1
|
Guidetti M, Bocci T, De Pedro Del Álamo M, Deuschl G, Fasano A, Fernandez RM, Gasca-Salas C, Hamani C, Krauss J, Kühn AA, Limousin P, Little S, Lozano A, Maiorana N, Marceglia S, Okun M, Oliveri S, Ostrem JL, Scelzo E, Schnitzler A, Starr P, Temel Y, Timmermann L, Tinkhauser G, Visser-Vandewalle V, Volkmann J, Priori A. Adaptive Deep Brain Stimulation in Parkinson's Disease: A Delphi Consensus Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.26.24312580. [PMID: 39252901 PMCID: PMC11383503 DOI: 10.1101/2024.08.26.24312580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Importance If history teaches, as cardiac pacing moved from fixed-rate to on-demand delivery in in 80s of the last century, there are high probabilities that closed-loop and adaptive approaches will become, in the next decade, the natural evolution of conventional Deep Brain Stimulation (cDBS). However, while devices for aDBS are already available for clinical use, few data on their clinical application and technological limitations are available so far. In such scenario, gathering the opinion and expertise of leading investigators worldwide would boost and guide practice and research, thus grounding the clinical development of aDBS. Observations We identified clinical and academically experienced DBS clinicians (n=21) to discuss the challenges related to aDBS. A 5-point Likert scale questionnaire along with a Delphi method was employed. 42 questions were submitted to the panel, half of them being related to technical aspects while the other half to clinical aspects of aDBS. Experts agreed that aDBS will become clinical practice in 10 years. In the present scenario, although the panel agreed that aDBS applications require skilled clinicians and that algorithms need to be further optimized to manage complex PD symptoms, consensus was reached on aDBS safety and its ability to provide a faster and more stable treatment response than cDBS, also for tremor-dominant Parkinson's disease patients and for those with motor fluctuations and dyskinesias. Conclusions and Relevance Despite the need of further research, the panel concluded that aDBS is safe, promises to be maximally effective in PD patients with motor fluctuation and dyskinesias and therefore will enter into the clinical practice in the next years, with further research focused on algorithms and markers for complex symptoms.
Collapse
Affiliation(s)
- M. Guidetti
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - T. Bocci
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | | | - G. Deuschl
- Department of Neurology University Hospital Schleswig-Holstein, Campus Kiel and Christian Albrechts-University of Kiel Kiel Germany
| | - A. Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson’s Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - R. Martinez Fernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - C. Gasca-Salas
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - C. Hamani
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Harquail Centre for Neuromodulation, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, M5T 1P5, ON, Canada
| | - J.K. Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - A. A. Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - P. Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - S. Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, California, USA
| | - A.M. Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - N.V. Maiorana
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - S. Marceglia
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - M.S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
| | - S. Oliveri
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - J. L. Ostrem
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, California, USA
| | - E. Scelzo
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - A. Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - P.A. Starr
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Y. Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - L. Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - G. Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - V. Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - J. Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - A. Priori
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| |
Collapse
|
2
|
Fiveash A, Ferreri L, Bouwer FL, Kösem A, Moghimi S, Ravignani A, Keller PE, Tillmann B. Can rhythm-mediated reward boost learning, memory, and social connection? Perspectives for future research. Neurosci Biobehav Rev 2023; 149:105153. [PMID: 37019245 DOI: 10.1016/j.neubiorev.2023.105153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Studies of rhythm processing and of reward have progressed separately, with little connection between the two. However, consistent links between rhythm and reward are beginning to surface, with research suggesting that synchronization to rhythm is rewarding, and that this rewarding element may in turn also boost this synchronization. The current mini review shows that the combined study of rhythm and reward can be beneficial to better understand their independent and combined roles across two central aspects of cognition: 1) learning and memory, and 2) social connection and interpersonal synchronization; which have so far been studied largely independently. From this basis, it is discussed how connections between rhythm and reward can be applied to learning and memory and social connection across different populations, taking into account individual differences, clinical populations, human development, and animal research. Future research will need to consider the rewarding nature of rhythm, and that rhythm can in turn boost reward, potentially enhancing other cognitive and social processes.
Collapse
Affiliation(s)
- A Fiveash
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000 Lyon, France; University of Lyon 1, Lyon, France; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia.
| | - L Ferreri
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy; Laboratoire d'Étude des Mécanismes Cognitifs, Université Lumière Lyon 2, Lyon, France
| | - F L Bouwer
- Department of Psychology, Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - A Kösem
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000 Lyon, France
| | - S Moghimi
- Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, INSERM U1105, Amiens, France
| | - A Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - P E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - B Tillmann
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000 Lyon, France; University of Lyon 1, Lyon, France; Laboratory for Research on Learning and Development, LEAD - CNRS UMR5022, Université de Bourgogne, Dijon, France
| |
Collapse
|
3
|
Marceglia S, Guidetti M, Harmsen IE, Loh A, Meoni S, Foffani G, Lozano AM, Volkmann J, Moro E, Priori A. Deep brain stimulation: is it time to change gears by closing the loop? J Neural Eng 2021; 18. [PMID: 34678794 DOI: 10.1088/1741-2552/ac3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
Objective.Adaptive deep brain stimulation (aDBS) is a form of invasive stimulation that was conceived to overcome the technical limitations of traditional DBS, which delivers continuous stimulation of the target structure without considering patients' symptoms or status in real-time. Instead, aDBS delivers on-demand, contingency-based stimulation. So far, aDBS has been tested in several neurological conditions, and will be soon extensively studied to translate it into clinical practice. However, an exhaustive description of technical aspects is still missing.Approach.in this topical review, we summarize the knowledge about the current (and future) aDBS approach and control algorithms to deliver the stimulation, as reference for a deeper undestending of aDBS model.Main results.We discuss the conceptual and functional model of aDBS, which is based on the sensing module (that assesses the feedback variable), the control module (which interpretes the variable and elaborates the new stimulation parameters), and the stimulation module (that controls the delivery of stimulation), considering both the historical perspective and the state-of-the-art of available biomarkers.Significance.aDBS modulates neuronal circuits based on clinically relevant biofeedback signals in real-time. First developed in the mid-2000s, many groups have worked on improving closed-loop DBS technology. The field is now at a point in conducting large-scale randomized clinical trials to translate aDBS into clinical practice. As we move towards implanting brain-computer interfaces in patients, it will be important to understand the technical aspects of aDBS.
