
- Xin Cai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xuewen Hou
- Shanghai Kangda COLORFUL Healthcare Co., Ltd, Shanghai, China
| | - Rong Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Chang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Honglin Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shouqiang Jia
- Department of Imaging, Jinan People's Hospital affiliated to Shandong First Medical University, Shandong, China
| | - Shengdong Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
29
|
Han S, Remedios SW, Schär M, Carass A, Prince JL. ESPRESO: An algorithm to estimate the slice profile of a single magnetic resonance image. Magn Reson Imaging 2023; 98:155-163. [PMID: 36702167 DOI: 10.1016/j.mri.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
To reduce scan time, magnetic resonance (MR) images are often acquired using 2D multi-slice protocols with thick slices that may also have gaps between them. The resulting image volumes have lower resolution in the through-plane direction than in the in-plane direction, and the through-plane resolution is in part characterized by the protocol's slice profile which acts as a through-plane point spread function (PSF). Although super-resolution (SR) has been shown to improve the visualization and down-stream processing of 2D multi-slice MR acquisitions, previous algorithms are usually unaware of the true slice profile, which may lead to sub-optimal SR performance. In this work, we present an algorithm to estimate the slice profile of a 2D multi-slice acquisition given only its own image volume without any external training data. We assume that an anatomical image is isotropic in the sense that, after accounting for a correctly estimated slice profile, the image patches along different orientations have the same probability distribution. Our proposed algorithm uses a modified generative adversarial network (GAN) where the generator network estimates the slice profile to reduce the resolution of the in-plane direction, and the discriminator network determines whether a direction is generated or real low resolution. The proposed algorithm, ESPRESO, which stands for "estimating the slice profile for resolution enhancement of a single image only", was tested with a state-of-the-art internally supervised SR algorithm. Specifically, ESPRESO is used to create training data for this SR algorithm, and results show improvements when ESPRESO is used over commonly-used PSFs.
Collapse
Affiliation(s)
- Shuo Han
- The Department of Biomedical Engineering, The Johns Hopkins University, Baltimore 21218, MD, USA.
| | - Samuel W Remedios
- The Department of Computer Science, The Johns Hopkins University, Baltimore 21218, MD, USA.
| | - Michael Schär
- The Department of Radiology, The Johns Hopkins School of Medicine, Baltimore 21205, MD, USA.
| | - Aaron Carass
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore 21218, MD, USA.
| | - Jerry L Prince
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore 21218, MD, USA.
| |
Collapse
|
30
|
Lyu J, Li G, Wang C, Qin C, Wang S, Dou Q, Qin J. Region-focused multi-view transformer-based generative adversarial network for cardiac cine MRI reconstruction. Med Image Anal 2023; 85:102760. [PMID: 36720188 DOI: 10.1016/j.media.2023.102760] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Cardiac cine magnetic resonance imaging (MRI) reconstruction is challenging due to spatial and temporal resolution trade-offs. Temporal correlation in cardiac cine MRI is informative and vital for understanding cardiac dynamic motion. Exploiting the temporal correlations in cine reconstruction is crucial to resolve aliasing artifacts and maintaining the cardiac motion patterns. However, existing methods have the following shortcomings: (1) they simultaneously compute pairwise correlations along spatial and temporal dimensions to establish dependencies, ignoring that learning spatial contextual information first will benefit the temporal modeling. (2) most studies neglect to focus on reconstructing the local cardiac regions, resulting in insufficient reconstruction accuracy due to a relatively large field of view. To address these problems, we propose a region-focused multi-view transformer-based generative adversarial network for cardiac cine MRI reconstruction. The proposed transformer divides consecutive cardiac frames into multiple views for cross-view feature extraction, establishing long-distance dependencies among features and effectively learning the spatio-temporal information. We further design a cross-view attention for spatio-temporal information fusion, ensuring the interaction of different spatio-temporal information in each view and capturing more temporal correlations of the cardiac motion. In addition, we introduce a cardiac region detection loss for improving the reconstruction quality of the cardiac region. Experimental results demonstrated that our method outperforms state-of-the-art methods. Especially with an acceleration factor as high as 10×, our method can reconstruct images with better accuracy and perceptual quality.
