1
|
Chang B, Wang S, Mei J. Neuromodulation for postherpetic neuralgia: Preliminary experience in a single center. Clin Neurol Neurosurg 2024; 244:108438. [PMID: 38981167 DOI: 10.1016/j.clineuro.2024.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Postherpetic neuralgia (PHN) after herpes zoster is a debilitating complication that severely affects the quality of life of patients. Neuromodulation such as spinal cord stimulation (SCS) and trigeminal semilunar ganglion stimulation (TSGS) have become effective methods for treating postherpetic neuralgia. METHODS A retrospective analysis of clinical data from 30 patients with postherpetic neuralgia who underwent SCS or TSGS treatment from January 2022 to January 2024. Patients received conventional treatment before neuromodulation. Clinical data including patient age, gender, pain characteristics, treatment outcomes were collected. The efficacy was evaluated using the Visual Analog Scale (VAS) and the Modified Global Impression of Change scale. Optimal stimulation parameters were also analyzed. RESULTS The results showed that postoperative pain was significantly reduced in both SCS and TSGS groups, with a higher satisfaction rate in the SCS group (89 % vs. 77 %). The optimal stimulation parameters for the two treatments were also different. Compared to SCS, TSGS required a higher frequency but lower pulse width and voltage. CONCLUSION This study suggests that neuromodulation may be an effective treatment for PHN, but the subtle differences between SCS and TSGS support a more personalized treatment approach.
Collapse
Affiliation(s)
- Bowen Chang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Song Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Jiaming Mei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China; Department of Neuroelectrophysiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China.
| |
Collapse
|
2
|
Waataja JJ, Honda CN, Asp AJ, Nihilani RK, Farajidavar A. The Duration and Intensity of High Frequency Alternating Current Influences the Degree and Recovery of Nerve Conduction Block. IEEE Trans Biomed Eng 2024; 71:2170-2179. [PMID: 38335073 DOI: 10.1109/tbme.2024.3364350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
OBJECTIVE The purpose of this paper is to investigate the persistence of nerve blockade beyond the duration of applying high frequency alternating current (HFAC) to thinly myelinated and non-myelinated fibers, also termed a "carry-over effect". METHODS In this study, we used electrically-evoked compound action potentials from isolated rat vagus nerves to assess the influence of 5 kHz HFAC amplitude and duration on the degree of the carry-over effect. Current amplitudes from 1-10 mA and 5 kHz durations from 10-120 seconds were tested. RESULTS By testing 20 different combinations of 5 kHz amplitude and duration, we found a significant interaction between 5 kHz amplitude and duration on influencing the carry-over effect. CONCLUSION The degree of carry-over effect was dependent on 5 kHz amplitude, as well as duration. SIGNIFICANCE Utilizing the carry-over effect may be useful in designing energy efficient nerve blocking algorithms for the treatment of diseases influenced by nerve activity.
Collapse
|
3
|
Lee JI, Werginz P, Kameneva T, Im M, Fried SI. Membrane depolarization mediates both the inhibition of neural activity and cell-type-differences in response to high-frequency stimulation. Commun Biol 2024; 7:734. [PMID: 38890481 PMCID: PMC11189419 DOI: 10.1038/s42003-024-06359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Neuromodulation using high frequency (>1 kHz) electric stimulation (HFS) enables preferential activation or inhibition of individual neural types, offering the possibility of more effective treatments across a broad spectrum of neurological diseases. To improve effectiveness, it is important to better understand the mechanisms governing activation and inhibition with HFS so that selectivity can be optimized. In this study, we measure the membrane potential (Vm) and spiking responses of ON and OFF α-sustained retinal ganglion cells (RGCs) to a wide range of stimulus frequencies (100-2500 Hz) and amplitudes (10-100 µA). Our findings indicate that HFS induces shifts in Vm, with both the strength and polarity of the shifts dependent on the stimulus conditions. Spiking responses in each cell directly correlate with the shifts in Vm, where strong depolarization leads to spiking suppression. Comparisons between the two cell types reveal that ON cells are more depolarized by a given amplitude of HFS than OFF cells-this sensitivity difference enables the selective targeting. Computational modeling indicates that ion-channel dynamics largely account for the shifts in Vm, suggesting that a better understanding of the differences in ion-channel properties across cell types may improve the selectivity and ultimately, enhance HFS-based neurostimulation strategies.
Collapse
Affiliation(s)
- Jae-Ik Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Paul Werginz
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Tatiana Kameneva
- School of Science, Computing, and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Shelley I Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Boston VA Healthcare System, Rehabilitation, Research and Development, Boston, MA, USA
| |
Collapse
|
4
|
Nistor M, Schmidt M, Klingner C, Klingner C, Matziolis G, Shayganfar S, Schiffner R. Effect of Low-Frequency Renal Nerve Stimulation on Renal Glucose Release during Normoglycemia and a Hypoglycemic Clamp in Pigs. Int J Mol Sci 2024; 25:2041. [PMID: 38396718 PMCID: PMC10888375 DOI: 10.3390/ijms25042041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Previously, we demonstrated that renal denervation in pigs reduces renal glucose release during a hypoglycemic episode. In this study we set out to examine changes in side-dependent renal net glucose release (SGN) through unilateral low-frequency stimulation (LFS) of the renal plexus with a pulse generator (2-5 Hz) during normoglycemia (60 min) and insulin-induced hypoglycemia ≤3.5 mmol/L (75 min) in seven pigs. The jugular vein, carotid artery, renal artery and vein, and both ureters were catheterized for measurement purposes, blood pressure management, and drug and fluid infusions. Para-aminohippurate (PAH) and inulin infusions were used to determine side-dependent renal plasma flow (SRP) and glomerular filtration rate (GFR). In a linear mixed model, LFS caused no change in SRP but decreased sodium excretion (p < 0.0001), as well as decreasing GFR during hypoglycemia (p = 0.0176). In a linear mixed model, only hypoglycemic conditions exerted significant effects on SGN (p = 0.001), whereas LFS did not. In a Wilcoxon signed rank exact test, LFS significantly increased SGN (p = 0.03125) and decreased sodium excretion (p = 0.0017) and urinary flow rate (p = 0.0129) when only considering the first instance LFS followed a preceding period of non-stimulation during normoglycemia. To conclude, this study represents, to our knowledge, the first description of an induction of renal gluconeogenesis by LFS.
Collapse
Affiliation(s)
- Marius Nistor
- Orthopaedic Department, Jena University Hospital, 07747 Jena, Germany (G.M.)
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital, 07747 Jena, Germany;
| | - Carsten Klingner
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.K.); (C.K.)
| | - Caroline Klingner
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.K.); (C.K.)
| | - Georg Matziolis
- Orthopaedic Department, Jena University Hospital, 07747 Jena, Germany (G.M.)
| | - Sascha Shayganfar
- Emergency Department, Helios University Clinic Wuppertal, 42283 Wuppertal, Germany;
- Faculty of Health/School of Medicine, Lehrstuhl für Klinische Akut- und Notfallmedizin, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
| | - René Schiffner
- Orthopaedic Department, Jena University Hospital, 07747 Jena, Germany (G.M.)
- Emergency Department, Helios University Clinic Wuppertal, 42283 Wuppertal, Germany;
- Faculty of Health/School of Medicine, Lehrstuhl für Klinische Akut- und Notfallmedizin, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
- Emergency Department, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
5
|
Rabbani M, Rahman E, Powner MB, Triantis IF. Making Sense of Electrical Stimulation: A Meta-analysis for Wound Healing. Ann Biomed Eng 2024; 52:153-177. [PMID: 37743460 PMCID: PMC10808217 DOI: 10.1007/s10439-023-03371-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Electrical stimulation as a mode of external enhancement factor in wound healing has been explored widely. It has proven to have multidimensional effects in wound healing including antibacterial, galvanotaxis, growth factor secretion, proliferation, transdifferentiation, angiogenesis, etc. Despite such vast exploration, this modality has not yet been established as an accepted method for treatment. This article reviews and analyzes the approaches of using electrical stimulation to modulate wound healing and discusses the incoherence in approaches towards reporting the effect of stimulation on the healing process. The analysis starts by discussing various processes adapted in in vitro, in vivo, and clinical practices. Later it is focused on in vitro approaches directed to various stages of wound healing. Based on the analysis, a protocol is put forward for reporting in vitro works in such a way that the outcomes of the experiment are replicable and scalable in other setups. This work proposes a ground of unification for all the in vitro approaches in a more sensible manner, which can be further explored for translating in vitro approaches to complex tissue stimulation to establish electrical stimulation as a controlled clinical method for modulating wound healing.
Collapse
Affiliation(s)
- Mamun Rabbani
- Research Centre for Biomedical Engineering, School of Science and Technology, City University of London, Northampton Square, London, ECIV 0HB, UK
| | - Enayetur Rahman
- Research Centre for Biomedical Engineering, School of Science and Technology, City University of London, Northampton Square, London, ECIV 0HB, UK
| | - Michael B Powner
- Centre for Applied Vision Research, School of Health and Psychological Sciences, City University of London, Northampton Square, London, ECIV 0HB, UK
| | - Iasonas F Triantis
- Research Centre for Biomedical Engineering, School of Science and Technology, City University of London, Northampton Square, London, ECIV 0HB, UK.