Collapse
Affiliation(s)
- Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sara Meoni
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jens Volkmann
- Department of Neurology, University of Wurzburg, Wurzburg, Germany
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,ASST Santi Paolo e Carlo, 20142 Milan, Italy
| |
Collapse
|
4
|
Guidetti M, Marceglia S, Loh A, Harmsen IE, Meoni S, Foffani G, Lozano AM, Moro E, Volkmann J, Priori A. Clinical perspectives of adaptive deep brain stimulation. Brain Stimul 2021; 14:1238-1247. [PMID: 34371211 DOI: 10.1016/j.brs.2021.07.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/01/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The application of stimulators implanted directly over deep brain structures (i.e., deep brain stimulation, DBS) was developed in the late 1980s and has since become a mainstream option to treat several neurological conditions. Conventional DBS involves the continuous stimulation of the target structure, which is an approach that cannot adapt to patients' changing symptoms or functional status in real-time. At the beginning of 2000, a more sophisticated form of stimulation was conceived to overcome these limitations. Adaptive deep brain stimulation (aDBS) employs on-demand, contingency-based stimulation to stimulate only when needed. So far, aDBS has been tested in several pathological conditions in animal and human models. OBJECTIVE To review the current findings obtained from application of aDBS to animal and human models that highlights effects on motor, cognitive and psychiatric behaviors. FINDINGS while aDBS has shown promising results in the treatment of Parkinson's disease and essential tremor, the possibility of its use in less common DBS indications, such as cognitive and psychiatric disorders (Alzheimer's disease, obsessive-compulsive disorder, post-traumatic stress disorder) is still challenging. CONCLUSIONS While aDBS seems to be effective to treat movement disorders (Parkinson's disease and essential tremor), its role in cognitive and psychiatric disorders is to be determined, although neurophysiological assumptions are promising.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì, 8, 20142, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy.
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy.
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Sara Meoni
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì, 8, 20142, Milan, Italy; Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France; Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France.
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France; Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France.
| | - Jens Volkmann
- Department of Neurology, University of Wurzburg, Germany.
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì, 8, 20142, Milan, Italy; ASST Santi Paolo e Carlo, Milan, Italy.
| |
Collapse
|
5
|
Interaction of Indirect and Hyperdirect Pathways on Synchrony and Tremor-Related Oscillation in the Basal Ganglia. Neural Plast 2021; 2021:6640105. [PMID: 33790961 PMCID: PMC7984917 DOI: 10.1155/2021/6640105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
Low-frequency oscillatory activity (3-9 Hz) and increased synchrony in the basal ganglia (BG) are recognized to be crucial for Parkinsonian tremor. However, the dynamical mechanism underlying the tremor-related oscillations still remains unknown. In this paper, the roles of the indirect and hyperdirect pathways on synchronization and tremor-related oscillations are considered based on a modified Hodgkin-Huxley model. Firstly, the effects of indirect and hyperdirect pathways are analysed individually, which show that increased striatal activity to the globus pallidus external (GPe) or strong cortical gamma input to the subthalamic nucleus (STN) is sufficient to promote synchrony and tremor-related oscillations in the BG network. Then, the mutual effects of both pathways are analysed by adjusting the related currents simultaneously. Our results suggest that synchrony and tremor-related oscillations would be strengthened if the current of these two paths are in relative imbalance. And the network tends to be less synchronized and less tremulous when the frequency of cortical input is in the theta band. These findings may provide novel treatments in the cortex and striatum to alleviate symptoms of tremor in Parkinson's disease.
Collapse
|
6
|
Marceglia S, Prenassi M, Galbiati TF, Porta M, Zekaj E, Priori A, Servello D. Thalamic Local Field Potentials Are Related to Long-Term DBS Effects in Tourette Syndrome. Front Neurol 2021; 12:578324. [PMID: 33658970 PMCID: PMC7917178 DOI: 10.3389/fneur.2021.578324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Local field potential (LFP) recordings helped to clarify the pathophysiology of Tourette syndrome (TS) and to define new strategies for deep brain stimulation (DBS) treatment for refractory TS, based on the delivery of stimulation in accordance with changes in the electrical activity of the DBS target area. However, there is little evidence on the relationship between LFP pattern and DBS outcomes in TS. Objective: To investigate the relationship between LFP oscillations and DBS effects on tics and on obsessive compulsive behavior (OCB) comorbidities. Methods: We retrospectively analyzed clinical data and LFP recordings from 17 patients treated with DBS of the centromedian-parafascicular/ventralis oralis (CM-Pf/VO) complex, and followed for more several years after DBS in the treating center. In these patients, LFPs were recorded either in the acute setting (3–5 days after DBS electrode implant) or in the chronic setting (during impulse generator replacement surgery). LFP oscillations were correlated with the Yale Global Tic Severity Scale (YGTSS) and the Yale–Brown Obsessive–Compulsive Scale (Y-BOCS) collected at baseline (before DBS surgery), 1 year after DBS, and at the last follow-up available. Results: We found that, at baseline, in the acute setting, the power of the oscillations included in the 5–15-Hz band, previously identified as TS biomarker, is correlated with the pathophysiology of tics, being significantly correlated with total YGTSS before DBS (Spearman's ρ = 0.701, p = 0.011). The power in the 5–15-Hz band was also correlated with the improvement in Y-BOCS after 1 year of DBS (Spearman's ρ = −0.587, p = 0.045), thus suggesting a relationship with the DBS effects on OCB comorbidities. Conclusions: Our observations confirm that the low-frequency (5–15-Hz) band is a significant biomarker of TS, being related to the severity of tics and, also to the long-term response on OCBs. This represents a step toward both the understanding of the mechanisms underlying DBS effects in TS and the development of adaptive DBS strategies.
