1
|
Chen Z, Bernabei M, Mainardi V, Ren X, Ciuti G, Stefanini C. A Novel and Accurate BiLSTM Configuration Controller for Modular Soft Robots with Module Number Adaptability. Soft Robot 2024. [PMID: 39648849 DOI: 10.1089/soro.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
Modular soft robots (MSRs) exhibit greater potential for sophisticated tasks compared with single-module robots. However, the modular structure incurs the complexity of accurate control and necessitates a control strategy specifically for modular robots. In this article, we introduce a data collection strategy tailored for MSR and a bidirectional long short-term memory (biLSTM) configuration controller capable of adapting to varying module numbers. Simulation cable-driven robots and real pneumatic robots have been included in experiments to validate the proposed approaches. Experimental results have demonstrated that MSRs can explore a larger space, thanks to our data collection method, and our controller can be leveraged despite an increase or decrease in module number. By leveraging the biLSTM, we aim to mimic the physical structure of MSRs, allowing the controller to adapt to module number change. Future work may include a planning method that bridges the task, configuration, and actuation spaces. We may also integrate online components into this controller.
Collapse
Affiliation(s)
- Zixi Chen
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Matteo Bernabei
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vanessa Mainardi
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Xuyang Ren
- Multi-scale Medical Robotics Centre and Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gastone Ciuti
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Cesare Stefanini
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
2
|
Monfaredi R, Concepcion-Gonzalez A, Acosta Julbe J, Fischer E, Hernandez-Herrera G, Cleary K, Oluigbo C. Automatic Path-Planning Techniques for Minimally Invasive Stereotactic Neurosurgical Procedures-A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:5238. [PMID: 39204935 PMCID: PMC11359713 DOI: 10.3390/s24165238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
This review systematically examines the recent research from the past decade on diverse path-planning algorithms tailored for stereotactic neurosurgery applications. Our comprehensive investigation involved a thorough search of scholarly papers from Google Scholar, PubMed, IEEE Xplore, and Scopus, utilizing stringent inclusion and exclusion criteria. The screening and selection process was meticulously conducted by a multidisciplinary team comprising three medical students, robotic experts with specialized knowledge in path-planning techniques and medical robotics, and a board-certified neurosurgeon. Each selected paper was reviewed in detail, and the findings were synthesized and reported in this review. The paper is organized around three different types of intervention tools: straight needles, steerable needles, and concentric tube robots. We provide an in-depth analysis of various path-planning algorithms applicable to both single and multi-target scenarios. Multi-target planning techniques are only discussed for straight tools as there is no published work on multi-target planning for steerable needles and concentric tube robots. Additionally, we discuss the imaging modalities employed, the critical anatomical structures considered during path planning, and the current status of research regarding its translation to clinical human studies. To the best of our knowledge and as a conclusion from this systematic review, this is the first review paper published in the last decade that reports various path-planning techniques for different types of tools for minimally invasive neurosurgical applications. Furthermore, this review outlines future trends and identifies existing technology gaps within the field. By highlighting these aspects, we aim to provide a comprehensive overview that can guide future research and development in path planning for stereotactic neurosurgery, ultimately contributing to the advancement of safer and more effective neurosurgical procedures.
Collapse
Affiliation(s)
- Reza Monfaredi
- Sheikh Zayed Institute of Pediatrics Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (E.F.); (K.C.)
- Department of Pediatrics and Radiology, George Washington University, Washington, DC 20037, USA
| | - Alondra Concepcion-Gonzalez
- School of Medicine and Health Sciences, George Washington University School of Medicine, Washington, DC 20052, USA;
| | - Jose Acosta Julbe
- Department of Orthopaedic Surgery & Orthopaedic and Arthritis Center for Outcomes Research, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Elizabeth Fischer
- Sheikh Zayed Institute of Pediatrics Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (E.F.); (K.C.)
| | | | - Kevin Cleary
- Sheikh Zayed Institute of Pediatrics Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (E.F.); (K.C.)
- Department of Pediatrics and Radiology, George Washington University, Washington, DC 20037, USA
| | - Chima Oluigbo
- Sheikh Zayed Institute of Pediatrics Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (E.F.); (K.C.)