Collapse
Affiliation(s)
- Jun Lyu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Guangyuan Li
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Chen Qin
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK
| | - Shuo Wang
- Digital Medical Research Center, Fudan University, Shanghai, China
| | - Qi Dou
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Jing Qin
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
31
|
Iglesias JE, Billot B, Balbastre Y, Magdamo C, Arnold SE, Das S, Edlow BL, Alexander DC, Golland P, Fischl B. SynthSR: A public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry. SCIENCE ADVANCES 2023; 9:eadd3607. [PMID: 36724222 PMCID: PMC9891693 DOI: 10.1126/sciadv.add3607] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/04/2023] [Indexed: 05/10/2023]
Abstract
Every year, millions of brain magnetic resonance imaging (MRI) scans are acquired in hospitals across the world. These have the potential to revolutionize our understanding of many neurological diseases, but their morphometric analysis has not yet been possible due to their anisotropic resolution. We present an artificial intelligence technique, "SynthSR," that takes clinical brain MRI scans with any MR contrast (T1, T2, etc.), orientation (axial/coronal/sagittal), and resolution and turns them into high-resolution T1 scans that are usable by virtually all existing human neuroimaging tools. We present results on segmentation, registration, and atlasing of >10,000 scans of controls and patients with brain tumors, strokes, and Alzheimer's disease. SynthSR yields morphometric results that are very highly correlated with what one would have obtained with high-resolution T1 scans. SynthSR allows sample sizes that have the potential to overcome the power limitations of prospective research studies and shed new light on the healthy and diseased human brain.
Collapse
Affiliation(s)
- Juan E. Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin Billot
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Yaël Balbastre
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Colin Magdamo
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven E. Arnold
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel C. Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
32
|
Wu Q, Li Y, Sun Y, Zhou Y, Wei H, Yu J, Zhang Y. An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation. IEEE J Biomed Health Inform 2023; 27:1004-1015. [PMID: 37022393 DOI: 10.1109/jbhi.2022.3223106] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In magnetic resonance imaging (MRI), restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3-dimensional (3D) HR image acquisition typically requests long scan time and, results in small spatial coverage and low signal-to-noise ratio (SNR). Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach scale-specific projection between LR and HR images, thus these methods can only deal with fixed up-sampling rates. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the LR image and the HR image are represented using the same implicit neural voxel function with different sampling rates. Due to the continuity of the learned implicit function, a single ArSSR model is able to achieve arbitrary and infinite up-sampling rate reconstructions of HR images from any input LR image. Then the SR task is converted to approach the implicit voxel function via deep neural networks from a set of paired HR and LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales.
Collapse
|
33
|
Ye X, Wang P, Li S, Zhang J, Lian Y, Zhang Y, Lu J, Guo H. Simultaneous superresolution reconstruction and distortion correction for single-shot EPI DWI using deep learning. Magn Reson Med 2023; 89:2456-2470. [PMID: 36705077 DOI: 10.1002/mrm.29601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE Single-shot (SS) EPI is widely used for clinical DWI. This study aims to develop an end-to-end deep learning-based method with a novel loss function in an improved network structure to simultaneously increase the resolution and correct distortions for SS-EPI DWI. THEORY AND METHODS Point-spread-function (PSF)-encoded EPI can provide high-resolution, distortion-free DWI images. A distorted image from SS-EPI can be described as the convolution between a PSF function with a distortion-free image. The deconvolution process to recover the distortion-free image can be achieved with a convolution neural network, which also learns the mapping function between low-resolution SS-EPI and high-resolution reference PSF-EPI to achieve superresolution. To suppress the oversmoothing effect, we proposed a modified generative adversarial network structure, in which a dense net with gradient map guidance and a multilevel fusion block was used as the generator. A fractional anisotropy loss was proposed to utilize the diffusion anisotropy information among diffusion directions. In vivo brain DWI data were used to test the proposed method. RESULTS The results show that distortion-corrected high-resolution DWI images with restored structural details can be obtained from low-resolution SS-EPI images by taking advantage of the high-resolution anatomical images. Additionally, the proposed network can improve the quantitative accuracy of diffusion metrics compared with previously reported networks. CONCLUSION Using high-resolution, distortion-free EPI-DWI images as references, a deep learning-based method to simultaneously increase the perceived resolution and correct distortions for low-resolution SS-EPI was proposed. The results show that DWI image quality and diffusion metrics can be improved.