Collapse
Affiliation(s)
- Sara Marceglia
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy.,Unità Operativa Neurofisiopatologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Prenassi
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy.,Unità Operativa Neurofisiopatologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso F Galbiati
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| | - Mauro Porta
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| | - Edvin Zekaj
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Domenico Servello
- Functional Neurosurgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico Galeazzi Hospital, Milan, Italy
| |
Collapse
|
7
|
Barroso-García V, Gutiérrez-Tobal GC, Kheirandish-Gozal L, Vaquerizo-Villar F, Álvarez D, Del Campo F, Gozal D, Hornero R. Bispectral analysis of overnight airflow to improve the pediatric sleep apnea diagnosis. Comput Biol Med 2020; 129:104167. [PMID: 33385706 DOI: 10.1016/j.compbiomed.2020.104167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Pediatric Obstructive Sleep Apnea (OSA) is a respiratory disease whose diagnosis is performed through overnight polysomnography (PSG). Since it is a complex, time-consuming, expensive, and labor-intensive test, simpler alternatives are being intensively sought. In this study, bispectral analysis of overnight airflow (AF) signal is proposed as a potential approach to replace PSG when indicated. Thus, our objective was to characterize AF through bispectrum, and assess its performance to diagnose pediatric OSA. This characterization was conducted using 13 bispectral features from 946 AF signals. The oxygen desaturation index ≥3% (ODI3), a common clinical measure of OSA severity, was also obtained to evaluate its complementarity to the AF bispectral analysis. The fast correlation-based filter (FCBF) and a multi-layer perceptron (MLP) were used for subsequent automatic feature selection and pattern recognition stages. FCBF selected 3 bispectral features and ODI3, which were used to train a MLP model with ability to estimate apnea-hypopnea index (AHI). The model reached 82.16%, 82.49%, and 90.15% accuracies for the common AHI cut-offs 1, 5, and 10 events/h, respectively. The different bispectral approaches used to characterize AF in children provided complementary information. Accordingly, bispectral analysis showed that the occurrence of apneic events decreases the non-gaussianity and non-linear interaction of the AF harmonic components, as well as the regularity of the respiratory patterns. Moreover, the bispectral information from AF also showed complementarity with ODI3. Our findings suggest that AF bispectral analysis may serve as a useful tool to simplify the diagnosis of pediatric OSA, particularly for children with moderate-to-severe OSA.
Collapse
Affiliation(s)
- Verónica Barroso-García
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain.
| | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA
| | - Fernando Vaquerizo-Villar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain
| | - Daniel Álvarez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain; Sleep-Ventilation Unit, Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - Félix Del Campo
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain; Sleep-Ventilation Unit, Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - David Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain
| |
Collapse
|
8
|
Tacchino G, Coelli S, Reali P, Galli M, Bianchi AM. Bicoherence Interpretation in EEG Requires Signal to Noise Ratio Quantification: An Application to Sensorimotor Rhythms. IEEE Trans Biomed Eng 2020; 67:2696-2704. [DOI: 10.1109/tbme.2020.2969278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Li Z, Dong Z, Bai X, Liu M. Characterizing the orientation selectivity in V1 and V4 of macaques by quadratic phase coupling. J Neural Eng 2020; 17:036028. [PMID: 32480396 DOI: 10.1088/1741-2552/ab9843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Orientation selectivity is one of the significant characteristics of neurons in the primary visual cortex (V1). Some neurons in extrastriate visual cortical areas also exhibit certain orientation selectivity. But it is still not well understood that how the orientation selectivity generates. Most previous studies about the orientation selectivity are based on the spike firing rate. However, the spikes are prone to be biased by the detection and sorting algorithms. Then, in this paper, the local field potential (LFP) is adopted to investigate the mechanism of orientation selectivity. APPROACH We used the quadratic phase coupling (QPC), which was calculated by wavelet bicoherence, to describe the characteristics of orientation selectivity available in V1 and V4. The raw wideband neural signals were recorded by two chronically implanted multi-electrode arrays, which were placed in V1 and V4 respectively in two macaques performing a selective visual attention task. MAIN RESULTS There is a strong correlation between the total bicoherence (TotalBic), which is a quantization for the overall QPC of frequency pairs in gamma band, and the grating orientation. Furthermore, the QPC distribution at the non-preferred orientation is mainly concentrated in the low frequencies (30-40 Hz) of gamma; while the QPC distribution at the preferred orientation concentrates in both the low frequencies and high frequencies (60-80 Hz) of gamma. In addition, the TotalBic of the gamma-band LFP between V1 and V4 varies with the grating orientations, indicating that the QPC is available in the feedforward link and the gamma-band LFP in V1 modulates the QPC in V4. SIGNIFICANCE The QPC reflects the orientations of the sinusoidal grating and describes the interaction of gamma-band LFP between different brain regions. Our results suggest that the QPC is an alternative avenue to explore the mechanism for generating orientation selectivity of visual neurons effectively.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, People's Republic of China. Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Coelli S, Tacchino G, Visani E, Panzica F, Franceschetti S, Bianchi AM. Higher order spectral analysis of scalp EEG activity reveals non-linear behavior during rhythmic visual stimulation. J Neural Eng 2019; 16:056028. [DOI: 10.1088/1741-2552/ab296e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Bočková M, Rektor I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin Neurophysiol 2019; 130:239-247. [DOI: 10.1016/j.clinph.2018.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/26/2022]
|
12
|
Malekmohammadi M, Shahriari Y, AuYong N, O’Keeffe A, Bordelon Y, Hu X, Pouratian N. Pallidal stimulation in Parkinson disease differentially modulates local and network β activity. J Neural Eng 2018; 15:056016. [PMID: 29972146 PMCID: PMC6125208 DOI: 10.1088/1741-2552/aad0fb] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