- Department of Neurology and Pediatrics, George Washington University School of Medicine, Washington, DC 20052, USA
| |
Collapse
|
3
|
McCullough MD, Muller M, Egan TM, Buckner GD. Design Optimization and Tradeoff Analysis of an Actuated Continuum Probe for Pulmonary Nodule Localization and Resection. Bioengineering (Basel) 2024; 11:417. [PMID: 38790285 PMCID: PMC11118073 DOI: 10.3390/bioengineering11050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary nodules are abnormal tissue masses in the lungs, typically less than 3.0 cm in diameter, commonly detected during imaging of the chest and lungs. While most pulmonary nodules are not cancerous, surgical resection may be required if growth is detected between scans. This resection is typically performed without the benefit of intraoperative imaging, making it difficult for surgeons to confidently provide appropriate margins. To enhance the efficacy of wedge resection, researchers have developed a modified ultrasound imaging approach that utilizes both multiple scattering (MS) and single scattering (SS) to enhance the accuracy of margin delineation. Clinical deployment of this novel ultrasound technology requires a highly maneuverable ultrasound probe, ideally one that could be deployed and actuated with minimal invasiveness. This study details the design optimization and tradeoff analysis of an actuated continuum probe for pulmonary nodule localization and resection. This device, deployed through intercostal ports, would enable the intraoperative imaging and precise mapping of nodules for improved margin delineation and patient outcomes. To achieve this objective, multiple objective genetic algorithms (MOGAs) and a design of experiments (DOE) study are used to explore the design space and quantify key dimensional relationships and their effects on probe actuation.
Collapse
Affiliation(s)
- Madison D. McCullough
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.D.M.); (M.M.)
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.D.M.); (M.M.)
| | - Thomas M. Egan
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Gregory D. Buckner
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.D.M.); (M.M.)
| |
Collapse
|
4
|
Xu Y, Song D, Zhang Z, Wang S, Shi C. A Novel Extensible Continuum Robot with Growing Motion Capability Inspired by Plant Growth for Path-Following in Transoral Laryngeal Surgery. Soft Robot 2024; 11:171-182. [PMID: 37792330 DOI: 10.1089/soro.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
This article presents a novel extensible continuum robot (ECR) with growing motion capability for improved flexible access in transoral laryngeal procedures. The robot uses an extensible continuum joint with a staggered V-shaped notched structure as the backbone, driven by the pushing and pulling of superelastic Nitinol rods. The notched structure is optimized to achieve a wide range of extension/contraction and bending motion for the continuum joint. The successive and uniform deflection of the notches provides the continuum joint with excellent constant curvature bending characteristics. The bidirectional rod-driven approach expands the robot's extension capabilities with both pushing and pulling operations, and the superelasticity of the driving rods preserves the robot's bending performance. The ECR significantly increases motion dexterity and reachability through its variable length, which facilitates collision-free access to deep lesions by following the anatomy. To further exploit the advantages of the ECR in path-following for flexible access, a growing motion approach inspired by the plant growth process has been proposed to minimize the path deviation error. Characterization experiments are conducted to verify the performances of the proposed ECR. The extension ratio achieves up to 225.92%, and the average distal positioning error and hysteresis error values are 2.87% and 0.51% within the ±120° bending range. Compared with the typical continuum robot with a fixed length, the path-following deviation of this robot is reduced by more than 58.30%, effectively reducing the risk of collision during access. Phantom experiments validate the feasibility of the proposed concept in flexible access procedures.
Collapse
Affiliation(s)
- Yuhao Xu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Dezhi Song
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Zhiqiang Zhang
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Shuxin Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Chaoyang Shi
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Abdelaziz MEMK, Zhao J, Gil Rosa B, Lee HT, Simon D, Vyas K, Li B, Koguna H, Li Y, Demircali AA, Uvet H, Gencoglan G, Akcay A, Elriedy M, Kinross J, Dasgupta R, Takats Z, Yeatman E, Yang GZ, Temelkuran B. Fiberbots: Robotic fibers for high-precision minimally invasive surgery. SCIENCE ADVANCES 2024; 10:eadj1984. [PMID: 38241380 PMCID: PMC10798568 DOI: 10.1126/sciadv.adj1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Precise manipulation of flexible surgical tools is crucial in minimally invasive surgical procedures, necessitating a miniature and flexible robotic probe that can precisely direct the surgical instruments. In this work, we developed a polymer-based robotic fiber with a thermal actuation mechanism by local heating along the sides of a single fiber. The fiber robot was fabricated by highly scalable fiber drawing technology using common low-cost materials. This low-profile (below 2 millimeters in diameter) robotic fiber exhibits remarkable motion precision (below 50 micrometers) and repeatability. We developed control algorithms coupling the robot with endoscopic instruments, demonstrating high-resolution in situ molecular and morphological tissue mapping. We assess its practicality and safety during in vivo laparoscopic surgery on a porcine model. High-precision motion of the fiber robot delivered endoscopically facilitates the effective use of cellular-level intraoperative tissue identification and ablation technologies, potentially enabling precise removal of cancer in challenging surgical sites.