Collapse
Affiliation(s)
- Xinyu Ye
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Peipei Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sisi Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jieying Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yuan Lian
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yajing Zhang
- MR Clinical Science, Philips Healthcare, Suzhou, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Xu Y, Dai S, Song H, Du L, Chen Y. Multi-modal brain MRI images enhancement based on framelet and local weights super-resolution. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4258-4273. [PMID: 36899626 DOI: 10.3934/mbe.2023199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic resonance (MR) image enhancement technology can reconstruct high-resolution image from a low-resolution image, which is of great significance for clinical application and scientific research. T1 weighting and T2 weighting are the two common magnetic resonance imaging modes, each of which has its own advantages, but the imaging time of T2 is much longer than that of T1. Related studies have shown that they have very similar anatomical structures in brain images, which can be utilized to enhance the resolution of low-resolution T2 images by using the edge information of high-resolution T1 images that can be rapidly imaged, so as to shorten the imaging time needed for T2 images. In order to overcome the inflexibility of traditional methods using fixed weights for interpolation and the inaccuracy of using gradient threshold to determine edge regions, we propose a new model based on previous studies on multi-contrast MR image enhancement. Our model uses framelet decomposition to finely separate the edge structure of the T2 brain image, and uses the local regression weights calculated from T1 image to construct a global interpolation matrix, so that our model can not only guide the edge reconstruction more accurately where the weights are shared, but also carry out collaborative global optimization for the remaining pixels and their interpolated weights. Experimental results on a set of simulated MR data and two sets of real MR images show that the enhanced images obtained by the proposed method are superior to the compared methods in terms of visual sharpness or qualitative indicators.
Collapse
Affiliation(s)
- Yingying Xu
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
| | - Songsong Dai
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
| | - Haifeng Song
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
| | - Lei Du
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
| | - Ying Chen
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
| |
Collapse
|
35
|
Zou B, Ji Z, Zhu C, Dai Y, Zhang W, Kui X. Multi-scale deformable transformer for multi-contrast knee MRI super-resolution. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Accurate and lightweight MRI super-resolution via multi-scale bidirectional fusion attention network. PLoS One 2022; 17:e0277862. [PMID: 36520931 PMCID: PMC9754592 DOI: 10.1371/journal.pone.0277862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
High-resolution magnetic resonance (MR) imaging has attracted much attention due to its contribution to clinical diagnoses and treatment. However, because of the interference of noise and the limitation of imaging equipment, it is expensive to generate a satisfactory image. Super-resolution (SR) is a technique that enhances an imaging system's resolution, which is effective and cost-efficient for MR imaging. In recent years, deep learning-based SR methods have made remarkable progress on natural images but not on medical images. Most existing medical images SR algorithms focus on the spatial information of a single image but ignore the temporal correlation between medical images sequence. We proposed two novel architectures for single medical image and sequential medical images, respectively. The multi-scale back-projection network (MSBPN) is constructed of several different scale back-projection units which consist of iterative up- and down-sampling layers. The multi-scale machine extracts different scale spatial information and strengthens the information fusion for a single image. Based on MSBPN, we proposed an accurate and lightweight Multi-Scale Bidirectional Fusion Attention Network(MSBFAN) that combines temporal information iteratively. That supplementary temporal information is extracted from the adjacent image sequence of the target image. The MSBFAN can effectively learn both the spatio-temporal dependencies and the iterative refinement process with only a lightweight number of parameters. Experimental results demonstrate that our MSBPN and MSBFAN are outperforming current SR methods in terms of reconstruction accuracy and parameter quantity of the model.