β hypersynchrony within the basal ganglia-thalamocortical (BGTC) network has been suggested as a hallmark of Parkinson disease (PD) pathophysiology. Subthalamic nucleus (STN)-DBS has been shown to alter cortical-subcortical synchronization. It is unclear whether this is a generalizable phenomenon of therapeutic stimulation across targets. OBJECTIVES We aimed to evaluate whether DBS of the globus pallidus internus (GPi) results in cortical-subcortical desynchronization, despite the lack of monosynaptic connections between GPi and sensorimotor cortex. APPROACH We recorded local field potentials from the GPi and electrocorticographic signals from the ipsilateral sensorimotor cortex, off medications in nine PD patients, undergoing DBS implantation. We analyzed both local oscillatory power and functional connectivity (coherence and debiased weighted phase lag index (dWPLI)) with and without stimulation while subjects were resting with eyes open. MAIN RESULTS DBS significantly suppressed low β power within the GPi (-26.98% ± 15.14%), p < 0.05) without modulation of sensorimotor cortical β power (low or high). In contrast, stimulation suppressed pallidocortical high β coherence (-38.89% ± 6.19%, p = 0.02) and dWPLI (-61.40% ± 8.75%, p = 0.02). Changes in cortical-subcortical functional connectivity were spatially specific to the motor cortex. SIGNIFICANCE We highlight the role of DBS in desynchronizing network activity, particularly in the high β band. The current study of GPi-DBS suggests these network-level effects are not necessarily dependent and potentially may be independent of the hyperdirect pathway. Importantly, these results draw a sharp distinction between the potential significance of low β oscillations locally within the basal ganglia and high β oscillations across the BGTC motor circuit.
Collapse
Affiliation(s)
| | - Yalda Shahriari
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, RI, USA
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Nicholas AuYong
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Andrew O’Keeffe
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Xiao Hu
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Pallidal deep brain stimulation modulates excessive cortical high β phase amplitude coupling in Parkinson disease. Brain Stimul 2018; 11:607-617. [PMID: 29422442 DOI: 10.1016/j.brs.2018.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and globus pallidus internus (GPi) are equally efficacious in the management of Parkinson disease (PD). Studies of STN-DBS have revealed a therapeutic reduction in excessive cortical β-γ phase-amplitude coupling (PAC). It is unclear whether this is specific to STN-DBS and potentially mediated by modulation of the hyperdirect pathway or if it is a generalizable mechanism seen with DBS of other targets. Moreover, it remains unclear how cortical signals are differentially modulated by movement versus therapy. To clarify, the effects of GPi-DBS and movement on cortical β power and β-γ PAC were examined. METHODS Right sensorimotor electrocorticographic signals were recorded in 10 PD patients undergoing GPi-DBS implantation surgery. We evaluated cortical β power and β-γ PAC during blocks of rest and contralateral hand movement (finger tapping) with GPi-DBS off and on. RESULTS Movement suppressed cortical low β power (P = 0.008) and high β-γ PAC (P = 0.028). Linear mixed effect modeling (LMEM) showed that power in low and high β bands are differentially modulated by movement (P = 0.022). GPi-DBS also results in a significant suppression of high β-γ PAC but without power modulation in either β sub-band (P = 0.008). Cortical high β-γ PAC is significantly correlated with severity of bradykinesia (Rho = 0.59, P = 0.045) and changes proportionally with therapeutic improvement (Rho = 0.61, P = 0.04). CONCLUSIONS Similar to STN-DBS, GPi-DBS reduces motor cortical β-γ PAC, like that also reported with dopaminergic mediations, suggesting it is a generalizable symptom biomarker in PD, independent of therapeutic target or proximity to the hyperdirect pathway.
Collapse
|
14
|
Marceglia S, Rosa M, Servello D, Porta M, Barbieri S, Moro E, Priori A. Adaptive Deep Brain Stimulation (aDBS) for Tourette Syndrome. Brain Sci 2017; 8:E4. [PMID: 29295486 PMCID: PMC5789335 DOI: 10.3390/brainsci8010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022] Open
Abstract
Deep brain stimulation (DBS) has emerged as a novel therapy for the treatment of several movement and neuropsychiatric disorders, and may also be suitable for the treatment of Tourette syndrome (TS). The main DBS targets used to date in patients with TS are located within the basal ganglia-thalamo-cortical circuit involved in the pathophysiology of this syndrome. They include the ventralis oralis/centromedian-parafascicular (Vo/CM-Pf) nucleus of the thalamus and the nucleus accumbens. Current DBS treatments deliver continuous electrical stimulation and are not designed to adapt to the patient's symptoms, thereby contributing to unwanted side effects. Moreover, continuous DBS can lead to rapid battery depletion, which necessitates frequent battery replacement surgeries. Adaptive deep brain stimulation (aDBS), which is controlled based on neurophysiological biomarkers, is considered one of the most promising approaches to optimize clinical benefits and to limit the side effects of DBS. aDBS consists of a closed-loop system designed to measure and analyse a control variable reflecting the patient's clinical condition and to modify on-line stimulation settings to improve treatment efficacy. Local field potentials (LFPs), which are sums of pre- and post-synaptic activity arising from large neuronal populations, directly recorded from electrodes implanted for DBS can theoretically represent a reliable correlate of clinical status in patients with TS. The well-established LFP-clinical correlations in patients with Parkinson's disease reported in the last few years provide the rationale for developing and implementing new aDBS devices whose efficacies are under evaluation in humans. Only a few studies have investigated LFP activity recorded from DBS target structures and the relationship of this activity to clinical symptoms in TS. Here, we review the available literature supporting the feasibility of an LFP-based aDBS approach in patients with TS. In addition, to increase such knowledge, we report explorative findings regarding LFP data recently acquired and analysed in patients with TS after DBS electrode implantation at rest, during voluntary and involuntary movements (tics), and during ongoing DBS. Data available up to now suggest that patients with TS have oscillatory patterns specifically associated with the part of the brain they are recorded from, and thereby with clinical manifestations. The Vo/CM-Pf nucleus of the thalamus is involved in movement execution and the pathophysiology of TS. Moreover, the oscillatory patterns in TS are specifically modulated by DBS treatment, as reflected by improvements in TS symptoms. These findings suggest that LFPs recorded from DBS targets may be used to control new aDBS devices capable of adaptive stimulation responsive to the symptoms of TS.