| |
Collapse
|
6
|
Zhuo J, Weidrick CE, Liu Y, Moffitt MA, Jansen ED, Chiel HJ, Jenkins MW. Selective Infrared Neural Inhibition Can Be Reproduced by Resistive Heating. Neuromodulation 2023; 26:1757-1771. [PMID: 36707292 PMCID: PMC10366334 DOI: 10.1016/j.neurom.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Small-diameter afferent axons carry various sensory signals that are critical for vital physiological conditions but sometimes contribute to pathologies. Infrared (IR) neural inhibition (INI) can induce selective heat block of small-diameter axons, which holds potential for translational applications such as pain management. Previous research suggested that IR-heating-induced acceleration of voltage-gated potassium channel kinetics is the mechanism for INI. Therefore, we hypothesized that other heating methods, such as resistive heating (RH) in a cuff, could reproduce the selective inhibition observed in INI. MATERIALS AND METHODS We conducted ex vivo nerve-heating experiments on pleural-abdominal connective nerves of Aplysia californica using both IR and RH. We fabricated a transparent silicone nerve cuff for simultaneous IR heating, RH, and temperature measurements. Temperature elevations (ΔT) on the nerve surface were recorded for both heating modalities, which were tested over a range of power levels that cover a similar ΔT range. We recorded electrically evoked compound action potentials (CAPs) and segmented them into fast and slow subcomponents on the basis of conduction velocity differences between the large and small-diameter axonal subpopulations. We calculated the normalized inhibition strength and inhibition selectivity index on the basis of the rectified area under the curve of each subpopulation. RESULTS INI and RH showed a similar selective inhibition effect on CAP subcomponents for slow-conducting axons, confirmed by the inhibition probability vs ΔT dose-response curve based on approximately 2000 CAP measurements. The inhibition selectivity indexes of the two heating modalities were similar across six nerves. RH only required half the total electrical power required by INI to achieve a similar ΔT. SIGNIFICANCE We show that selective INI can be reproduced by other heating modalities such as RH. RH, because of its high energy efficiency and simple design, can be a good candidate for future implantable neural interface designs.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Chloe E Weidrick
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael A Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Biophotonics Center, Vanderbilt University, Nashville, TN, USA; Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Rattay F, Tafvizi P. Blockage of pain by electrical spinal cord stimulation. Minerva Med 2023; 114:620-627. [PMID: 34269551 DOI: 10.23736/s0026-4806.21.07588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Electrical spinal cord stimulation (SCS) is an alternative to conventional medication for chronic pain relief. Several hypotheses exist concerning the neurophysiological, vascular, and neurochemical mechanism behind SCS. METHODS The excitation and blockade effects of the three common SCS waveforms (tonic, burst, and high-frequency stimulation) on the nerve fibers bypassing the region of the electrodes are analyzed in a computational study. The simulations are based on the model of Hodgkin and Huxley which is fitted to spike durations of 1 ms. RESULTS SCS is a FDA approved technique for pain relief, but the mechanisms of action are still under investigation. The first element in the chain of mechanisms is the generation and the block of spikes in nerve fibers close to the stimulating electrode. For these "primary fibers" computer simulations showed that conventional SCS generates sharply synchronized spikes whereas the spread of the spiking times by burst stimulation is expected to cause the suppression of paresthesia. This rather uniform spread of spiking times (in comparison to tonic stimulation) is a consequence of more pulses (5 vs. 1), longer pulses, and increasing intensities within each train of 5 pulses. CONCLUSIONS High-frequency stimulation can block the conduction of spikes but the distance of the fiber to the lead is a critical factor.
Collapse
Affiliation(s)
- Frank Rattay
- Institute for Analysis and Scientific Computing, Technical University of Vienna, Vienna, Austria -
| | - Pegah Tafvizi
- Institute for Analysis and Scientific Computing, Technical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Dewberry LS, Porche K, Koenig T, Allen KD, Otto KJ. High frequency alternating current neurostimulation decreases nocifensive behavior in a disc herniation model of lumbar radiculopathy. Bioelectron Med 2023; 9:15. [PMID: 37434246 DOI: 10.1186/s42234-023-00119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate if kilohertz frequency alternating current (KHFAC) stimulation of peripheral nerve could serve as a treatment for lumbar radiculopathy. Prior work shows that KHFAC stimulation can treat sciatica resulting from chronic sciatic nerve constriction. Here, we evaluate if KHFAC stimulation is also beneficial in a more physiologic model of low back pain which mimics nucleus pulposus (NP) impingement of a lumbar dorsal root ganglion (DRG). METHODS To mimic a lumbar radiculopathy, autologous tail NP was harvested and placed upon the right L5 nerve root and DRG. During the same surgery, a cuff electrode was implanted around the sciatic nerve with wires routed to a headcap for delivery of KHFAC stimulation. Male Lewis rats (3 mo., n = 18) were separated into 3 groups: NP injury + KHFAC stimulation (n = 7), NP injury + sham cuff (n = 6), and sham injury + sham cuff (n = 5). Prior to surgery and for 2 weeks following surgery, animal tactile sensitivity, gait, and static weight bearing were evaluated. RESULTS KHFAC stimulation of the sciatic nerve decreased behavioral evidence of pain and disability. Without KHFAC stimulation, injured animals had heightened tactile sensitivity compared to baseline (p < 0.05), with tactile allodynia reversed during KHFAC stimulation (p < 0.01). Midfoot flexion during locomotion was decreased after injury but improved with KHFAC stimulation (p < 0.05). Animals also placed more weight on their injured limb when KHFAC stimulation was applied (p < 0.05). Electrophysiology measurements at end point showed decreased, but not blocked, compound nerve action potentials with KHFAC stimulation (p < 0.05). CONCLUSIONS KHFAC stimulation decreases hypersensitivity but does not cause additional gait compensations. This supports the idea that KHFAC stimulation applied to a peripheral nerve may be able to treat chronic pain resulting from sciatic nerve root inflammation.
Collapse
Affiliation(s)
- Lauren Savannah Dewberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Ken Porche
- Lillian S Wells Department of Neurosurgery at the University of Florida, College of Medicine, 1505 SW Archer Road Gainesville, FL, 32608, Gainesville, USA
| | - Travis Koenig
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
- Pain Research & Intervention Center of Excellence, University of Florida, CTSI 2004 Mowry Road, Gainesville, FL, USA
- Department of Orthopedics and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA.
- Department of Neuroscience, University of Florida, 1149 Newell Dr. L1-100, P.O. Box 100244, Gainesville, FL, USA.
- Department of Electrical and Computer Engineering, University of Florida, 968 Center Dr, Gainesville, FL, 32611, USA.
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, P.O. Box 116005, Gainesville, FL, 32611, USA.
- Department of Materials Science and Engineering, University of Florida, 549 Gale Lemerand Dr, P.O. Box 116400, Gainesville, FL, 32611, USA.
- Department of Neurology, 1149 Newell Dr, P.O. Box 100236, Gainesville, FL, L3-10032610, USA.
- Nanoscience Institute for Medical and Engineering Technology (NIMET), University of Florida, 1041 Center Drive, Gainesville, FL, 32611, USA.
| |
Collapse
|
9
|
Álvarez DMC, Serrano-Muñoz D, Fernández-Pérez JJ, Gómez-Soriano J, Avendaño-Coy J. Effect of percutaneous electrical stimulation with high-frequency alternating currents at 30 kHz on the sensory-motor system. Front Neurosci 2023; 17:1048986. [PMID: 36845426 PMCID: PMC9947497 DOI: 10.3389/fnins.2023.1048986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Background Unmodulated high-frequency alternating currents (HFAC) are employed for producing peripheral nerves block. HFAC have been applied in humans with frequencies up to 20 kHz, whether transcutaneously, percutaneously, or via surgically-implanted electrodes. The aim of this study was to assess the effect of percutaneous HFAC, applied with ultrasound-guided needles at 30 kHz, on the sensory-motor nerve conduction of healthy volunteers. Methods A parallel, double-blind, randomized clinical trial with a placebo control was conducted. Percutaneous HFAC at 30 kHz or sham stimulation was applied via ultrasound-guided needles in 48 healthy volunteers (n = 24 in each group) for 20 min. The assessed outcome variables were pressure pain threshold (PPT), mechanical detection threshold (MDT), maximal finger flexion strength (MFFS), antidromic sensory nerve action potential (SNAP), hand temperature, and subjective sensations by the participants. The measurements were recorded pre-intervention, during the stimulation (at 15 min), immediately post-intervention (at 20 min), and 15 min after the end of treatment. Results The PPT increased in the active group compared with sham stimulation, both during the intervention [14.7%; 95% confidence interval (CI): 4.4-25.0], immediately post-intervention (16.9%; 95% CI: -7.2-26.5), and 15 min after the end of the stimulation (14.3%; 95% CI: 4.4-24.3) (p < 0.01). The proportion of participants who reported feelings of numbness and heaviness was significantly higher in the active group (46 and 50%, respectively) than in the sham group (8 and 18%, respectively) (p < 0.05). No intergroup differences were observed in the remaining outcome variables. No unexpected adverse effects derived from the electrical stimulation were reported. Conclusion Percutaneous stimulation with HFAC at 30 kHz applied to the median nerve increased the PPT and subjective perception of numbness and heaviness. Future research should evaluate its potential therapeutic effect in people with pain. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT04884932, identifier NCT04884932.
Collapse
Affiliation(s)
- David Martín-Caro Álvarez
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | | | - Juan José Fernández-Pérez
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Juan Avendaño-Coy
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
10
|
Dalrymple AN, Hooper CA, Kuriakose MG, Capogrosso M, Weber DJ. Using a high-frequency carrier does not improve comfort of transcutaneous spinal cord stimulation. J Neural Eng 2023; 20. [PMID: 36595241 DOI: 10.1088/1741-2552/acabe8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective.Spinal cord neuromodulation has gained much attention for demonstrating improved motor recovery in people with spinal cord injury, motivating the development of clinically applicable technologies. Among them, transcutaneous spinal cord stimulation (tSCS) is attractive because of its non-invasive profile. Many tSCS studies employ a high-frequency (10 kHz) carrier, which has been reported to reduce stimulation discomfort. However, these claims have come under scrutiny in recent years. The purpose of this study was to determine whether using a high-frequency carrier for tSCS is more comfortable at therapeutic amplitudes, which evoke posterior root-muscle (PRM) reflexes.Approach.In 16 neurologically intact participants, tSCS was delivered using a 1 ms long monophasic pulse with and without a high-frequency carrier. Stimulation amplitude and pulse duration were varied and PRM reflexes were recorded from the soleus, gastrocnemius, and tibialis anterior muscles. Participants rated their discomfort during stimulation from 0 to 10 at PRM reflex threshold.Main Results.At PRM reflex threshold, the addition of a high-frequency carrier (0.87 ± 0.2) was equally comfortable as conventional stimulation (1.03 ± 0.18) but required approximately double the charge to evoke the PRM reflex (conventional: 32.4 ± 9.2µC; high-frequency carrier: 62.5 ± 11.1µC). Strength-duration curves for tSCS with a high-frequency carrier had a rheobase that was 4.8× greater and a chronaxie that was 5.7× narrower than the conventional monophasic pulse, indicating that the addition of a high-frequency carrier makes stimulation less efficient in recruiting neural activity in spinal roots.Significance.Using a high-frequency carrier for tSCS is equally as comfortable and less efficient as conventional stimulation at amplitudes required to stimulate spinal dorsal roots.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Charli Ann Hooper
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Minna G Kuriakose
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Marco Capogrosso
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America.,Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States of America
| |
Collapse
|
11
|
Kamelian Rad M, Ahmadi-Pajouh MA, Saviz M. Selective electrical stimulation of low versus high diameter myelinated fibers and its application in pain relief: a modeling study. J Math Biol 2022; 86:3. [PMID: 36436158 DOI: 10.1007/s00285-022-01833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
Electrical stimulation of peripheral nerve fibers has always been an attractive field of research. Due to the higher activation threshold, the stimulation of small fibers is accompanied by the stimulation of larger ones. It is therefore necessary to design a specific stimulation theme in order to only activate narrow fibers. There is evidence that stimulating Aδ fibers can activate endogenous pain-relieving mechanisms. However, both selective stimulation and reducing pain by activating small nociceptive fibers are still poorly investigated. In this study, using high-frequency stimulation waveforms (5-20 kHz), computational modeling provides a simple framework for activating narrow nociceptive fibers. Additionally, a model of myelinated nerve fibers is modified by including sodium-potassium pump and investigating its effects on neuronal stimulation. Besides, a modified mathematical model of pain processing circuits in the dorsal horn is presented that consists of supraspinal pain control mechanisms. Hence, by employing this pain-modulating model, the mechanism of the reduction of pain by activating nociceptive fibers is explored. In the case of two fibers with the same distance from the point source electrode, a single stimulation waveform is capable of blocking one large fiber and stimulating another small fiber. Noteworthy, the Na/K pump model demonstrated that it does not have a significant effect on the activation threshold and firing frequency of fiber. Ultimately, results suggest that the descending pathways of Locus coeruleus may effectively contribute to pain relief through stimulation of nociceptive fibers, which will be beneficial for clinical interventions.