Collapse
|
37
|
Yurt M, Dalmaz O, Dar S, Ozbey M, Tinaz B, Oguz K, Cukur T. Semi-Supervised Learning of MRI Synthesis Without Fully-Sampled Ground Truths. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3895-3906. [PMID: 35969576 DOI: 10.1109/tmi.2022.3199155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Learning-based translation between MRI contrasts involves supervised deep models trained using high-quality source- and target-contrast images derived from fully-sampled acquisitions, which might be difficult to collect under limitations on scan costs or time. To facilitate curation of training sets, here we introduce the first semi-supervised model for MRI contrast translation (ssGAN) that can be trained directly using undersampled k-space data. To enable semi-supervised learning on undersampled data, ssGAN introduces novel multi-coil losses in image, k-space, and adversarial domains. The multi-coil losses are selectively enforced on acquired k-space samples unlike traditional losses in single-coil synthesis models. Comprehensive experiments on retrospectively undersampled multi-contrast brain MRI datasets are provided. Our results demonstrate that ssGAN yields on par performance to a supervised model, while outperforming single-coil models trained on coil-combined magnitude images. It also outperforms cascaded reconstruction-synthesis models where a supervised synthesis model is trained following self-supervised reconstruction of undersampled data. Thus, ssGAN holds great promise to improve the feasibility of learning-based multi-contrast MRI synthesis.
Collapse
|
38
|
|
39
|
Xuan K, Xiang L, Huang X, Zhang L, Liao S, Shen D, Wang Q. Multimodal MRI Reconstruction Assisted With Spatial Alignment Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2499-2509. [PMID: 35363610 DOI: 10.1109/tmi.2022.3164050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In clinical practice, multi-modal magnetic resonance imaging (MRI) with different contrasts is usually acquired in a single study to assess different properties of the same region of interest in the human body. The whole acquisition process can be accelerated by having one or more modalities under-sampled in the k -space. Recent research has shown that, considering the redundancy between different modalities, a target MRI modality under-sampled in the k -space can be more efficiently reconstructed with a fully-sampled reference MRI modality. However, we find that the performance of the aforementioned multi-modal reconstruction can be negatively affected by subtle spatial misalignment between different modalities, which is actually common in clinical practice. In this paper, we improve the quality of multi-modal reconstruction by compensating for such spatial misalignment with a spatial alignment network. First, our spatial alignment network estimates the displacement between the fully-sampled reference and the under-sampled target images, and warps the reference image accordingly. Then, the aligned fully-sampled reference image joins the multi-modal reconstruction of the under-sampled target image. Also, considering the contrast difference between the target and reference images, we have designed a cross-modality-synthesis-based registration loss in combination with the reconstruction loss, to jointly train the spatial alignment network and the reconstruction network. The experiments on both clinical MRI and multi-coil k -space raw data demonstrate the superiority and robustness of the multi-modal MRI reconstruction empowered with our spatial alignment network. Our code is publicly available at https://github.com/woxuankai/SpatialAlignmentNetwork.
Collapse
|
40
|
Shit S, Zimmermann J, Ezhov I, Paetzold JC, Sanches AF, Pirkl C, Menze BH. SRflow: Deep learning based super-resolution of 4D-flow MRI data. Front Artif Intell 2022; 5:928181. [PMID: 36034591 PMCID: PMC9411720 DOI: 10.3389/frai.2022.928181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Exploiting 4D-flow magnetic resonance imaging (MRI) data to quantify hemodynamics requires an adequate spatio-temporal vector field resolution at a low noise level. To address this challenge, we provide a learned solution to super-resolve in vivo 4D-flow MRI data at a post-processing level. We propose a deep convolutional neural network (CNN) that learns the inter-scale relationship of the velocity vector map and leverages an efficient residual learning scheme to make it computationally feasible. A novel, direction-sensitive, and robust loss function is crucial to learning vector-field data. We present a detailed comparative study between the proposed super-resolution and the conventional cubic B-spline based vector-field super-resolution. Our method improves the peak-velocity to noise ratio of the flow field by 10 and 30% for in vivo cardiovascular and cerebrovascular data, respectively, for 4 × super-resolution over the state-of-the-art cubic B-spline. Significantly, our method offers 10x faster inference over the cubic B-spline. The proposed approach for super-resolution of 4D-flow data would potentially improve the subsequent calculation of hemodynamic quantities.