Collapse
Affiliation(s)
- Sara Marceglia
- Clinical Center for Neurostimulation, Neurotechnology and Movement Disorders, Fondazione Istituto Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan 20122, Italy.
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste 34127, Italy.
| | - Manuela Rosa
- Clinical Center for Neurostimulation, Neurotechnology and Movement Disorders, Fondazione Istituto Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan 20122, Italy.
| | - Domenico Servello
- Functional Neurosurgery Unit, Galeazzi Hospital and Tourette Center, Milan 20161, Italy.
| | - Mauro Porta
- Functional Neurosurgery Unit, Galeazzi Hospital and Tourette Center, Milan 20161, Italy.
| | - Sergio Barbieri
- Clinical Center for Neurostimulation, Neurotechnology and Movement Disorders, Fondazione Istituto Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan 20122, Italy.
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire de Grenoble, CS 10217, 38043 Grenoble, France.
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan 20142 , Italy.
- Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan 20142, Italy.
| |
Collapse
|
15
|
von Papen M, Dafsari H, Florin E, Gerick F, Timmermann L, Saur J. Phase-coherence classification: A new wavelet-based method to separate local field potentials into local (in)coherent and volume-conducted components. J Neurosci Methods 2017; 291:198-212. [DOI: 10.1016/j.jneumeth.2017.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/26/2022]
|
16
|
Alam M, Rumpel R, Jin X, von Wrangel C, Tschirner SK, Krauss JK, Grothe C, Ratzka A, Schwabe K. Altered somatosensory cortex neuronal activity in a rat model of Parkinson's disease and levodopa-induced dyskinesias. Exp Neurol 2017; 294:19-31. [PMID: 28445715 DOI: 10.1016/j.expneurol.2017.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 01/10/2023]
Abstract
Several findings support the concept that sensorimotor integration is disturbed in Parkinson's disease (PD) and in levodopa-induced dyskinesias. In this study, we explored the neuronal firing activity of excitatory pyramidal cells and inhibitory interneurons in the forelimb region of the primary somatosensory cortex (S1FL-Ctx), along with its interaction with oscillatory activity of the primary motor cortex (MCtx) in 6-hydroxydopamine lesioned hemiparkinsonian (HP) and levodopa-primed dyskinetic (HP-LID) rats as compared to controls under urethane (1.4g/kg, i.p.) anesthesia. Further, gene expression patterns of distinct markers for inhibitory GABAergic neurons were analyzed in both cortical regions. While firing frequency and burst activity of S1FL-Ctx inhibitory interneurons were reduced in HP and HP-LID rats, measures of irregularity were enhanced in pyramidal cells. Further, enhanced coherence of distinct frequency bands of the theta/alpha, high-beta, and gamma frequency, together with enhanced synchronization of putative pyramidal cells and interneurons with MCtx oscillatory activity were observed. While GABA level was similar, gene expression levels of interneuron and GABAergic markers in S1FL-Ctx and MCtx of HP-LID rats differed to some extent. Our study shows that in a rat model of PD with dyskinesias, neuronal activity in putative interneurons was reduced, which was accompanied by high beta and gamma coherence between S1FL-Ctx and MCtx, together with changes in gene expression, indicating maladaptive neuroplasticity after long term levodopa treatment.
Collapse
Affiliation(s)
- Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| | - Regina Rumpel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Xingxing Jin
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Sarah K Tschirner
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany; Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany; Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Germany
| | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany; Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Bočková M, Chládek J, Jurák P, Halámek J, Rapcsak SZ, Baláž M, Chrastina J, Rektor I. Oscillatory reactivity to effortful cognitive processing in the subthalamic nucleus and internal pallidum: a depth electrode EEG study. J Neural Transm (Vienna) 2017; 124:841-852. [DOI: 10.1007/s00702-017-1719-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
18
|
Blumenfeld Z, Koop MM, Prieto TE, Shreve LA, Velisar A, Quinn EJ, Trager MH, Brontë-Stewart H. Sixty-hertz stimulation improves bradykinesia and amplifies subthalamic low-frequency oscillations. Mov Disord 2016; 32:80-88. [PMID: 27859579 DOI: 10.1002/mds.26837] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/19/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The objective of this study was to investigate the hypothesis that attenuation of subthalamic nucleus (STN) alpha-/beta-band oscillations is causal to improvement in bradykinesia. METHODS STN local field potentials from a sensing neurostimulator (Activa® PC+S; Medtronic, Inc.) and kinematics from wearable sensors were recorded simultaneously during 60- and 140-Hz deep brain stimulation (DBS) in 9 freely moving PD subjects (15 STNs) performing repetitive wrist flexion-extension. Kinematics were recorded during 20-Hz DBS in a subgroup. RESULTS Both 60- and 140-Hz DBS improved the angular velocity and frequency of movement (P = 0.002 and P = 0.029, respectively, for 60 Hz; P < 0.001 and P < 0.001, respectively, for 140 Hz), but 60-Hz DBS did not attenuate beta-band power (13-30 Hz). In fact, 60-Hz DBS amplified alpha/low-beta (11-15 Hz, P = 0.007) and attenuated high-beta power (19-27 Hz, P < 0.001), whereas 140-Hz DBS broadly attenuated beta power (15-30 Hz, P < 0.001). Only 60-Hz DBS improved the regularity of angular range (P = 0.046) and 20-Hz DBS did not worsen bradykinesia. There was no correlation between beta-power modulation and bradykinesia. CONCLUSIONS These novel results obtained from freely moving PD subjects demonstrated that both 140- and 60-Hz DBS improved bradykinesia and attenuated high beta oscillations; however, 60-Hz DBS amplified a subband of alpha/low-beta oscillations, and DBS at a beta-band frequency did not worsen bradykinesia. Based on recent literature, we suggest that both 140- and 60-Hz DBS decouple the cortico-STN hyperdirect pathway, whereas 60-Hz DBS increases coupling within striato-STN circuitry. These results inform future algorithms for closed-loop DBS in PD. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zack Blumenfeld
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Mandy Miller Koop
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Thomas E Prieto
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Lauren A Shreve
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Anca Velisar
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Emma J Quinn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Megan H Trager
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Helen Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA.,Department of Neurosurgery, Stanford University, Stanford, California, USA
| |
Collapse
|
19
|
Marceglia S, Bianchi AM, Foffani G, Priori A, Cerutti S. Application of higher-order spectral analysis to local field potentials recorded in patients treated with deep brain stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:5549-52. [PMID: 26737549 DOI: 10.1109/embc.2015.7319649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Local field potentials (LFPs) recorded from implanted deep brain electrodes demonstrated the oscillatory nature of human basal ganglia. LFP rhythms were mainly characterized by means od power spectral analysis, thus loosing information related to rhythm phase synchronization and to event related phase modulations. Because the application of higher-order spectral analysis methodology can overcome such limitation, here we review the present applications of bispectral and cross-bispectral analysis to LFP recordings. The results obtained up to now showed that higher-order spectral analysis was able to clarify detect different rhythm synchronizations and interactions characterizing different pathologies and patient's states.