Collapse
Affiliation(s)
- Mohsen Kamelian Rad
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Mehrdad Saviz
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
12
|
Chang YC, Ahmed U, Jayaprakash N, Mughrabi I, Lin Q, Wu YC, Gerber M, Abbas A, Daytz A, Gabalski AH, Ashville J, Dokos S, Rieth L, Datta-Chaudhuri T, Tracey KJ, Guo T, Al-Abed Y, Zanos S. kHz-frequency electrical stimulation selectively activates small, unmyelinated vagus afferents. Brain Stimul 2022; 15:1389-1404. [PMID: 36241025 PMCID: PMC10164362 DOI: 10.1016/j.brs.2022.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Vagal reflexes regulate homeostasis in visceral organs and systems through afferent and efferent neurons and nerve fibers. Small, unmyelinated, C-type afferents comprise over 80% of fibers in the vagus and form the sensory arc of autonomic reflexes of the gut, lungs, heart and vessels and the immune system. Selective bioelectronic activation of C-afferents could be used to mechanistically study and treat diseases of peripheral organs in which vagal reflexes are involved, but it has not been achieved. METHODS We stimulated the vagus in rats and mice using trains of kHz-frequency stimuli. Stimulation effects were assessed using neuronal c-Fos expression, physiological and nerve fiber responses, optogenetic and computational methods. RESULTS Intermittent kHz stimulation for 30 min activates specific motor and, preferentially, sensory vagus neurons in the brainstem. At sufficiently high frequencies (>5 kHz) and at intensities within a specific range (7-10 times activation threshold, T, in rats; 15-25 × T in mice), C-afferents are activated, whereas larger, A- and B-fibers, are blocked. This was determined by measuring fiber-specific acute physiological responses to kHz stimulus trains, and by assessing fiber excitability around kHz stimulus trains through compound action potentials evoked by probing pulses. Aspects of selective activation of C-afferents are explained in computational models of nerve fibers by how fiber size and myelin shape the response of sodium channels to kHz-frequency stimuli. CONCLUSION kHz stimulation is a neuromodulation strategy to robustly and selectively activate vagal C-afferents implicated in physiological homeostasis and disease, over larger vagal fibers.
Collapse
Affiliation(s)
- Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Qihang Lin
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yi-Chen Wu
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Michael Gerber
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Adam Abbas
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Arielle H Gabalski
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Jason Ashville
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Loren Rieth
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, 26506, United States
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
13
|
Green DB, Kilgore JA, Bender SA, Daniels RJ, Gunzler DD, Vrabec TL, Bhadra N. Effects of waveform shape and electrode material on KiloHertz frequency alternating current block of mammalian peripheral nerve. Bioelectron Med 2022; 8:11. [PMID: 35883133 PMCID: PMC9327420 DOI: 10.1186/s42234-022-00093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES KiloHertz frequency alternating current waveforms produce conduction block in peripheral nerves. It is not clearly known how the waveform shape affects block outcomes, and if waveform effects are frequency dependent. We determined the effects of waveform shape using two types of electrodes. MATERIALS AND METHODS Acute in-vivo experiments were performed on 12 rats. Bipolar electrodes were used to electrically block motor nerve impulses in the sciatic nerve, as measured using force output from the gastrocnemius muscle. Three blocking waveforms were delivered (sinusoidal, square and triangular) at 6 frequencies (10-60 kHz). Bare platinum electrodes were compared with carbon black coated electrodes. We determined the minimum amplitude that could completely block motor nerve conduction (block threshold), and measured properties of the onset response, which is a transient period of nerve activation at the start of block. In-vivo results were compared with computational modeling conducted using the NEURON simulation environment using a nerve membrane model modified for stimulation in the kilohertz frequency range. RESULTS For the majority of parameters, in-vivo testing and simulations showed similar results: Block thresholds increased linearly with frequency for all three waveforms. Block thresholds were significantly different between waveforms; lowest for the square waveform and highest for triangular waveform. When converted to charge per cycle, square waveforms required the maximum charge per phase, and triangular waveforms the least. Onset parameters were affected by blocking frequency but not by waveform shape. Electrode comparisons were performed only in-vivo. Electrodes with carbon black coatings gave significantly lower block thresholds and reduced onset responses across all blocking frequencies. For 10 and 20 kHz, carbon black coating significantly reduced the charge required for nerve block. CONCLUSIONS We conclude that both sinusoidal and square waveforms at frequencies of 20 kHz or higher would be optimal. Future investigation of carbon black or other high charge capacity electrodes may be useful in achieving block with lower BTs and onsets. These findings will be of importance for designing clinical nerve block systems.
Collapse
Affiliation(s)
- David B. Green
- grid.411931.f0000 0001 0035 4528Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH USA
| | - Joseph A. Kilgore
- grid.411931.f0000 0001 0035 4528Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH USA
| | - Shane A. Bender
- grid.411931.f0000 0001 0035 4528Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH USA
| | - Robert J. Daniels
- grid.411931.f0000 0001 0035 4528Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH USA
| | - Douglas D. Gunzler
- grid.411931.f0000 0001 0035 4528Department of Medicine, Population Health Research Institute, Center for Healthcare Research & Policy, MetroHealth Medical Center, Cleveland, OH USA
| | - Tina L. Vrabec
- grid.411931.f0000 0001 0035 4528Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH USA
| | - Niloy Bhadra
- grid.411931.f0000 0001 0035 4528Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
14
|
Pratiwi AM, Kekesi O, Suaning GJ. Selective neuromodulation of retinal ganglion cells via a hybrid optic-nerve and retinal neuroprosthesis for visual restoration. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2381-2384. [PMID: 36086329 DOI: 10.1109/embc48229.2022.9871410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A visual neuroprosthesis delivers electrical stimulation to the surviving neural cells of the visual pathway to produce prosthetic vision. While the retina is often chosen as the stimulation site, current retinal prostheses are hindered by the lack of functional selectivity that impairs the resolution. A possible strategy to improve the resolution is to combine the retinal stimulation and the stimulation of the optic nerve bundle, which contains myelinated fibres of retinal ganglion cells (RGCs) axons that vary in diameter. In this study, we used a computational model of retinal ganglion cells (RGCs) with myelinated axons to predict whether the frequency of electrical stimulation delivered to the optic nerve can be modulated to preferentially inhibit a subset of optic nerve fibres classified by diameter. The model combined a finite element model of bipolar penetrating electrodes delivering sinusoidal stimulation in the range of 25-10000 Hz to the optic nerve, and a double-cable model, to represent an optic nerve fibre. We found that the diameter of the axon fibre and ion kinetic properties of the RGC affect the neuron's frequency response, demonstrating the potential of an optic nerve stimulation to produce selective inhibition based on the axon fibre size. Clinical Relevance-This establishes the importance of considering the size of the nerve cell axons, as well as the functional type of the RGC, in stimulating the optic nerve. This can be exploited to facilitate functionally selective neuromodulation when used in conjunction with retinal stimulation.
Collapse
|
15
|
Álvarez DMC, Serrano-Muñoz D, Fernández-Pérez JJ, Gómez-Soriano J, Avendaño-Coy J. Effect of Percutaneous Electric Stimulation with High-Frequency Alternating Currents on the Sensory-Motor System of Healthy Volunteers: A Double-Blind Randomized Controlled Study. J Clin Med 2022; 11:jcm11071832. [PMID: 35407438 PMCID: PMC8999650 DOI: 10.3390/jcm11071832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Former studies investigated the application of high-frequency alternating currents (HFAC) in humans for blocking the peripheral nervous system. The present trial aims to assess the effect of HFAC on the motor response, somatosensory thresholds, and peripheral nerve conduction when applied percutaneously using frequencies of 10 kHz and 20 kHz in healthy volunteers. A parallel, placebo-controlled, double-blind, randomized clinical trial was conducted. Ultrasound-guided HFAC at 10 kHz and 20 kHz and sham stimulation were delivered to the median nerve of 60 healthy volunteers for 20 min. The main assessed variables were the maximum isometric flexion strength (MFFS) of the index finger, myotonometry, pressure pain threshold (PPT), mechanical detection threshold (MDT), and sensory nerve action potential (SNAP). A decrease in the MFFS is observed immediately postintervention compared to baseline, both in the 10 kHz group (−8.5%; 95% CI −14.9 to −2.1) and the 20 kHz group (−12.0%; 95% CI −18.3 to −5.6). The between-group comparison of changes in MFFS show a greater reduction of −10.8% (95% CI −19.8 to −1.8) immediately postintervention in the 20 kHz compared to the sham stimulation group. The percutaneous stimulation applying 20 kHz HFAC to the median nerve produces a reversible postintervention reduction in strength with no adverse effects.