Collapse
Affiliation(s)
- Mohamed E. M. K. Abdelaziz
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Jinshi Zhao
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Bruno Gil Rosa
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Hyun-Taek Lee
- Department of Mechanical Engineering, Inha University, Incheon 22212, South Korea
| | - Daniel Simon
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| | - Khushi Vyas
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Bing Li
- The UK DRI Care Research and Technology Centre, Department of Brain Science, Imperial College London, London W12 0MN, UK
- Institute for Materials Discovery, University College London, London WC1H 0AJ, UK
| | - Hanifa Koguna
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Yue Li
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
| | - Ali Anil Demircali
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Huseyin Uvet
- Department of Mechatronics Engineering, Faculty of Engineering, Yildiz Technical University, Istanbul 34349, Turkey
| | - Gulsum Gencoglan
- Department of Dermatology and Venereology, Liv Hospital Vadistanbul, Istanbul 34396, Turkey
- Department of Skin and Venereal Diseases, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Arzu Akcay
- Department of Pathology, Faculty of Medicine, Yeni Yüzyıl University, Istanbul 34010, TR
- Pathology Laboratory, Atakent Hospital, Acibadem Mehmet Ali Aydinlar University, Istanbul 34303, TR
| | - Mohamed Elriedy
- Anesthesiology, University Hospitals of Derby and Burton, Derby, DE22 3NE, UK
| | - James Kinross
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Ranan Dasgupta
- Department of Urology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| | - Eric Yeatman
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Guang-Zhong Yang
- Institute of Medical Robots, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Burak Temelkuran
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| |
Collapse
|
6
|
Sharma S, Mohanraj TG, Amadio JP, Khadem M, Alambeigi F. A Concentric Tube Steerable Drilling Robot for Minimally Invasive Spinal Fixation of Osteoporotic Vertebrae. IEEE Trans Biomed Eng 2023; 70:3017-3027. [PMID: 37130252 PMCID: PMC10623809 DOI: 10.1109/tbme.2023.3272306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Spinal fixation with rigid pedicle screws have shown to be an effective treatment for many patients. However, this surgical option has been proved to be insufficient and will eventually fail for patients experiencing osteoporosis. This failure is mainly attributed to the lack of dexterity in the existing rigid drilling instruments and the complex anatomy of vertebrae, forcing surgeons to implant rigid pedicle screws within the osteoporotic regions of anatomy. To address this problem, in this article, we present the design, fabrication, and evaluation of a unique flexible yet structurally strong concentric tube steerable drilling robot (CT-SDR). The CT-SDR is capable of drilling smooth and accurate curved trajectories through hard tissues without experiencing buckling and failure; thus enabling the use of novel flexible pedicle screws for the next generation of spinal fixation procedures. Particularly, by decoupling the control of bending and insertion degrees of freedom (DoF) of the CT-SDR, we present a robotic system that (i) is intuitive to steer as it does not require an on-the-fly control algorithm for the bending DoF, and (ii) is able to address the contradictory requirements of structural stiffness and dexterity of a flexible robot interacting with the hard tissue. The robust and repeatable performance of the proposed CT-SDR have been experimentally evaluated by conducting various drilling procedures on simulated bone materials and animal bone samples. Experimental results indicate drilling times as low as 35 seconds for curved trajectories with 41 mm length and remarkable steering accuracy with a maximum 2% deviation error.
Collapse
|
7
|
Dragone D, Donadio FF, Mirabelli C, Cosentino C, Amato F, Zaffino P, Spadea MF, La Torre D, Merola A. Design and Experimental Validation of a 3D-Printed Embedded-Sensing Continuum Robot for Neurosurgery. MICROMACHINES 2023; 14:1743. [PMID: 37763906 PMCID: PMC10535800 DOI: 10.3390/mi14091743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
A minimally-invasive manipulator characterized by hyper-redundant kinematics and embedded sensing modules is presented in this work. The bending angles (tilt and pan) of the robot tip are controlled through tendon-driven actuation; the transmission of the actuation forces to the tip is based on a Bowden-cable solution integrating some channels for optical fibers. The viability of the real-time measurement of the feedback control variables, through optoelectronic acquisition, is evaluated for automated bending of the flexible endoscope and trajectory tracking of the tip angles. Indeed, unlike conventional catheters and cannulae adopted in neurosurgery, the proposed robot can extend the actuation and control of snake-like kinematic chains with embedded sensing solutions, enabling real-time measurement, robust and accurate control of curvature, and tip bending of continuum robots for the manipulation of cannulae and microsurgical instruments in neurosurgical procedures. A prototype of the manipulator with a length of 43 mm and a diameter of 5.5 mm has been realized via 3D printing. Moreover, a multiple regression model has been estimated through a novel experimental setup to predict the tip angles from measured outputs of the optoelectronic modules. The sensing and control performance has also been evaluated during tasks involving tip rotations.