Collapse
|
20
|
Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson’s disease with levodopa-induced dyskinesias. Exp Brain Res 2016; 234:1105-18. [DOI: 10.1007/s00221-015-4532-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
|
21
|
Davidson CM, de Paor AM, Cagnan H, Lowery MM. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation. IEEE Trans Biomed Eng 2015; 63:86-96. [PMID: 26340768 DOI: 10.1109/tbme.2015.2475166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.
Collapse
|
22
|
Bour LJ, Lourens MAJ, Verhagen R, de Bie RMA, van den Munckhof P, Schuurman PR, Contarino MF. Directional Recording of Subthalamic Spectral Power Densities in Parkinson's Disease and the Effect of Steering Deep Brain Stimulation. Brain Stimul 2015; 8:730-41. [PMID: 25753176 DOI: 10.1016/j.brs.2015.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND A new 32-contacts deep brain stimulation (DBS) lead, capable of directionally steering stimulation, was tested intraoperatively. OBJECTIVE The aim of this pilot study was to perform recordings from the multidirectional contacts and to investigate the effect of directional current steering on the local field potentials (LFPs). METHODS In eight patients with Parkinson's disease, after standard microelectrode recording and clinical testing, the new lead was temporarily implanted. The 32-channel LFP recordings were measured simultaneously at different depths and directions before and after directional stimulation. RESULTS The spatial distribution of LFPs power spectral densities across the contact array at baseline marked the borders of the subthalamic nucleus (STN) with a significant increase in beta power and with a mean accuracy of approximately 0.6 mm in four patients.The power in the 18.5-30 Hz frequency band varied across different directions in all patients. In the three cases that showed improvement of rigidity, this was higher when current was steered toward the direction with the highest LFP power in the beta band. Subthalamic LFPs in six patients showed a differential frequency-dependent suppression/enhancement of the oscillatory activity in the 10-45 Hz frequency band after four different 'steering' modes as compared to ring mode, suggesting a higher specificity. CONCLUSIONS Through a new 32-contact DBS lead it is possible to record simultaneous subthalamic LFPs at different depths and directions, providing confirmation of adequate lead placement and multidirectional spatial-temporal information potentially related to pathological subthalamic electrical activity and to the effect of stimulation. Although further research is needed, this may improve the efficiency of steering stimulation.
Collapse
Affiliation(s)
- L J Bour
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, the Netherlands.
| | - M A J Lourens
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - R Verhagen
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - R M A de Bie
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - P van den Munckhof
- Department of Neurosurgery, Academic Medical Center, University of Amsterdam, the Netherlands
| | - P R Schuurman
- Department of Neurosurgery, Academic Medical Center, University of Amsterdam, the Netherlands
| | - M F Contarino
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, the Netherlands; Department of Neurology, Haga Teaching Hospital, the Hague, the Netherlands.
| |
Collapse
|
23
|
Marceglia S, Fumagalli M, Priori A. What neurophysiological recordings tell us about cognitive and behavioral functions of the human subthalamic nucleus. Expert Rev Neurother 2014; 11:139-49. [DOI: 10.1586/ern.10.184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Lainscsek C, Hernandez ME, Weyhenmeyer J, Sejnowski TJ, Poizner H. Non-linear dynamical analysis of EEG time series distinguishes patients with Parkinson's disease from healthy individuals. Front Neurol 2013; 4:200. [PMID: 24376436 PMCID: PMC3858815 DOI: 10.3389/fneur.2013.00200] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/27/2013] [Indexed: 12/04/2022] Open
Abstract
The pathophysiology of Parkinson’s disease (PD) is known to involve altered patterns of neuronal firing and synchronization in cortical-basal ganglia circuits. One window into the nature of the aberrant temporal dynamics in the cerebral cortex of PD patients can come from analysis of the patients electroencephalography (EEG). Rather than using spectral-based methods, we used data models based on delay differential equations (DDE) as non-linear time-domain classification tools to analyze EEG recordings from PD patients on and off dopaminergic therapy and healthy individuals. Two sets of 50 1-s segments of 64-channel EEG activity were recorded from nine PD patients on and off medication and nine age-matched controls. The 64 EEG channels were grouped into 10 clusters covering frontal, central, parietal, and occipital brain regions for analysis. DDE models were fitted to individual trials, and model coefficients and error were used as features for classification. The best models were selected using repeated random sub-sampling validation and classification performance was measured using the area under the ROC curve A′. In a companion paper, we show that DDEs can uncover hidden dynamical structure from short segments of simulated time series of known dynamical systems in high noise regimes. Using the same method for finding the best models, we found here that even short segments of EEG data in PD patients and controls contained dynamical structure, and moreover, that PD patients exhibited a greater dynamic range than controls. DDE model output on the means from one set of 50 trials provided nearly complete separation of PD patients off medication from controls: across brain regions, the area under the receiver-operating characteristic curves, A′, varied from 0.95 to 1.0. For distinguishing PD patients on vs. off medication, classification performance A′ ranged from 0.86 to 1.0 across brain regions. Moreover, the generalizability of the model to the second set of 50 trials was excellent, with A′ ranging from 0.81 to 0.94 across brain regions for controls vs. PD off medication, and from 0.62 to 0.82 for PD on medication vs. off. Finally, model features significantly predicted individual patients’ motor severity, as assessed with standard clinical rating scales.