Collapse
|
16
|
Zhuo J, Gill JP, Jansen ED, Jenkins MW, Chiel HJ. Use of an invertebrate animal model ( Aplysia californica) to develop novel neural interfaces for neuromodulation. Front Neurosci 2022; 16:1080027. [PMID: 36620467 PMCID: PMC9813496 DOI: 10.3389/fnins.2022.1080027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
New tools for monitoring and manipulating neural activity have been developed with steadily improving functionality, specificity, and reliability, which are critical both for mapping neural circuits and treating neurological diseases. This review focuses on the use of an invertebrate animal, the marine mollusk Aplysia californica, in the development of novel neurotechniques. We review the basic physiological properties of Aplysia neurons and discuss the specific aspects that make it advantageous for developing novel neural interfaces: First, Aplysia nerves consist only of unmyelinated axons with various diameters, providing a particularly useful model of the unmyelinated C fibers in vertebrates that are known to carry important sensory information, including those that signal pain. Second, Aplysia's neural tissues can last for a long period in an ex vivo experimental setup. This allows comprehensive tests such as the exploration of parameter space on the same nerve to avoid variability between animals and minimize animal use. Third, nerves in large Aplysia can be many centimeters in length, making it possible to easily discriminate axons with different diameters based on their conduction velocities. Aplysia nerves are a particularly good approximation of the unmyelinated C fibers, which are hard to stimulate, record, and differentiate from other nerve fibers in vertebrate animal models using epineural electrodes. Fourth, neurons in Aplysia are large, uniquely identifiable, and electrically compact. For decades, researchers have used Aplysia for the development of many novel neurotechnologies. Examples include high-frequency alternating current (HFAC), focused ultrasound (FUS), optical neural stimulation, recording, and inhibition, microelectrode arrays, diamond electrodes, carbon fiber microelectrodes, microscopic magnetic stimulation and magnetic resonance electrical impedance tomography (MREIT). We also review a specific example that illustrates the power of Aplysia for accelerating technology development: selective infrared neural inhibition of small-diameter unmyelinated axons, which may lead to a translationally useful treatment in the future. Generally, Aplysia is suitable for testing modalities whose mechanism involves basic biophysics that is likely to be similar across species. As a tractable experimental system, Aplysia californica can help the rapid development of novel neuromodulation technologies.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jeffrey P Gill
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Biophotonics Center, Vanderbilt University, Nashville, TN, United States.,Department of Neurological Surgery, Vanderbilt University, Nashville, TN, United States
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
17
|
Ford JB, Ganguly M, Zhuo J, McPheeters MT, Jenkins MW, Chiel HJ, Jansen ED. Optimizing thermal block length during infrared neural inhibition to minimize temperature thresholds. J Neural Eng 2021; 18:10.1088/1741-2552/abf00d. [PMID: 33735846 PMCID: PMC11189657 DOI: 10.1088/1741-2552/abf00d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/18/2021] [Indexed: 11/11/2022]
Abstract
Objective. Infrared neural inhibition (INI) is a method of blocking the generation or propagation of neural action potentials through laser heating with wavelengths strongly absorbed by water. Recent work has identified that the distance heated along axons, the block length (BL), modulates the temperature needed for inhibition; however, this relationship has not been characterized. This study explores how BL during INI can be optimized towards minimizing its temperature threshold.Approach. To understand the relationship between BL and the temperature required for INI, excised nerves fromAplysia californicawere laser-heated over different lengths of axon during electrical stimulation of compound action potentials. INI was provided by irradiation (λ= 1470 nm) from a custom probe (n= 6 nerves), and subsequent validation was performed by providing heat block using perfused hot media over nerves (n= 5 nerves).Main Results. Two BL regimes were identified. Short BLs (thermal full width at half maximum (tFWHM) = 0.81-1.13 mm) demonstrated that increasing the tFWHM resulted in lower temperature thresholds for INI (p< 0.0125), while longer BLs (tFWHM = 1.13-3.03 mm) showed no significant change between the temperature threshold and tFWHM (p> 0.0125). Validation of this longer regime was performed using perfused hot media over different lengths of nerves. This secondary heating method similarly showed no significant change (p> 0.025) in the temperature threshold (tFWHM = 1.25-4.42 mm).Significance. This work characterized how the temperature threshold for neural heat block varies with BL and identified an optimal BL around tFWHM = 1.13 mm which minimizes both the maximum temperature applied to tissue and the volume of tissue heated during INI. Understanding how to optimally target lengths of nerve to minimize temperature during INI can help inform the design of devices for longitudinal animal studies and human implementation.
Collapse
Affiliation(s)
- Jeremy B Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Mohit Ganguly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Matthew T McPheeters
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, United States of America
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
18
|
Eggers T, Kilgore J, Green D, Vrabec T, Kilgore K, Bhadra N. Combining direct current and kilohertz frequency alternating current to mitigate onset activity during electrical nerve block. J Neural Eng 2021; 18. [PMID: 33662942 PMCID: PMC9511888 DOI: 10.1088/1741-2552/abebed] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/04/2021] [Indexed: 11/12/2022]
Abstract
Objective. Electrical nerve block offers the ability to immediately and reversibly block peripheral nerve conduction and would have applications in the emerging field of bioelectronics. Two modalities of electrical nerve block have been investigated—kilohertz frequency alternating current (KHFAC) and direct current (DC). KHFAC can be safely delivered with conventional electrodes, but has the disadvantage of having an onset response, which is a period of increased neural activation before block is established and currently limits clinical translation. DC has long been known to block neural conduction without an onset response but creates damaging reactive species. Typical electrodes can safely deliver DC for less than one second, but advances in high capacitance electrodes allow DC delivery up to 10 s without damage. The present work aimed to combine DC and KHFAC into a single waveform, named the combined reduced onset waveform (CROW), which can initiate block without an onset response while also maintaining safe block for long durations. This waveform consists of a short, DC pre-pulse before initiating KHFAC. Approach. Simulations of this novel waveform were carried out in the axonal simulation environment NEURON to test feasibility and gain insight into the mechanisms of action. Two sets of acute experiments were then conducted in adult Sprague–Dawley rats to determine the effectiveness of the waveform in mitigating the onset response. Main results. The CROW reduced the onset response both in silico and in vivo. The onset area was reduced by over 90% with the tested parameters in the acute experiments. The amplitude of the DC pulse was shown to be particularly important for effective onset mitigation, requiring amplitudes 6–8 times the DC block threshold. Significance. This waveform can reliably reduce the onset response due to KHFAC and could allow for wider clinical implementation of electrical nerve block.
Collapse
Affiliation(s)
- Thomas Eggers
- Emory University School of Medicine, Atlanta, GA, United States of America
| | - Joseph Kilgore
- MetroHealth Medical Center, Cleveland, OH, United States of America
| | - David Green
- MetroHealth Medical Center, Cleveland, OH, United States of America
| | - Tina Vrabec
- MetroHealth Medical Center, Cleveland, OH, United States of America
| | - Kevin Kilgore
- MetroHealth Medical Center, Cleveland, OH, United States of America.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America.,Louis Stokes Cleveland Department Veterans Affairs Medical Center, Cleveland, OH, United States of America
| | - Niloy Bhadra
- MetroHealth Medical Center, Cleveland, OH, United States of America
| |
Collapse
|
19
|
Neudorfer C, Chow CT, Boutet A, Loh A, Germann J, Elias GJ, Hutchison WD, Lozano AM. Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimul 2021; 14:513-530. [PMID: 33757930 DOI: 10.1016/j.brs.2021.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Electrical stimulation in the kilohertz-frequency range has gained interest in the field of neuroscience. The mechanisms underlying stimulation in this frequency range, however, are poorly characterized to date. OBJECTIVE/HYPOTHESIS To summarize the manifold biological effects elicited by kilohertz-frequency stimulation in the context of the currently existing literature and provide a mechanistic framework for the neural responses observed in this frequency range. METHODS A comprehensive search of the peer-reviewed literature was conducted across electronic databases. Relevant computational, clinical, and mechanistic studies were selected for review. RESULTS The effects of kilohertz-frequency stimulation on neural tissue are diverse and yield effects that are distinct from conventional stimulation. Broadly, these can be divided into 1) subthreshold, 2) suprathreshold, 3) synaptic and 4) thermal effects. While facilitation is the dominating mechanism at the subthreshold level, desynchronization, spike-rate adaptation, conduction block, and non-monotonic activation can be observed during suprathreshold kilohertz-frequency stimulation. At the synaptic level, kilohertz-frequency stimulation has been associated with the transient depletion of the available neurotransmitter pool - also known as synaptic fatigue. Finally, thermal effects associated with extrinsic (environmental) and intrinsic (associated with kilohertz-frequency stimulation) temperature changes have been suggested to alter the neural response to stimulation paradigms. CONCLUSION The diverse spectrum of neural responses to stimulation in the kilohertz-frequency range is distinct from that associated with conventional stimulation. This offers the potential for new therapeutic avenues across stimulation modalities. However, stimulation in the kilohertz-frequency range is associated with distinct challenges and caveats that need to be considered in experimental paradigms.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Gavin Jb Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - William D Hutchison
- Krembil Research Institute, University of Toronto, Ontario, Canada; Department of Physiology, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada; Krembil Research Institute, University of Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Non-monotonic kilohertz frequency neural block thresholds arise from amplitude- and frequency-dependent charge imbalance. Sci Rep 2021; 11:5077. [PMID: 33658552 PMCID: PMC7930193 DOI: 10.1038/s41598-021-84503-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Reversible block of nerve conduction using kilohertz frequency electrical signals has substantial potential for treatment of disease. However, the ability to block nerve fibers selectively is limited by poor understanding of the relationship between waveform parameters and the nerve fibers that are blocked. Previous in vivo studies reported non-monotonic relationships between block signal frequency and block threshold, suggesting the potential for fiber-selective block. However, the mechanisms of non-monotonic block thresholds were unclear, and these findings were not replicated in a subsequent in vivo study. We used high-fidelity computational models and in vivo experiments in anesthetized rats to show that non-monotonic threshold-frequency relationships do occur, that they result from amplitude- and frequency-dependent charge imbalances that cause a shift between kilohertz frequency and direct current block regimes, and that these relationships can differ across fiber diameters such that smaller fibers can be blocked at lower thresholds than larger fibers. These results reconcile previous contradictory studies, clarify the mechanisms of interaction between kilohertz frequency and direct current block, and demonstrate the potential for selective block of small fiber diameters.