Collapse
Affiliation(s)
- Donatella Dragone
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy; (D.D.)
| | - Francesca Federica Donadio
- Biomechatronics Laboratory, Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
| | - Chiara Mirabelli
- Biomechatronics Laboratory, Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
| | - Carlo Cosentino
- Biomechatronics Laboratory, Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
| | - Francesco Amato
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy; (D.D.)
| | - Paolo Zaffino
- Biomechatronics Laboratory, Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
| | - Maria Francesca Spadea
- Biomechatronics Laboratory, Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
| | - Domenico La Torre
- Department of Medical and Surgical Sciences, Università degli Studi Magna Græcia di Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy;
| | - Alessio Merola
- Biomechatronics Laboratory, Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Zhang S, Li F, Fu R, Li H, Zou S, Ma N, Qu S, Li J. A Versatile Continuum Gripping Robot with a Concealable Gripper. CYBORG AND BIONIC SYSTEMS 2023; 4:0003. [PMID: 37040519 PMCID: PMC10076060 DOI: 10.34133/cbsystems.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/02/2022] [Indexed: 03/05/2023] Open
Abstract
Continuum robots with their inherent compliance provide the potential for crossing narrow unstructured workspace and safely grasping various objects. However, the display gripper increases the size of the robots, and therefore, it tends to get stuck in constrained environments. This paper proposes a versatile continuum grasping robot (CGR) with a concealable gripper. The CGR can capture large objects with respect to the robot's scale using the continuum manipulator and can grasp various objects using the end concealable gripper especially in narrow and unstructured workspaces. To perform the cooperative operation of the concealable gripper and the continuum manipulator, a global kinematic model based on screw theory and a motion planning approach referred to as "multi-node synergy method" for the CGR are presented. The simulation and experimental results show that objects of different shapes and sizes can be captured by the same CGR even in complex and narrow environments. Finally, in the future, the CGR is expected to serve for satellite capture in harsh space environments such as high vacuum, strong radiation, and extreme temperatures.
Collapse
Affiliation(s)
- Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Fenggang Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Suli Zou
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Nan Ma
- Department of Mechanical, Materials, and Manufacturing Engineering, University of Nottingham, Nottingham, NG7 2QL, UK
| | - Shengyuan Qu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Li
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
A Reliable Algorithm for Obtaining All-Inclusive Inverse Kinematics’ Solutions and Redundancy Resolution of Continuum Robots. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Dupont PE, Simaan N, Choset H, Rucker C. Continuum Robots for Medical Interventions. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:847-870. [PMID: 35756186 PMCID: PMC9231641 DOI: 10.1109/jproc.2022.3141338] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Continuum robots are not constructed with discrete joints but, instead, change shape and position their tip by flexing along their entire length. Their narrow curvilinear shape makes them well suited to passing through body lumens, natural orifices, or small surgical incisions to perform minimally invasive procedures. Modeling and controlling these robots are, however, substantially more complex than traditional robots comprised of rigid links connected by discrete joints. Furthermore, there are many approaches to achieving robot flexure. Each presents its own design and modeling challenges, and to date, each has been pursued largely independently of the others. This article attempts to provide a unified summary of the state of the art of continuum robot architectures with respect to design for specific clinical applications. It also describes a unifying framework for modeling and controlling these systems while additionally explaining the elements unique to each architecture. The major research accomplishments are described for each topic and directions for the future progress needed to achieve widespread clinical use are identified.