Collapse
Affiliation(s)
- Claudia Lainscsek
- Institute for Neural Computation, University of California San Diego , La Jolla, CA , USA ; Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies , La Jolla, CA , USA
| | - Manuel E Hernandez
- Institute for Neural Computation, University of California San Diego , La Jolla, CA , USA
| | - Jonathan Weyhenmeyer
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies , La Jolla, CA , USA ; School of Medicine, Indiana University , Indianapolis, IN , USA
| | - Terrence J Sejnowski
- Institute for Neural Computation, University of California San Diego , La Jolla, CA , USA ; Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies , La Jolla, CA , USA
| | - Howard Poizner
- Institute for Neural Computation, University of California San Diego , La Jolla, CA , USA ; Graduate Program in Neurosciences, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
25
|
Kang G, Lowery MM. Interaction of Oscillations, and Their Suppression via Deep Brain Stimulation, in a Model of the Cortico-Basal Ganglia Network. IEEE Trans Neural Syst Rehabil Eng 2013; 21:244-53. [PMID: 23476006 DOI: 10.1109/tnsre.2013.2241791] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guiyeom Kang
- School of Electrical, Electronic and Communications Engineering, University College Dublin, Ireland.
| | | |
Collapse
|
26
|
Deep brain electrophysiological recordings provide clues to the pathophysiology of Tourette syndrome. Neurosci Biobehav Rev 2013; 37:1063-8. [PMID: 23333267 DOI: 10.1016/j.neubiorev.2013.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 12/13/2012] [Accepted: 01/03/2013] [Indexed: 01/12/2023]
Abstract
Although ample evidence suggests that high-frequency deep brain stimulation (DBS) is an effective therapy in patients with Tourette syndrome (TS), its pathophysiology and the neurophysiological mechanisms underlying these benefits remain unclear. The DBS targets mainly used to date in TS are located within the basal ganglia-thalamo-cortical circuit compromised in this syndrome: the medial and ventral thalamic nuclei, which are way stations within the circuit, the globus pallidus and the nucleus accumbens. Neuronal activity can be electrophysiologically recorded from deep brain structures during DBS surgery (intraoperative microrecordings) or within few days after DBS electrode implantation (local field potentials, LFPs). Recordings from the thalamus in patients with TS showed that the power in low-frequency oscillations (2-15 Hz) was higher than power in high frequency oscillations (<45 Hz) and that activity in gamma band (25-45 Hz) increases when patients' clinical status improved. Effective thalamic DBS for tic reduction seems to increase high frequency band oscillations (25-45 Hz). The same oscillatory pattern persists after DBS for 1 year, therefore showing that in TS DBS does not induce persistent neuroplastic changes in the neural activity in the stimulated structures. Neurophysiological recordings from deep brain structures suggest that tics originate not from the cortex but from neuronal dysfunction in deep brain structures such as the thalamus and globus pallidus. In conclusion, DBS can induce its beneficial effects in TS by modulating specific neural rhythms in the cortico-basal ganglia thalamic network. DBS could reduce tics related increased low-frequency activity by shifting the basal ganglia-thalamic oscillation power to higher frequencies.
Collapse
|
27
|
Little S, Pogosyan A, Kuhn AA, Brown P. β band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp Neurol 2012; 236:383-8. [PMID: 22572590 PMCID: PMC3400051 DOI: 10.1016/j.expneurol.2012.04.024] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 11/26/2022]
Abstract
Abnormal oscillatory activity in the basal ganglia is increasingly implicated in the pathophysiology of Parkinson's disease. Such activity is recorded in patients in the form of oscillations in the local field potential (LFP) picked up in the subthalamic nucleus. Previous studies have focused on correlations between features of the time averaged power or amplitude spectrum of the LFP and the clinical state, either off medication or in response to levodopa. However, average spectral densities do not take account of time variant spectral properties and we hypothesised that these dynamic properties of the spectrum of the LFP would contain additional information about clinical state. Here we assess the variability in LFP amplitude over time using the coefficient of variation (CV), evaluating this with regard to clinical state off medication and in response to levodopa in two datasets. The CV of activity in the high beta frequency band was found to be correlated with clinical state off levodopa (rho=-0.59, p<0.001) and this was shown to be complementary, rather than redundant, to spectral amplitude in a multiple regression analysis, selective for rigidity-bradykinesia and highly focal. Similarly, a strong correlation was found between change in clinical scores and change in high beta CV following levodopa (rho=-0.66, p=0.004). This too was selective for rigidity-bradykinesia and non-redundant to spectral power in a multiple regression model. Our results indicate that temporal stability in the beta band is correlated with rigidity-bradykinesia. It is suggested that loss of beta reactivity is deleterious to basal ganglia function over and above any concomitant change in absolute level of beta synchrony. The CV of LFP beta band amplitude may potentially provide an additional index of clinical state suitable for feedback control in closed loop stimulation therapy.