Collapse
|
21
|
Inanici F, Brighton LN, Samejima S, Hofstetter CP, Moritz CT. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury. IEEE Trans Neural Syst Rehabil Eng 2021; 29:310-319. [DOI: 10.1109/tnsre.2021.3049133] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Lin Q, Shivdasani MN, Tsai D, Chang YC, Jayaprakash N, Zanos S, Lovell NH, Dokos S, Guo T. A Computational Model of Functionally-distinct Cervical Vagus Nerve Fibers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2475-2478. [PMID: 33018508 DOI: 10.1109/embc44109.2020.9175855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cervical vagus nerve stimulation (VNS) is a neuromodulation therapy used in the treatment of several chronic disorders. In order to maximize the therapeutic effectiveness of VNS, it has become increasingly important to deliver fiber-specific neurostimulation, so that undesired effects can be minimized. Assessing the activation of different vagal fiber types through electrical stimulation is therefore essential for developing fiber-selective VNS therapies. Towards this goal, we conducted in silico investigations using a generic model of functionally distinct nerve fibers and clinically relevant cuff electrodes using COMSOL. Our model is constrained by histological observations from rat cervical vagus nerves and its outputs are validated against averaged compound nerve action potentials (CNAPs) obtained from rat vagus nerve recordings. We propose this model as an effective tool to design fiber-specific stimulation protocols before testing them in experimental animals.
Collapse
|
23
|
Dewberry LS, Dru A, Gravenstine M, Nguyen B, Anderson J, Vaziri S, Hoh D, Allen K, Otto KJ. Partial high frequency nerve block decreases neuropathic signaling following chronic sciatic nerve constriction injury. J Neural Eng 2020; 18. [PMID: 33027782 DOI: 10.1088/1741-2552/abbf03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/07/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE High frequency (HF) block can quickly and reversibly stop nerve conduction. We hypothesized HF block at the sciatic nerve would minimize nociception by preventing neuropathic signals from reaching the central nervous system. APPROACH Lewis rats were implanted with a constriction cuff and a distal cuff electrode around their right sciatic nerve. Tactile sensitivity was evaluated using the 50% paw withdrawal threshold determined using Chaplan's method for von Frey monofilaments. Over the course of 49 days, the 50% paw withdrawal threshold was measured 1) before HF block, 2) during HF block (50 kHz, 3 Vpp), and 3) after HF block. Gait was observed and scored before and during block. At end point, HF block efficacy was directly evaluated using additional cuff electrodes to elicit and record compound neural action potentials across the HF blocking cuff. MAIN RESULTS At days 7 and 14 days post-operation, tactile sensitivity was significantly lower during HF block compared to before and after block (p < 0.005). Additionally, an increase in gait disability was not visually observed during HF block. SIGNIFICANCE HF block can reduce tactile sensitivity in a limb with a neuropthic injury in a rapidly reversible fashion.
Collapse
Affiliation(s)
- Lauren Savannah Dewberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building JG56, Gainesville, FL 32611-6131, Gainesville, Florida, 32611-7011, UNITED STATES
| | - Alexander Dru
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, UNITED STATES
| | - Maxwell Gravenstine
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, UNITED STATES
| | - Brian Nguyen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, UNITED STATES
| | - James Anderson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, UNITED STATES
| | - Sasha Vaziri
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, UNITED STATES
| | - Daniel Hoh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, UNITED STATES
| | - Kyle Allen
- Department of Biomedical Engineering, University of Florida, P.O. Box 116131, USA, Gainesville, Florida, 32611-6131, UNITED STATES
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611-7011, UNITED STATES
| |
Collapse
|
24
|
Manson GA, Calvert JS, Ling J, Tychhon B, Ali A, Sayenko DG. The relationship between maximum tolerance and motor activation during transcutaneous spinal stimulation is unaffected by the carrier frequency or vibration. Physiol Rep 2020; 8:e14397. [PMID: 32170844 PMCID: PMC7070156 DOI: 10.14814/phy2.14397] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Transcutaneous spinal stimulation (TSS) is a useful tool to modulate spinal sensorimotor circuits and has emerged as a potential treatment for motor disorders in neurologically impaired populations. One major limitation of TSS is the discomfort associated with high levels of stimulation during the experimental procedure. The objective of this study was to examine if the discomfort caused by TSS can be alleviated using different stimulation paradigms in a neurologically intact population. Tolerance to TSS delivered using conventional biphasic balanced rectangular pulses was compared to two alternative stimulation paradigms: a 5 kHz carrier frequency and biphasic balanced rectangular pulses combined with vibrotactile stimulation. In ten healthy participants, tolerance to TSS was examined using both single-pulse (0.2 Hz) and continuous (30 Hz) stimulation protocols. In both the single-pulse and continuous stimulation protocols, participants tolerated significantly higher levels of stimulation with the carrier frequency paradigm compared to the other stimulation paradigms. However, when the maximum tolerable stimulation intensity of each stimulation paradigm was normalized to the intensity required to evoke a lower limb muscle response, there were no statistical differences between the stimulation paradigms. Our results suggest that, when considering the intensity of stimulation required to obtain spinally evoked motor potentials, neither alternative stimulation paradigm is more effective at reducing discomfort than the conventional, unmodulated pulse configuration.
Collapse
Affiliation(s)
- Gerome A Manson
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Jonathan S Calvert
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jeremiah Ling
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Boranai Tychhon
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Amir Ali
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
25
|
Pelot NA, Grill WM. In vivo quantification of excitation and kilohertz frequency block of the rat vagus nerve. J Neural Eng 2020; 17:026005. [PMID: 31945746 DOI: 10.1088/1741-2552/ab6cb6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE There is growing interest in treating diseases by electrical stimulation and block of peripheral autonomic nerves, but a paucity of studies on the excitation and block of small-diameter autonomic axons. We conducted in vivo quantification of the strength-duration properties, activity-dependent slowing (ADS), and responses to kilohertz frequency (KHF) signals for the rat vagus nerve (VN). APPROACH We conducted acute in vivo experiments in urethane-anaesthetized rats. We placed two cuff electrodes on the left cervical VN and one cuff electrode on the anterior subdiaphragmatic VN. The rostral cervical cuff was used to deliver pulses to quantify recruitment and ADS. The caudal cervical cuff was used to deliver KHF signals. The subdiaphragmatic cuff was used to record compound action potentials (CAPs). MAIN RESULTS We quantified the input-output recruitment and strength-duration curves. Fits to the data using standard strength-duration equations were qualitatively similar, but the resulting chronaxie and rheobase estimates varied substantially. We measured larger thresholds for the slowest fibres (0.5-1 m s-1), especially at shorter pulse widths. Using a novel cross-correlation CAP-based analysis, we measured ADS of ~2.3% after 3 min of 2 Hz stimulation, which is comparable to the ADS reported for sympathetic efferents in somatic nerves, but much smaller than the ADS in cutaneous nociceptors. We found greater ADS with higher stimulation frequency and non-monotonic changes in CV in select cases. We found monotonically increasing block thresholds across frequencies from 10 to 80 kHz for both fast and slow fibres. Further, following 25 s of KHF signal, neural conduction could require tens of seconds to recover. SIGNIFICANCE The quantification of mammalian autonomic nerve responses to conventional and KHF signals provides essential information for the development of peripheral nerve stimulation therapies and for understanding their mechanisms of action.
Collapse
Affiliation(s)
- N A Pelot
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, United States of America
| | | |
Collapse
|
26
|
Serrano-Muñoz D, Avendaño-Coy J, Simón-Martínez C, Taylor J, Gómez-Soriano J. 20-kHz alternating current stimulation: effects on motor and somatosensory thresholds. J Neuroeng Rehabil 2020; 17:22. [PMID: 32075666 PMCID: PMC7031925 DOI: 10.1186/s12984-020-00661-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High frequency alternating current (HFAC) stimulation have been shown to produce a peripheral nerve conduction block. Currently, all the studies applying HFAC stimulation in clinical studies, have employed frequencies below 10 kHz. The main aim of this work was to investigate the neuromodulatory effect of transcutaneous 20 kHz stimulation on somatosensory and pain thresholds, and maximal handgrip strength. METHODS A randomized, crossover, single-blinded, placebo-controlled trial was conducted following recruitment of fourteen healthy volunteers. Transcutaneous stimulation at 20 kHz and sham stimulation were applied over the ulnar and median nerves of fourteen healthy volunteers for 20 min. Maximal handgrip strength (MHS), mechanical detection threshold (MDT) and pressure pain threshold (PPT) were registered prior to, during (15 min), immediately after the end (20 min), and 10 min following stimulation. RESULTS The 20 kHz stimulation showed a lower MHS during the stimulation at the 15 min (30.1 kgs SE 2.8) and at 20 min (31.8 kgs, SE 2.8) when compared to sham stimulation (35.1 kgs, SE 3.4; p < 0.001 and 34.2 kgs, SE 3.4; p = 0.03, respectively). The 20 kHz stimulation resulted in a slight increase in MDT at 15 min (0.25 mN; 0.25-2.00) when compared to the sham stimulation (0.25 mN; 0.25-0.25; p = 0.02), and no effects were showed for PPT. CONCLUSIONS High-frequency stimulation at 20 kHz suggests a partial block of nerve activity. Studies in subjects with neurological disorders characterized by nerve hyperactivity are needed to confirm the clinical impact of this non-invasive electrical stimulation technique. TRIAL REGISTRATION NCT, NCT02837458. Registered on 12 April 2017.