Collapse
Affiliation(s)
- Suprosanna Shit
- Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Suprosanna Shit
| | - Judith Zimmermann
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Ivan Ezhov
- Department of Informatics, Technical University of Munich, Munich, Germany
| | | | - Augusto F. Sanches
- Institute of Neuroradiology, University Hospital LMU Munich, Munich, Germany
| | - Carolin Pirkl
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Bjoern H. Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Wei Z, Wu X, Tong W, Zhang S, Yang X, Tian J, Hui H. Elimination of stripe artifacts in light sheet fluorescence microscopy using an attention-based residual neural network. BIOMEDICAL OPTICS EXPRESS 2022; 13:1292-1311. [PMID: 35414974 PMCID: PMC8973169 DOI: 10.1364/boe.448838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Stripe artifacts can deteriorate the quality of light sheet fluorescence microscopy (LSFM) images. Owing to the inhomogeneous, high-absorption, or scattering objects located in the excitation light path, stripe artifacts are generated in LSFM images in various directions and types, such as horizontal, anisotropic, or multidirectional anisotropic. These artifacts severely degrade the quality of LSFM images. To address this issue, we proposed a new deep-learning-based approach for the elimination of stripe artifacts. This method utilizes an encoder-decoder structure of UNet integrated with residual blocks and attention modules between successive convolutional layers. Our attention module was implemented in the residual blocks to learn useful features and suppress the residual features. The proposed network was trained and validated by generating three different degradation datasets with different types of stripe artifacts in LSFM images. Our method can effectively remove different stripes in generated and actual LSFM images distorted by stripe artifacts. Besides, quantitative analysis and extensive comparison results demonstrated that our method performs the best compared with classical image-based processing algorithms and other powerful deep-learning-based destriping methods for all three generated datasets. Thus, our method has tremendous application prospects to LSFM, and its use can be easily extended to images reconstructed by other modalities affected by the presence of stripe artifacts.
Collapse
Affiliation(s)
- Zechen Wei
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangjun Wu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100083, China
| | - Wei Tong
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing 100853, China
| | - Suhui Zhang
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing 100853, China
| | - Xin Yang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, affiliated with Jinan University, Zhuhai 519000, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
42
|
MBMR-Net: multi-branches multi-resolution cross-projection network for single image super-resolution. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03322-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
43
|
Hu S, Lei B, Wang S, Wang Y, Feng Z, Shen Y. Bidirectional Mapping Generative Adversarial Networks for Brain MR to PET Synthesis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:145-157. [PMID: 34428138 DOI: 10.1109/tmi.2021.3107013] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusing multi-modality medical images, such as magnetic resonance (MR) imaging and positron emission tomography (PET), can provide various anatomical and functional information about the human body. However, PET data is not always available for several reasons, such as high cost, radiation hazard, and other limitations. This paper proposes a 3D end-to-end synthesis network called Bidirectional Mapping Generative Adversarial Networks (BMGAN). Image contexts and latent vectors are effectively used for brain MR-to-PET synthesis. Specifically, a bidirectional mapping mechanism is designed to embed the semantic information of PET images into the high-dimensional latent space. Moreover, the 3D Dense-UNet generator architecture and the hybrid loss functions are further constructed to improve the visual quality of cross-modality synthetic images. The most appealing part is that the proposed method can synthesize perceptually realistic PET images while preserving the diverse brain structures of different subjects. Experimental results demonstrate that the performance of the proposed method outperforms other competitive methods in terms of quantitative measures, qualitative displays, and evaluation metrics for classification.