Collapse
Affiliation(s)
- S Little
- Department of Clinical Neurology, Oxford University, 6th Floor, West wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| | | | | | | |
Collapse
|
28
|
Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson's disease. J Neurosci 2010; 30:6667-77. [PMID: 20463229 DOI: 10.1523/jneurosci.5459-09.2010] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Parkinson's disease (PD), the oscillatory activity recorded from the basal ganglia shows dopamine-dependent changes. In the "off" parkinsonian motor state, there is prominent activity in the beta band (12-30 Hz) that is mostly attenuated after dopaminergic therapy ("on" medication state). The on state is also characterized by activity in the gamma (60-80 Hz) and high-frequency (300 Hz) bands that is modulated by movement. We recorded local field potentials from a group of 15 PD patients (three females) treated with bilateral deep brain stimulation of the subthalamic nucleus, using a high sampling rate (2 kHz) and filters suitable to study high-frequency activity (0.3-1000 Hz). We observed high-frequency oscillations (HFOs) in both the off and on motor states. In the off state, the amplitude of the HFOs was coupled to the phase of the abnormal beta activity. The beta-coupled HFOs showed little or even negative movement-related changes in amplitude. Moreover, the degree of movement-related modulation of the HFOs correlated negatively with the rigidity/bradykinesia scores. In the on motor state, the HFOs were liberated from this beta coupling, and they displayed marked movement-related amplitude modulation. Cross-frequency interactions between the phase of slow activities and the amplitude of fast frequencies have been attributed an important role in information processing in cortical structures. Our findings suggest that nonlinear coupling between frequencies may not only be a physiological mechanism (as shown previously) but also that it may participate in the pathophysiology of parkinsonism.
Collapse
|
29
|
Levy R, Lozano AM, Lang AE, Dostrovsky JO. Event-related desynchronization of motor cortical oscillations in patients with multiple system atrophy. Exp Brain Res 2010; 206:1-13. [PMID: 20821197 DOI: 10.1007/s00221-010-2312-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by parkinsonism (MSA-P), cerebellar and autonomic deficits. In Parkinson's disease (PD), an impaired modulation of motor cortical mu and beta range oscillations may be related to the pathophysiology of bradykinesia. Event-related desynchronization (ERD) of these oscillations occur for 1-2 s preceding a voluntary movement in normal subjects and patients with PD treated with levodopa while only lasting around 0.5 s in untreated patients. Motor cortical rhythms were recorded from subdural strip electrodes in three patients with MSA-P while taking their regular dopaminergic medications. Following a ready cue, patients performed an externally cued wrist extension movement to a go cue. In addition, recordings were obtained during imagined wrist extension movements to the same cues and during self-paced wrist extensions. ERD and event-related synchronization were examined in subject-specific frequency bands. All patients showed movement-related ERD in subject-specific frequency bands below ~40 Hz in both externally cued and self-paced conditions. Preparatory ERD latency preceding self-cued movement was 900 ms in one patient and at or after movement onset in the other two patients. In the externally cued task, a short lasting (<1.3 s) ready cue-related ERD that was not sustained to movement onset was observed in two patients. Imagined movements resulted in go cue-related ERD with a smaller magnitude in the same two patients. These results indicate that the modulation of motor cortical oscillations in patients with MSA that are treated with levodopa is similar to that occurring in untreated patients with PD. The findings suggest that cortical activation in patients with MSA is diminished, may be related to pathophysiological changes occurring in the basal ganglia and correlates with the poor clinical response that these patients typically obtain with dopaminergic therapy.
Collapse
Affiliation(s)
- Ron Levy
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, T2N 2T9, Canada
| | | | | | | |
Collapse
|
30
|
Marceglia S, Servello D, Foffani G, Porta M, Sassi M, Mrakic-Sposta S, Rosa M, Barbieri S, Priori A. Thalamic single-unit and local field potential activity in Tourette syndrome. Mov Disord 2010; 25:300-8. [PMID: 20108375 DOI: 10.1002/mds.22982] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deep brain stimulation (DBS) of the ventralis oralis (VO) complex of the thalamus improves tics in patients with Tourette syndrome (TS). To neurophysiologically describe the VO complex we recorded, in seven patients with TS undergoing DBS electrode implantation, single-unit activity during surgery and local field potentials (LFPs) a few days after surgery. Single unit recordings showed that the VO complex is characterized by a localized pattern of bursting neuronal activity. LFP spectra demonstrated that VO of TS patients has a prominent oscillatory activity at low frequencies (2-7 Hz) and in the alpha-band (8-13 Hz), and a virtually absent beta activity. In each patient, the main LFP frequency significantly correlated with single-unit interburst frequency. In conclusion, we observed an oscillatory bursting activity in the VO as target region in patients with severe TS undergoing DBS surgery.
Collapse
Affiliation(s)
- Sara Marceglia
- Centro Clinico per le Neuronanotecnologie e la Neurostimolazione, Fondazione IRCCS Ospedale Maggiore, Policlinico, Mangiagalli e Regina Elena, Università di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Robson J, Mehta N, Polcz JE, Hermer L. Toward the development of a sensitive, pre-clinical screen for neurological diseases from spontaneous neural coordination in juvenile and young–adult C57BK6 mice. Neurosci Lett 2010; 471:74-8. [DOI: 10.1016/j.neulet.2010.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/31/2009] [Accepted: 01/10/2010] [Indexed: 11/28/2022]
|
32
|
Marceglia S, Fiorio M, Foffani G, Mrakic-Sposta S, Tiriticco M, Locatelli M, Caputo E, Tinazzi M, Priori A. Modulation of beta oscillations in the subthalamic area during action observation in Parkinson's disease. Neuroscience 2009; 161:1027-36. [DOI: 10.1016/j.neuroscience.2009.04.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 11/30/2022]
|