Collapse
Affiliation(s)
- Diego Serrano-Muñoz
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain.,Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursery, Castilla La Mancha University, 45071, Toledo, Spain
| | - Juan Avendaño-Coy
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursery, Castilla La Mancha University, 45071, Toledo, Spain.
| | - Cristina Simón-Martínez
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, 3000, Leuven, Belgium
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursery, Castilla La Mancha University, 45071, Toledo, Spain
| |
Collapse
|
27
|
Li Q, Lu T, Zhang C, Hansen MR, Li S. Electrical stimulation induces synaptic changes in the peripheral auditory system. J Comp Neurol 2019; 528:893-905. [PMID: 31658367 DOI: 10.1002/cne.24802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022]
Abstract
Since a rapidly increasing number of neurostimulation devices are used clinically to modulate specific neural functions, the impact of electrical stimulation on targeted neural structure and function has become a key issue. In particular, the specific effect of electrical stimulation via a cochlear implant (CI) on inner hair cell (IHC) synapses remains unclear. Importantly, CI candidacy has recently expanded to include patients with partial hearing loss. Unfortunately, some CI recipients experience progressive hearing loss after activation of electrical stimulation. The mechanism(s) accounting for loss of residual hearing following electrical stimulation is unknown. Here normal-hearing guinea pigs were implanted with customized CIs. Intracochlear electrical stimulation with an intensity equal to or above electrically evoked compound action potential (ECAP) threshold decreased the excitability of auditory nerve. Furthermore, the number of synapses between IHCs and the afferent spiral ganglion neurons (SGNs) also decreased after electrical stimulation with higher intensities. However, no significant change was observed in the packing density and perikaryal area of SGNs as well as the quantity of hair cells. These results carry important implications for use of CIs in patients with residual hearing and for an increasing number of patients treated with other neurostimulation devices. Notably, the results were based on acute electrical stimulation. Considering the complex interaction between CIs and targeted tissues, it is urgent to conduct further research to clarify whether the similar changes could be induced by chronic electrical stimulation.
Collapse
Affiliation(s)
- Qiang Li
- Department of Otolaryngology & Head-Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Tianhao Lu
- Department of Otolaryngology & Head-Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Chen Zhang
- Department of Otolaryngology & Head-Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Shufeng Li
- Department of Otolaryngology & Head-Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Ling D, Luo J, Wang M, Cao X, Chen X, Fang K, Yu B. Kilohertz high-frequency alternating current blocks nerve conduction without causing nerve damage in rats. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:661. [PMID: 31930062 DOI: 10.21037/atm.2019.10.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background In recent years, 2-50 kHz high-frequency alternating current has been shown to block nerve conduction mostly based on simulation models or experiments in vitro. This study aimed to assess the nerve block effects and related parameters of kilohertz alternating current in a rat model. Methods High-frequency biphasic rectangular stimulus pulse was applied to rat's sciatic nerve in vivo, and its blockade frequency and intensity was studied by recording the changes of compound muscle action potential (CMAP) amplitude and muscle states before and after stimulation. Secondly, diameter and circumference of sciatic nerve was measured at stimulating point by ultrasound. The correlation between stimulus' frequency and the nerve's diameter and circumference was studied. Lastly, we assessed nerve damage causing by high-frequency electrical stimulation by measuring CMAP and nerve conduction velocity (NCV) in the following day and sciatic nerve hematoxylin-eosin staining, both blocked side and contralateral side. Results When the current intensity was fixed, the blockade only occurred in a specific frequency range, above or below might have partial block effect. Preliminary statistical results showed that the blocking frequency of high-frequency alternating current was negatively linearly correlated with the circumference of sciatic nerve (P<0.05); HE staining of the sciatic nerve showed no axon and myelin sheath damage on blocked or opposite side, and the CMAP and NCV of the sciatic nerve remeasured in the next day were normal, indicating high-frequency electrical stimulation produced no nerve injury. Conclusions High-frequency alternating current stimulation can block nerve conduction without causing nerve damage, and the complete block frequency is negatively linearly correlated with the circumference of sciatic nerve.
Collapse
Affiliation(s)
- Dandan Ling
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Junjie Luo
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Mengying Wang
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiaodan Cao
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiaorui Chen
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Kexin Fang
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Bin Yu
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
29
|
Kim Y, Bulea TC, Park HS. Transcutaneous high-frequency alternating current for rapid reversible muscle force reduction below pain threshold. J Neural Eng 2019; 16:066013. [PMID: 31344687 DOI: 10.1088/1741-2552/ab35ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The development of non-invasive, quickly reversible techniques for controlling undesired muscle force production (e.g. spasticity) could expand rehabilitation approaches in those with pathology by increasing the type and intensity of exercises that can be performed. High-frequency alternating current (HFAC) has been previously established as a viable method for blocking neural conduction in peripheral nerves. However, clinical application of HFAC for nerve conduction block is limited due to the invasiveness of surgical procedures and the painful onset response. This study aimed to examine the use of transcutaneous HFAC (tHFAC) at various stimulation frequencies to address these shortfalls. APPROACH Ten individuals participated in the study. Surface electrodes were utilized to apply tHFAC (0.5-12 kHz) to the median and ulnar nerves. Individual pain threshold was determined by gradual increase of stimulation amplitude. Subjects then performed a force-matching task by producing grip forces up to the maximal voluntary contraction level with and without application of tHFAC below the pain threshold. MAIN RESULTS Pain threshold current amplitude increased linearly with stimulation frequency. Statistical analysis showed that both stimulation frequency and charge injected per phase had significant effects (p < 0.05) on grip force reduction. At the group level, application of tHFAC below pain threshold reduced grip force by a maximum of 40.7% ± 8.1%. Baseline grip force trials interspersed between tHFAC trials showed consistent grip force, indicating that fatigue was not a factor in force reduction. SIGNIFICANCE Our results demonstrate the effectiveness of tHFAC at reducing muscle force when applied below the pain threshold, suggesting its potential clinical viability. Future studies are necessary to further elucidate the mechanism of force reduction before clinical application.
Collapse
Affiliation(s)
- Yushin Kim
- Major of Sports Health Rehabilitation, Cheongju University, Cheongju, Republic of Korea
| | | | | |
Collapse
|
30
|
Mirza KB, Golden CT, Nikolic K, Toumazou C. Closed-Loop Implantable Therapeutic Neuromodulation Systems Based on Neurochemical Monitoring. Front Neurosci 2019; 13:808. [PMID: 31481864 PMCID: PMC6710388 DOI: 10.3389/fnins.2019.00808] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/19/2019] [Indexed: 12/29/2022] Open
Abstract
Closed-loop or intelligent neuromodulation allows adjustable, personalized neuromodulation which usually incorporates the recording of a biomarker, followed by implementation of an algorithm which decides the timing (when?) and strength (how much?) of stimulation. Closed-loop neuromodulation has been shown to have greater benefits compared to open-loop neuromodulation, particularly for therapeutic applications such as pharmacoresistant epilepsy, movement disorders and potentially for psychological disorders such as depression or drug addiction. However, an important aspect of the technique is selection of an appropriate, preferably neural biomarker. Neurochemical sensing can provide high resolution biomarker monitoring for various neurological disorders as well as offer deeper insight into neurological mechanisms. The chemicals of interest being measured, could be ions such as potassium (K+), sodium (Na+), calcium (Ca2+), chloride (Cl−), hydrogen (H+) or neurotransmitters such as dopamine, serotonin and glutamate. This review focusses on the different building blocks necessary for a neurochemical, closed-loop neuromodulation system including biomarkers, sensors and data processing algorithms. Furthermore, it also highlights the merits and drawbacks of using this biomarker modality.
Collapse
Affiliation(s)
- Khalid B Mirza
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Caroline T Golden
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Konstantin Nikolic
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Christofer Toumazou
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Serrano-Muñoz D, Gómez-Soriano J, Bravo-Esteban E, Ávila-Martín G, Galán-Arriero I, Taylor J, Avendaño-Coy J. Soleus H-reflex modulation following transcutaneous high- and low-frequency spinal stimulation in healthy volunteers. J Electromyogr Kinesiol 2019; 46:1-7. [DOI: 10.1016/j.jelekin.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
|
32
|
Guo T, Tsai D, Yang CY, Al Abed A, Twyford P, Fried SI, Morley JW, Suaning GJ, Dokos S, Lovell NH. Mediating Retinal Ganglion Cell Spike Rates Using High-Frequency Electrical Stimulation. Front Neurosci 2019; 13:413. [PMID: 31114476 PMCID: PMC6503046 DOI: 10.3389/fnins.2019.00413] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
Recent retinal studies have directed more attention to sophisticated stimulation strategies based on high-frequency (>1.0 kHz) electrical stimulation (HFS). In these studies, each retinal ganglion cell (RGC) type demonstrated a characteristic stimulus-strength-dependent response to HFS, offering the intriguing possibility of focally targeting retinal neurons to provide useful visual information by retinal prosthetics. Ionic mechanisms are known to affect the responses of electrogenic cells during electrical stimulation. However, how these mechanisms affect RGC responses is not well understood at present, particularly when applying HFS. Here, we investigate this issue via an in silico model of the RGC. We calibrate and validate the model using an in vitro retinal preparation. An RGC model based on accurate biophysics and realistic representation of cell morphology, was used to investigate how RGCs respond to HFS. The model was able to closely replicate the stimulus-strength-dependent suppression of RGC action potentials observed experimentally. Our results suggest that spike inhibition during HFS is due to local membrane hyperpolarization caused by outward membrane currents near the stimulus electrode. In addition, the extent of HFS-induced inhibition can be largely altered by the intrinsic properties of the inward sodium current. Finally, stimulus-strength-dependent suppression can be modulated by a wide range of stimulation frequencies, under generalized electrode placement conditions. In vitro experiments verified the computational modeling data. This modeling and experimental approach can be extended to further our understanding on the effects of novel stimulus strategies by simulating RGC stimulus-response profiles over a wider range of stimulation frequencies and electrode locations than have previously been explored.
Collapse
Affiliation(s)
- Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - David Tsai
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biological Sciences, Columbia University, New York, NY, United States.,Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Chih Yu Yang
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Perry Twyford
- VA Boston Healthcare System, Boston, MA, United States
| | - Shelley I Fried
- VA Boston Healthcare System, Boston, MA, United States.,Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - John W Morley
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Gregg J Suaning
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Roldan LM, Eggers TE, Kilgore KL, Bhadra N, Vrabec T, Bhadra N. Measurement of block thresholds in kiloHertz frequency alternating current peripheral nerve block. J Neurosci Methods 2019; 315:48-54. [PMID: 30641091 PMCID: PMC6380354 DOI: 10.1016/j.jneumeth.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Kilohertz frequency alternating currents (KHFAC) produce rapid nerve conduction block of mammalian peripheral nerve and have potential clinical applications in reducing peripheral nerve hyperactivity. The experimental investigation of KHFAC nerve block requires a robust output measure and this has proven to be the block threshold (BT), the lowest current or voltage at which the axons of interest are completely blocked. All significant literature in KHFAC nerve block, both simulations and experimental, were reviewed to determine the block threshold method that was used. The two common methods used are the High-Low method experimentally and the Binary search method for simulations. NEW METHOD Four methods to measure the block threshold (High-Low, High-Low-High, Binary and Random) at three frequencies (10, 20 and 30 kHz) were compared through randomized repeated experiments in the in-vivo rodent sciatic nerve-gastrocnemius model. RESULTS The literature review showed that more than 50% of publications did not measure the block threshold. The experimental results showed no statistical difference in the BT value between the four methods. COMPARISON WITH EXISTING METHOD(S) However, there were differences in the number of significant onset responses, depending on the method. The run time for the BT determination was the shortest for the High-Low method. CONCLUSIONS It is recommended that all research in electrical nerve block, including KHFAC, should include measurement of the BT. The High-Low method is recommended for most experimental situations but the Binary method could also be a viable option, especially where onset responses are minimal.