Collapse
|
44
|
Iglesias JE, Billot B, Balbastre Y, Tabari A, Conklin J, Gilberto González R, Alexander DC, Golland P, Edlow BL, Fischl B. Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast. Neuroimage 2021; 237:118206. [PMID: 34048902 PMCID: PMC8354427 DOI: 10.1016/j.neuroimage.2021.118206] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Most existing algorithms for automatic 3D morphometry of human brain MRI scans are designed for data with near-isotropic voxels at approximately 1 mm resolution, and frequently have contrast constraints as well-typically requiring T1-weighted images (e.g., MP-RAGE scans). This limitation prevents the analysis of millions of MRI scans acquired with large inter-slice spacing in clinical settings every year. In turn, the inability to quantitatively analyze these scans hinders the adoption of quantitative neuro imaging in healthcare, and also precludes research studies that could attain huge sample sizes and hence greatly improve our understanding of the human brain. Recent advances in convolutional neural networks (CNNs) are producing outstanding results in super-resolution and contrast synthesis of MRI. However, these approaches are very sensitive to the specific combination of contrast, resolution and orientation of the input images, and thus do not generalize to diverse clinical acquisition protocols - even within sites. In this article, we present SynthSR, a method to train a CNN that receives one or more scans with spaced slices, acquired with different contrast, resolution and orientation, and produces an isotropic scan of canonical contrast (typically a 1 mm MP-RAGE). The presented method does not require any preprocessing, beyond rigid coregistration of the input scans. Crucially, SynthSR trains on synthetic input images generated from 3D segmentations, and can thus be used to train CNNs for any combination of contrasts, resolutions and orientations without high-resolution real images of the input contrasts. We test the images generated with SynthSR in an array of common downstream analyses, and show that they can be reliably used for subcortical segmentation and volumetry, image registration (e.g., for tensor-based morphometry), and, if some image quality requirements are met, even cortical thickness morphometry. The source code is publicly available at https://github.com/BBillot/SynthSR.
Collapse
Affiliation(s)
- Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA.
| | - Benjamin Billot
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Yaël Balbastre
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Azadeh Tabari
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - John Conklin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - R Gilberto González
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Neuroradiology Division, Massachusetts General Hospital, Boston, USA
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
45
|
Liu X, Wang J, Lin S, Crozier S, Liu F. Optimizing multicontrast MRI reconstruction with shareable feature aggregation and selection. NMR IN BIOMEDICINE 2021; 34:e4540. [PMID: 33974306 DOI: 10.1002/nbm.4540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
This paper proposes a new method for optimizing feature sharing in deep neural network-based, rapid, multicontrast magnetic resonance imaging (MC-MRI). Using the shareable information of MC images for accelerated MC-MRI reconstruction, current algorithms stack the MC images or features without optimizing the sharing protocols, leading to suboptimal reconstruction results. In this paper, we propose a novel feature aggregation and selection scheme in a deep neural network to better leverage the MC features and improve the reconstruction results. First, we propose to extract and use the shareable information by mapping the MC images into multiresolution feature maps with multilevel layers of the neural network. In this way, the extracted features capture complementary image properties, including local patterns from the shallow layers and semantic information from the deep layers. Then, an explicit selection module is designed to compile the extracted features optimally. That is, larger weights are learned to incorporate the constructive, shareable features; and smaller weights are assigned to the unshareable information. We conduct comparative studies on publicly available T2-weighted and T2-weighted fluid attenuated inversion recovery brain images, and the results show that the proposed network consistently outperforms existing algorithms. In addition, the proposed method can recover the images with high fidelity under 16 times acceleration. The ablation studies are conducted to evaluate the effectiveness of the proposed feature aggregation and selection mechanism. The results and the visualization of the weighted features show that the proposed method does effectively improve the usage of the useful features and suppress useless information, leading to overall enhanced reconstruction results. Additionally, the selection module can zero-out repeated and redundant features and improve network efficiency.