Collapse
Affiliation(s)
- Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Nabil Simaan
- Department of Mechanical Engineering, the Department of Computer Science, and the Department of Otolaryngology, Vanderbilt University, Nashville, TN 37235 USA
| | - Howie Choset
- Mechanical Engineering Department, the Biomedical Engineering Department, and the Robotics Institute, Carnegie Mellon, Pittsburgh, PA 15213 USA
| | - Caleb Rucker
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
11
|
Design and Modeling of a Bio-Inspired Compound Continuum Robot for Minimally Invasive Surgery. MACHINES 2022. [DOI: 10.3390/machines10060468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The continuum robot is a new type of bionic robot which is widely used in the medical field. However, the current structure of the continuum robot limits its application in the field of minimally invasive surgery. In this paper, a bio-inspired compound continuum robot (CCR) combining the concentric tube continuum robot (CTR) and the notched continuum robot is proposed to design a high-dexterity minimally invasive surgical instrument. Then, a kinematic model, considering the stability of the CTR part, was established. The unstable operation of the CCR is avoided. The simulation of the workspace shows that the introduction of the notched continuum robot expands the workspace of CTR. The dexterity indexes of the robots are proposed. The simulation shows that the dexterity of the CCR is 1.472 times that of the CTR. At last, the length distribution of the CCR is optimized based on the dexterity index by using a fruit fly optimization algorithm. The simulations show that the optimized CCR is more dexterous than before. The dexterity of the CCR is increased by 1.069 times. This paper is critical for the development of high-dexterity minimally invasive surgical instruments such as those for the brain, blood vessels, heart and lungs.
Collapse
|
12
|
Nazari AA, Zareinia K, Janabi-Sharifi F. Visual servoing of continuum robots: Methods, challenges, and prospects. Int J Med Robot 2022; 18:e2384. [PMID: 35199451 DOI: 10.1002/rcs.2384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Recent advancements in continuum robotics have accentuated developing efficient and stable controllers to handle shape deformation and compliance. The control of continuum robots (CRs) using physical sensors attached to the robot, particularly in confined spaces, is difficult due to their limited accuracy in three-dimensional deflections and challenging localisation. Therefore, using non-contact imaging sensors finds noticeable importance, particularly in medical scenarios. Accordingly, given the need for direct control of the robot tip and notable uncertainties in the kinematics and dynamics of CRs, many papers have focussed on the visual servoing (VS) of CRs in recent years. METHODS The significance of this research towards safe human-robot interaction has fuelled our survey on the previous methods, current challenges, and future opportunities. RESULTS Beginning with actuation modalities and modelling approaches, the paper investigates VS methods in medical and non-medical scenarios. CONCLUSIONS Finally, challenges and prospects of VS for CRs are discussed, followed by concluding remarks.
Collapse
Affiliation(s)
- Ali A Nazari
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Kourosh Zareinia
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Farrokh Janabi-Sharifi
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Sadati SMH, Mitros Z, Henry R, Zeng L, Cruz LD, Bergeles C. Real-Time Dynamics of Concentric Tube Robots With Reduced-Order Kinematics Based on Shape Interpolation. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3151399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Wang H, Chen Z, Zuo S. Flexible Manipulator with Low-Melting-Point Alloy Actuation and Variable Stiffness. Soft Robot 2021; 9:577-590. [PMID: 34152857 DOI: 10.1089/soro.2020.0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Flexible manipulators offer significant advantages over traditional rigid manipulators in minimally invasive surgery, because they can flexibly navigate around obstacles and pass cramped or tortuous paths. However, due to the inherent low stiffness, the ability to control/obtain higher stiffness when required remains to be further explored. In this article, we propose a flexible manipulator that exploits the phase transformation property of low-melting-point alloy to hydraulically drive and change the stiffness by heating and cooling. A prototype was fabricated, and experiments were conducted to evaluate the motion characteristics, stiffness performance, and rigid-flexible transition efficiency. The experimental results demonstrate that the proposed manipulator can freely adjust heading direction in the three-dimensional space. The experimental results also indicate that it took 9.2-10.3 s for the manipulator to transform from a rigid state to a flexible state and 15.4 s to transform from a flexible state to a rigid state. The lateral stiffness and flexural stiffness of the manipulator were 95.54 and 372.1 Ncm2 in the rigid state and 7.26 and 0.78 Ncm2 in the flexible state. The gain of the lateral stiffness and flexural stiffness was 13.15 and 477.05, respectively. In the rigid state, the ultimate force without shape deformation was more than 0.98 N in the straight condition (0°) and 1.36 N in the bending condition (90°). By assembling flexible surgical tools, the manipulator can enrich the diagnosis or treatment functions, which demonstrated the potential clinical value of the proposed manipulator.