Collapse
Affiliation(s)
- Leah Marie Roldan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Thomas E Eggers
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Kevin L Kilgore
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA; Louis Stokes VA Medical Center, 10701 East Boulevard, Cleveland, OH, 44106, USA
| | - Narendra Bhadra
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Tina Vrabec
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Niloy Bhadra
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA.
| |
Collapse
|
34
|
López-Álvarez VM, Cobianchi S, Navarro X. Chronic electrical stimulation reduces hyperalgesia and associated spinal changes induced by peripheral nerve injury. Neuromodulation 2019; 22:509-518. [PMID: 30786105 DOI: 10.1111/ner.12927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES We aimed to investigate if different protocols of electrical stimulation following nerve injury might improve neuropathic pain outcomes and modify associated plastic changes at the spinal cord level. MATERIALS AND METHODS Adult rats were subjected to sciatic nerve transection and repair, and distributed in four groups: untreated (SNTR, n = 12), repeated acute electrical stimulation (rAES, 50 Hz, one hour, n = 12), chronic electrical stimulation (CES, 50 Hz, one hour, n = 12), and increasing-frequency chronic electrical stimulation (iCES, one hour, n = 12) delivered during two weeks following the lesion. The threshold of nociceptive withdrawal to mechanical stimuli was evaluated by means of a Von Frey algesimeter during three weeks postlesion. Spinal cord samples were processed by immunohistochemistry for labeling glial cells, adrenergic receptors, K+ -Cl- cotransporter 2 (KCC2) and GABA. RESULTS Acute electrical stimulation (50 Hz, one hour) delivered at 3, 7, and 14 days induced an immediate increase of mechanical pain threshold that disappeared after a few days. Chronic electrical stimulation given daily reduced mechanical hyperalgesia until the end of follow-up, being more sustained with the iCES than with constant 50 Hz stimulation (CES). Chronic stimulation protocols restored the expression of β2 adrenergic receptor and of KCC2 in the dorsal horn, which were significantly reduced by nerve injury. These treatments decreased also the activation of microglia and astrocytes in the dorsal horn. CONCLUSION Daily electrical stimulation, especially if frequency-patterned, was effective in ameliorating hyperalgesia after nerve injury, and partially preventing the proinflammatory and hyperalgesic changes in the dorsal horn associated to neuropathic pain.
Collapse
Affiliation(s)
- Víctor M López-Álvarez
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Stefano Cobianchi
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
35
|
Duncan CC, Kluger DT, Davis TS, Warren DJ, Page DM, Hutchinson DT, Clark GA. Selective Decrease in Allodynia With High‐Frequency Neuromodulation via High‐Electrode‐Count Intrafascicular Peripheral Nerve Interface After Brachial Plexus Injury. Neuromodulation 2018; 22:597-606. [DOI: 10.1111/ner.12802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/18/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - David T. Kluger
- Department of Bioengineering University of Utah Salt Lake City UT USA
| | - Tyler S. Davis
- Department of Bioengineering University of Utah Salt Lake City UT USA
| | - David J. Warren
- Department of Bioengineering University of Utah Salt Lake City UT USA
| | - David M. Page
- Department of Bioengineering University of Utah Salt Lake City UT USA
| | | | - Gregory A. Clark
- Department of Bioengineering University of Utah Salt Lake City UT USA
| |
Collapse
|
36
|
Reddy CG, Miller JW, Abode-Iyamah KO, Safayi S, Wilson S, Dalm BD, Fredericks DC, Gillies GT, Howard MA, Brennan TJ. Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis. J Pain Res 2018; 11:1147-1162. [PMID: 29942150 PMCID: PMC6007193 DOI: 10.2147/jpr.s139843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background It is becoming increasingly important to understand the mechanisms of spinal cord stimulation (SCS) in alleviating neuropathic pain as novel stimulation paradigms arise. Purpose Additionally, the small anatomic scale of current SCS animal models is a barrier to more translational research. Methods Using chronic constriction injury (CCI) of the common peroneal nerve (CPN) in sheep (ovine), we have created a chronic model of neuropathic pain that avoids motor deficits present in prior large animal models. This large animal model has allowed us to implant clinical grade SCS hardware, which enables both acute and chronic testing using von Frey filament thresholds and gait analysis. Furthermore, the larger anatomic scale of the sheep allows for simultaneous single-unit recordings from the dorsal horn and SCS with minimal electrical artifact. Results Detectable tactile hypersensitivity occurred 21 days after nerve injury, with preliminary indications that chronic SCS may reverse it in the painful limb. Gait analysis revealed no hoof drop in the CCI model. Single neurons were identified and discriminated in the dorsal horn, and their activity was modulated via SCS. Unlike previous large animal models that employed a complete transection of the nerve, no motor deficit was observed in the sheep with CCI. Conclusion To our knowledge, this is the first reported large animal model of chronic neuropathic pain which facilitates the study of both acute and chronic SCS using complementary behavioral and electrophysiologic measures. As demonstrated by our successful establishment of these techniques, an ovine model of neuropathic pain is suitable for testing the mechanisms of SCS.
Collapse
Affiliation(s)
- Chandan G Reddy
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - John W Miller
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kingsley O Abode-Iyamah
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sina Safayi
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Brian D Dalm
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Douglas C Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Timothy J Brennan
- Department of Anesthesia, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
37
|
Avendano-Coy J, Serrano-Munoz D, Taylor J, Goicoechea-Garcia C, Gomez-Soriano J. Peripheral Nerve Conduction Block by High-Frequency Alternating Currents: A Systematic Review. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1131-1140. [DOI: 10.1109/tnsre.2018.2833141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Jiman AA, Chhabra KH, Lewis AG, Cederna PS, Seeley RJ, Low MJ, Bruns TM. Electrical stimulation of renal nerves for modulating urine glucose excretion in rats. Bioelectron Med 2018; 4:7. [PMID: 32232083 PMCID: PMC7098252 DOI: 10.1186/s42234-018-0008-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of the kidney in glucose homeostasis has gained global interest. Kidneys are innervated by renal nerves, and renal denervation animal models have shown improved glucose regulation. We hypothesized that stimulation of renal nerves at kilohertz frequencies, which can block propagation of action potentials, would increase urine glucose excretion. Conversely, we hypothesized that low frequency stimulation, which has been shown to increase renal nerve activity, would decrease urine glucose excretion. METHODS We performed non-survival experiments on male rats under thiobutabarbital anesthesia. A cuff electrode was placed around the left renal artery, encircling the renal nerves. Ureters were cannulated bilaterally to obtain urine samples from each kidney independently for comparison. Renal nerves were stimulated at kilohertz frequencies (1-50 kHz) or low frequencies (2-5 Hz), with intravenous administration of a glucose bolus shortly into the 25-40-min stimulation period. Urine samples were collected at 5-10-min intervals, and colorimetric assays were used to quantify glucose excretion and concentration between stimulated and non-stimulated kidneys. A Kruskal-Wallis test was performed across all stimulation frequencies (α = 0.05), followed by a post-hoc Wilcoxon rank sum test with Bonferroni correction (α = 0.005). RESULTS For kilohertz frequency trials, the stimulated kidney yielded a higher average total urine glucose excretion at 33 kHz (+ 24.5%; n = 9) than 1 kHz (- 5.9%; n = 6) and 50 kHz (+ 2.3%; n = 14). In low frequency stimulation trials, 5 Hz stimulation led to a lower average total urine glucose excretion (- 40.4%; n = 6) than 2 Hz (- 27.2%; n = 5). The average total urine glucose excretion between 33 kHz and 5 Hz was statistically significant (p < 0.005). Similar outcomes were observed for urine flow rate, which may suggest an associated response. No trends or statistical significance were observed for urine glucose concentrations. CONCLUSION To our knowledge, this is the first study to investigate electrical stimulation of renal nerves to modulate urine glucose excretion. Our experimental results show that stimulation of renal nerves may modulate urine glucose excretion, however, this response may be associated with urine flow rate. Future work is needed to examine the underlying mechanisms and identify approaches for enhancing regulation of glucose excretion.
Collapse
Affiliation(s)
- Ahmad A. Jiman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI USA
| | - Kavaljit H. Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Alfor G. Lewis
- Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Surgery, Plastic Surgery Section, Michigan Medicine, Ann Arbor, MI USA
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Tim M. Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
39
|
Lesperance LS, Lankarany M, Zhang TC, Esteller R, Ratté S, Prescott SA. Artifactual hyperpolarization during extracellular electrical stimulation: Proposed mechanism of high-rate neuromodulation disproved. Brain Stimul 2018; 11:582-591. [DOI: 10.1016/j.brs.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/18/2023] Open
|
40
|
Patel YA, Butera RJ. Challenges associated with nerve conduction block using kilohertz electrical stimulation. J Neural Eng 2018; 15:031002. [DOI: 10.1088/1741-2552/aaadc0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Springer S, Kozol Z, Reznic Z. Ulnar Nerve Conduction Block Using Surface Kilohertz Frequency Alternating Current: A Feasibility Study. Artif Organs 2018. [PMID: 29517147 DOI: 10.1111/aor.13119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of this study was to test the effects of kilohertz frequency alternating current (KHFAC) surface stimulation applied to the ulnar nerve on force and myoelectrical activity of the abductor digiti minimi (ADM) muscle. Eighteen healthy volunteers (age: 27.6 ± 7.9 years; 10 males, 8 females) were included in the study. Each subject participated in one session during which a biphasic 7 kHz rectangular pulse was delivered above the medial epicondyle of the humerus to induce ulnar nerve blocking. ADM electromyographic (EMG) activity and contraction force were measured before (Pre), immediately after, and following 5 and 10 min post stimulation (post 1, post 2). The results showed that EMG activity decreased immediately after stimulation compared to prestimulation, it returned to the level of prestimulation at 5 min (post 1), and decreased again at 10 min (post 2). Furthermore, analysis of compound adjusted z-score indicated significant decrease of force and myoelectrical activity immediately, and 10 min post stimulation. The findings, which demonstrate that KHFAC surface stimulation of the ulnar nerve may decrease the motor activity of intrinsic hand muscle, can help to develop future methods of neuromodulation to treat hand spasticity.