Collapse
Affiliation(s)
- Xinwen Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Jing Wang
- School of Information and Communication Technology, Griffith University, Brisbane, Australia
| | - Suzhen Lin
- School of Data Science and Technology, North University of China, Taiyuan, China
- The Key Laboratory of Biomedical Imaging and Big Data Processing in Shanxi Province, Shanxi, China
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| |
Collapse
|
46
|
Lyu Q, Shan H, Xie Y, Kwan AC, Otaki Y, Kuronuma K, Li D, Wang G. Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2170-2181. [PMID: 33856986 PMCID: PMC8376223 DOI: 10.1109/tmi.2021.3073381] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a novel recurrent generative adversarial network model for cardiac MRI motion artifact reduction. This model utilizes bi-directional convolutional long short-term memory (ConvLSTM) and multi-scale convolutions to improve the performance of the proposed network, in which bi-directional ConvLSTMs handle long-range temporal features while multi-scale convolutions gather both local and global features. We demonstrate a decent generalizability of the proposed method thanks to the novel architecture of our deep network that captures the essential relationship of cardiovascular dynamics. Indeed, our extensive experiments show that our method achieves better image quality for cine cardiac MRI images than existing state-of-the-art methods. In addition, our method can generate reliable missing intermediate frames based on their adjacent frames, improving the temporal resolution of cine cardiac MRI sequences.
Collapse
|
47
|
Chandra SS, Bran Lorenzana M, Liu X, Liu S, Bollmann S, Crozier S. Deep learning in magnetic resonance image reconstruction. J Med Imaging Radiat Oncol 2021; 65:564-577. [PMID: 34254448 DOI: 10.1111/1754-9485.13276] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
Magnetic resonance (MR) imaging visualises soft tissue contrast in exquisite detail without harmful ionising radiation. In this work, we provide a state-of-the-art review on the use of deep learning in MR image reconstruction from different image acquisition types involving compressed sensing techniques, parallel image acquisition and multi-contrast imaging. Publications with deep learning-based image reconstruction for MR imaging were identified from the literature (PubMed and Google Scholar), and a comprehensive description of each of the works was provided. A detailed comparison that highlights the differences, the data used and the performance of each of these works were also made. A discussion of the potential use cases for each of these methods is provided. The sparse image reconstruction methods were found to be most popular in using deep learning for improved performance, accelerating acquisitions by around 4-8 times. Multi-contrast image reconstruction methods rely on at least one pre-acquired image, but can achieve 16-fold, and even up to 32- to 50-fold acceleration depending on the set-up. Parallel imaging provides frameworks to be integrated in many of these methods for additional speed-up potential. The successful use of compressed sensing techniques and multi-contrast imaging with deep learning and parallel acquisition methods could yield significant MR acquisition speed-ups within clinical routines in the near future.
Collapse
Affiliation(s)
- Shekhar S Chandra
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Marlon Bran Lorenzana
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Xinwen Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Siyu Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
48
|
Liu X, Wang J, Jin J, Li M, Tang F, Crozier S, Liu F. Deep unregistered multi-contrast MRI reconstruction. Magn Reson Imaging 2021; 81:33-41. [PMID: 34051290 DOI: 10.1016/j.mri.2021.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/18/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022]
Abstract
Multiple magnetic resonance images of different contrasts are normally acquired for clinical diagnosis. Recently, research has shown that the previously acquired multi-contrast (MC) images of the same patient can be used as anatomical prior to accelerating magnetic resonance imaging (MRI). However, current MC-MRI networks are based on the assumption that the images are perfectly registered, which is rarely the case in real-world applications. In this paper, we propose an end-to-end deep neural network to reconstruct highly accelerated images by exploiting the shareable information from potentially misaligned reference images of an arbitrary contrast. Specifically, a spatial transformation (ST) module is designed and integrated into the reconstruction network to align the pre-acquired reference images with the images to be reconstructed. The misalignment is further alleviated by maximizing the normalized cross-correlation (NCC) between the MC images. The visualization of feature maps demonstrates that the proposed method effectively reduces the misalignment between the images for shareable information extraction when applied to the publicly available brain datasets. Additionally, the experimental results on these datasets show the proposed network allows the robust exploitation of shareable information across the misaligned MC images, leading to improved reconstruction results.