Collapse
Affiliation(s)
- Haibo Wang
- Key Lab of Mechanism Theory and Equipment Design, Ministry of Education, Tianjin University, Tianjin, China
| | - Zhiwei Chen
- Key Lab of Mechanism Theory and Equipment Design, Ministry of Education, Tianjin University, Tianjin, China
| | - Siyang Zuo
- Key Lab of Mechanism Theory and Equipment Design, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
15
|
Su B, Yu S, Yan H, Hu YD, Buzurovic I, Liu D, Liu L, Teng Y, Tang J, Wang J, Liu W. Biopsy Needle System With a Steerable Concentric Tube and Online Monitoring of Electrical Resistivity and Insertion Forces. IEEE Trans Biomed Eng 2021; 68:1702-1713. [PMID: 33606624 DOI: 10.1109/tbme.2021.3060541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Biopsies are the gold standard for clinical diagnosis. However, a discrepancy between the biopsy sample and target tissue because of misplacement of the biopsy spoon can lead to errors in the diagnosis and subsequent treatment. Thus, correctly determining whether the needle tip is in the tumor is crucial for accurate biopsy results. METHODS A biopsy needle system was designed with a steerable, flexible, and superelastic concentric tube; electrodes to monitor the electrical resistivity; and load cells to monitor the insertion force. The degrees of freedom were analyzed for two working modes: straight-line and deflection. RESULTS Experimental results showed that the system could perceive the tissue type in online based on the electrical resistivity. In addition, changes in the insertion force indicated transitions between the interfaces of adjacent tissue layers. CONCLUSION The two monitoring methods guarantee that the biopsy spoon is at the desired position inside the tumor during an operation. SIGNIFICANCE The proposed biopsy needle system can be integrated into an autonomous robotic biopsy system.
Collapse
|
16
|
Renda F, Messer C, Rucker C, Boyer F. A Sliding-Rod Variable-Strain Model for Concentric Tube Robots. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3063704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Campbell RG, Harvey RJ. How close are we to anterior robotic skull base surgery? Curr Opin Otolaryngol Head Neck Surg 2021; 29:44-52. [PMID: 33337610 DOI: 10.1097/moo.0000000000000683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW The application of robotic surgery to anterior skull base disease has yet to be defined despite the potential for improved tumour resection with less morbidity in this region. Complex anatomy and restricted access have limited the development of robotic anterior skull base surgery. RECENT FINDINGS A limited number of transoral robotic surgical anterior skull base procedures have been undertaken; however, there are significant limitations to the utilization of this technology in the anterior skull base. In this article, the advantages, disadvantages and limitations of robotic anterior skull base surgery are discussed. Currently, the major limitation is the size of the robotic endoscope and of the available instrumentation. Technological advancements that provide promise for the future development of robotic anterior skull base surgery are in development, such as single-port robots, flexible instrument systems and miniaturization and growth of minimally invasive platforms. SUMMARY Although transnasal access to the skull base is not possible with the currently available robotic systems, promising technology does exist and is in development. Robotic anterior skull base surgery promises to provide greater access to skull base disease, improve oncologic results, reduce morbidity and to reduce the ergonomic burden on the surgeon.
Collapse
Affiliation(s)
- Raewyn G Campbell
- Faculty of Medicine, Health and Human Sciences, Macquarie University
- Department of Otolaryngology - Head and Neck Surgery, Royal Prince Alfred Hospital
- Rhinology and Skull Base Research Group, St. Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| | - Richard J Harvey
- Faculty of Medicine, Health and Human Sciences, Macquarie University
- Rhinology and Skull Base Research Group, St. Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| |
Collapse
|
18
|
Recent Advances in Design and Actuation of Continuum Robots for Medical Applications. ACTUATORS 2020. [DOI: 10.3390/act9040142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traditional rigid robot application in the medical field is limited due to the limited degrees of freedom caused by their material and structure. Inspired by trunk, tentacles, and snakes, continuum robot (CR) could traverse confined space, manipulate objects in complex environment, and conform to curvilinear paths in space. The continuum robot has broad prospect in surgery due to its high dexterity, which can reach circuitous areas of the body and perform precision surgery. Recently, many efforts have been done by researchers to improve the design and actuation methods of continuum robots. Several continuum robots have been applied in clinic surgical interventions and demonstrated superiorities to conventional rigid-link robots. In this paper, we provide an overview of the current development of continuum robots, including the design principles, actuation methods, application prospect, limitations, and challenge. And we also provide perspective for the future development. We hope that with the development of material science, Engineering ethics, and manufacture technology, new methods can be applied to manufacture continuum robots for specific surgical procedures.
Collapse
|