Collapse
Affiliation(s)
- Shmuel Springer
- Department of Physiotherapy, Ariel University, Ariel, Israel
| | - Zvi Kozol
- Department of Physiotherapy, Ariel University, Ariel, Israel
| | - Zvi Reznic
- Spotlight Technologies, Tel Aviv, Israel
| |
Collapse
|
42
|
|
43
|
Patel YA, Kim BS, Butera RJ. Kilohertz Electrical Stimulation Nerve Conduction Block: Effects of Electrode Material. IEEE Trans Neural Syst Rehabil Eng 2018; 26:11-17. [DOI: 10.1109/tnsre.2017.2737954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Bhadra N, Kilgore KL. Fundamentals of Kilohertz Frequency Alternating Current Nerve Conduction Block of the Peripheral Nervous System. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Bhadra N, Vrabec TL, Bhadra N, Kilgore KL. Reversible conduction block in peripheral nerve using electrical waveforms. BIOELECTRONICS IN MEDICINE 2018; 1:39-54. [PMID: 29480897 PMCID: PMC5811084 DOI: 10.2217/bem-2017-0004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/15/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Electrical nerve block uses electrical waveforms to block action potential propagation. MATERIALS & METHODS Two key features that distinguish electrical nerve block from other nonelectrical means of nerve block: block occurs instantly, typically within 1 s; and block is fully and rapidly reversible (within seconds). RESULTS Approaches for achieving electrical nerve block are reviewed, including kilohertz frequency alternating current and charge-balanced polarizing current. We conclude with a discussion of the future directions of electrical nerve block. CONCLUSION Electrical nerve block is an emerging technique that has many significant advantages over other methods of nerve block. This field is still in its infancy, but a significant expansion in the clinical application of this technique is expected in the coming years.
Collapse
Affiliation(s)
- Niloy Bhadra
- Department of Physical Medicine & Rehabilitation, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Tina L Vrabec
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Narendra Bhadra
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kevin L Kilgore
- Department of Orthopaedics, MetroHealth Medical Center & Case Western Reserve University, Cleveland, OH 44109, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
46
|
Patel YA, Kim BS, Rountree WS, Butera RJ. Kilohertz Electrical Stimulation Nerve Conduction Block: Effects of Electrode Surface Area. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1906-1916. [DOI: 10.1109/tnsre.2017.2684161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Crook JJ, Lovick TA. High Frequency Stimulation of the Pelvic Nerve Inhibits Urinary Voiding in Anesthetized Rats. Front Physiol 2017; 8:623. [PMID: 28970803 PMCID: PMC5609575 DOI: 10.3389/fphys.2017.00623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023] Open
Abstract
Urge Urinary Incontinence: “a sudden and uncontrollable desire to void which is impossible to defer” is extremely common and considered the most bothersome of lower urinary tract conditions. Current treatments rely on pharmacological, neuromodulatory, and neurotoxicological approaches to manage the disorder, by reducing the excitability of the bladder muscle. However, some patients remain refractory to treatment. An alternative approach would be to temporarily suppress activity of the micturition control circuitry at the time of need i.e., urgency. In this study we investigated, in a rat model, the utility of high frequency pelvic nerve stimulation to produce a rapid onset, reversible suppression of voiding. In urethane-anesthetized rats periodic voiding was induced by continuous infusion of saline into the bladder whilst recording bladder pressure and electrical activity from the external urethral sphincter (EUS). High frequency (1–3 kHz), sinusoidal pelvic nerve stimulation initiated at the onset of the sharp rise in bladder pressure signaling an imminent void aborted the detrusor contraction. Urine output was suppressed and tone in the EUS increased. Stimulating the right or left nerve was equally effective. The effect was rapid in onset, reversible, and reproducible and evoked only minimal “off target” side effects on blood pressure, heart rate, respiration, uterine pressure, or rectal pressure. Transient contraction of abdominal wall was observed in some animals. Stimulation applied during the filling phase evoked a small, transient rise in bladder pressure and increased tonic activity in the EUS, but no urine output. Suppression of micturition persisted after section of the contralateral pelvic nerve or after ligation of the nerve distal to the electrode cuff on the ipsilateral side. We conclude that high frequency pelvic nerve stimulation initiated at the onset of an imminent void provides a potential means to control urinary continence.
Collapse
Affiliation(s)
- Jonathan J Crook
- Physiology, Pharmacology and Neuroscience, University of BristolBristol, United Kingdom
| | - Thelma A Lovick
- Physiology, Pharmacology and Neuroscience, University of BristolBristol, United Kingdom
| |
Collapse
|
48
|
Effect of Unmodulated 5-kHz Alternating Currents Versus Transcutaneous Electrical Nerve Stimulation on Mechanical and Thermal Pain, Tactile Threshold, and Peripheral Nerve Conduction: A Double-Blind, Placebo-Controlled Crossover Trial. Arch Phys Med Rehabil 2017; 98:888-895. [DOI: 10.1016/j.apmr.2016.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 11/21/2022]
|
49
|
Patel YA, Saxena T, Bellamkonda RV, Butera RJ. Kilohertz frequency nerve block enhances anti-inflammatory effects of vagus nerve stimulation. Sci Rep 2017; 7:39810. [PMID: 28054557 PMCID: PMC5215548 DOI: 10.1038/srep39810] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/25/2016] [Indexed: 11/29/2022] Open
Abstract
Efferent activation of the cervical vagus nerve (cVN) dampens systemic inflammatory processes, potentially modulating a wide-range of inflammatory pathological conditions. In contrast, afferent cVN activation amplifies systemic inflammatory processes, leading to activation of the hypothalamic-pituitary-adrenal (HPA) axis, the sympathetic nervous system through the greater splanchnic nerve (GSN), and elevation of pro-inflammatory cytokines. Ideally, to clinically implement anti-inflammatory therapy via cervical vagus nerve stimulation (cVNS) one should selectively activate the efferent pathway. Unfortunately, current implementations, in animal and clinical investigations, activate both afferent and efferent pathways. We paired cVNS with kilohertz electrical stimulation (KES) nerve block to preferentially activate efferent pathways while blocking afferent pathways. Selective efferent cVNS enhanced the anti-inflammatory effects of cVNS. Our results demonstrate that: (i) afferent, but not efferent, cVNS synchronously activates the GSN in a dose-dependent manner; (ii) efferent cVNS enabled by complete afferent KES nerve block enhances the anti-inflammatory benefits of cVNS; and (iii) incomplete afferent KES nerve block exacerbates systemic inflammation. Overall, these data demonstrate the utility of paired efferent cVNS and afferent KES nerve block for achieving selective efferent cVNS, specifically as it relates to neuromodulation of systemic inflammation.
Collapse
Affiliation(s)
- Yogi A Patel
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, GA, 30332 USA.,Georgia Institute of Technology, Bioengineering Graduate Program, Atlanta, GA, 30332 USA.,Georgia Institute of Technology, Neural Engineering Center, Atlanta, GA, 30332 USA
| | - Tarun Saxena
- Duke University, Department of Biomedical Engineering, Durham, NC 27708 USA
| | - Ravi V Bellamkonda
- Duke University, Department of Biomedical Engineering, Durham, NC 27708 USA
| | - Robert J Butera
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, GA, 30332 USA.,Georgia Institute of Technology, Bioengineering Graduate Program, Atlanta, GA, 30332 USA.,Georgia Institute of Technology, Neural Engineering Center, Atlanta, GA, 30332 USA.,Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332 USA
| |
Collapse
|
50
|
Crosby ND, Janik JJ, Grill WM. Modulation of activity and conduction in single dorsal column axons by kilohertz-frequency spinal cord stimulation. J Neurophysiol 2016; 117:136-147. [PMID: 27760823 DOI: 10.1152/jn.00701.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/12/2016] [Indexed: 11/22/2022] Open
Abstract
Kilohertz-frequency spinal cord stimulation (KHF-SCS) is a potential paresthesia-free treatment for chronic pain. However, the effects of KHF-SCS on spinal dorsal column (DC) axons and its mechanisms of action remain unknown. The objectives of this study were to quantify activation and conduction block of DC axons by KHF-SCS across a range of frequencies (1, 5, 10, or 20 kHz) and waveforms (biphasic pulses or sinusoids). Custom platinum electrodes delivered SCS to the T10/T11 dorsal columns of anesthetized male Sprague-Dawley rats. Single DC axons and compound action potentials were recorded during KHF-SCS to evaluate SCS-evoked activity. Responses to KHF-SCS in DC axons included brief onset firing, slowly accommodating asynchronous firing, and conduction block. The effects of KHF-SCS mostly occurred well above motor thresholds, but isolated units were activated at amplitudes shown to reduce behavioral sensitivity in rats. Activity evoked by SCS was similar across a range of frequencies (5-20 kHz) and waveforms (biphasic and sinusoidal). Stimulation at 1-kHz SCS evoked more axonal firing that was also more phase-synchronized to the SCS waveform, but only at amplitudes above motor threshold. These data quantitatively characterize the central nervous system activity that may modulate pain perception and paresthesia, and thereby provide a foundation for continued investigation of the mechanisms of KHF-SCS and its optimization as a therapy for chronic pain. Given the asynchronous and transient nature of DC activity, it is unlikely that the same mechanisms underlying conventional SCS (i.e., persistent, periodic DC activation) apply to KHF-SCS. NEW & NOTEWORTHY Kilohertz-frequency spinal cord stimulation (KHF-SCS) is a new mode of SCS that may offer better pain relief than conventional SCS. However, the mechanism of action is poorly characterized, especially the effects of stimulation on dorsal column (DC) axons, which are the primary target of stimulation. This study provides the first recordings of single DC axons during KHF-SCS to quantify DC activity that has the potential to mediate the analgesic effects of KHF-SCS.
Collapse
Affiliation(s)
- Nathan D Crosby
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina; .,Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina.,Department of Neurobiology, Duke University, Durham, North Carolina.,Department of Surgery, Duke University, Durham, North Carolina; and
| |
Collapse
|