Collapse
Affiliation(s)
- Xinwen Liu
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Australia
| | | | - Jin Jin
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Australia; Siemens Healthcare Pty. Ltd., Brisbane, Australia
| | - Mingyan Li
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Australia
| | - Fangfang Tang
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Australia
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Australia
| | - Feng Liu
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, Australia.
| |
Collapse
|
49
|
Park S, Gach HM, Kim S, Lee SJ, Motai Y. Autoencoder-Inspired Convolutional Network-Based Super-Resolution Method in MRI. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2021; 9:1800113. [PMID: 34168920 PMCID: PMC8216682 DOI: 10.1109/jtehm.2021.3076152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To introduce an MRI in-plane resolution enhancement method that estimates High-Resolution (HR) MRIs from Low-Resolution (LR) MRIs. METHOD & MATERIALS Previous CNN-based MRI super-resolution methods cause loss of input image information due to the pooling layer. An Autoencoder-inspired Convolutional Network-based Super-resolution (ACNS) method was developed with the deconvolution layer that extrapolates the missing spatial information by the convolutional neural network-based nonlinear mapping between LR and HR features of MRI. Simulation experiments were conducted with virtual phantom images and thoracic MRIs from four volunteers. The Peak Signal-to-Noise Ratio (PSNR), Structure SIMilarity index (SSIM), Information Fidelity Criterion (IFC), and computational time were compared among: ACNS; Super-Resolution Convolutional Neural Network (SRCNN); Fast Super-Resolution Convolutional Neural Network (FSRCNN); Deeply-Recursive Convolutional Network (DRCN). RESULTS ACNS achieved comparable PSNR, SSIM, and IFC results to SRCNN, FSRCNN, and DRCN. However, the average computation speed of ACNS was 6, 4, and 35 times faster than SRCNN, FSRCNN, and DRCN, respectively under the computer setup used with the actual average computation time of 0.15 s per [Formula: see text].
Collapse
Affiliation(s)
- Seonyeong Park
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaIL61820USA
| | - H. Michael Gach
- Department of Radiation OncologyWashington University in St. LouisSt. LouisMO63130USA
| | - Siyong Kim
- Department of Radiation OncologyDivision of Medical PhysicsVirginia Commonwealth UniversityRichmondVA23284USA
| | - Suk Jin Lee
- TSYS School of Computer ScienceColumbus State UniversityColumbusGA31907USA
| | - Yuichi Motai
- Department of Electrical and Computer EngineeringVirginia Commonwealth UniversityRichmondVA23284USA
| |
Collapse
|
50
|
On the regularization of feature fusion and mapping for fast MR multi-contrast imaging via iterative networks. Magn Reson Imaging 2021; 77:159-168. [PMID: 33400936 DOI: 10.1016/j.mri.2020.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 01/23/2023]
Abstract
Multi-contrast (MC) Magnetic Resonance Imaging (MRI) of the same patient usually requires long scanning times, despite the images sharing redundant information. In this work, we propose a new iterative network that utilizes the sharable information among MC images for MRI acceleration. The proposed network has reinforced data fidelity control and anatomy guidance through an iterative optimization procedure of Gradient Descent, leading to reduced uncertainties and improved reconstruction results. Through a convolutional network, the new method incorporates a learnable regularization unit that is capable of extracting, fusing, and mapping shareable information among different contrasts. Specifically, a dilated inception block is proposed to promote multi-scale feature extractions and increase the receptive field diversity for contextual information incorporation. Lastly, an optimal MC information feeding protocol is built through the design of a complementary feature extractor block. Comprehensive experiments demonstrated the superiority of the proposed network, both qualitatively and quantitatively.
Collapse
|