1
|
Wu CW, Lin BS, Zhang Z, Hsieh TH, Liou JC, Lo WL, Li YT, Chiu SC, Peng CW. Pilot study of using transcranial temporal interfering theta-burst stimulation for modulating motor excitability in rat. J Neuroeng Rehabil 2024; 21:147. [PMID: 39215318 PMCID: PMC11365202 DOI: 10.1186/s12984-024-01451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Transcranial temporal interference stimulation (tTIS) is a promising brain stimulation method that can target deep brain regions by delivering an interfering current from surface electrodes. Most instances of tTIS stimulate the brain with a single-frequency sinusoidal waveform generated by wave interference. Theta burst stimulation is an effective stimulation scheme that can modulate neuroplasticity by generating long-term potentiation- or depression-like effects. To broaden tTIS application, we developed a theta burst protocol using tTIS technique to modulate neuroplasticity in rats. Two cannula electrodes were unilaterally implanted into the intact skull over the primary motor cortex. Electrical field of temporal interference envelopes generated by tTIS through cannula electrodes were recorded from primary motor cortex. Theta burst schemes were characterized, and motor activation induced by the stimulation was also evaluated simultaneously by observing electromyographic signals from the corresponding brachioradialis muscle. After validating the stimulation scheme, we further tested the modulatory effects of theta burst stimulation delivered by tTIS and by conventional transcranial electrical stimulation on primary motor cortex excitability. Changes in the amplitude of motor evoked potentials, elicited when the primary motor cortex was activated by electrical pulses, were measured before and after theta burst stimulation by both techniques. Significant potentiation and suppression were found at 15 to 30 min after the intermittent and continuous theta burst stimulation delivered using tTIS, respectively. However, comparing to theta burst stimulations delivered using conventional form of transcranial electrical stimulation, using tTIS expressed no significant difference in modulating motor evoked potential amplitudes. Sham treatment from both methods had no effect on changing the motor evoked potential amplitude. The present study demonstrated the feasibility of using tTIS to achieve a theta burst stimulation scheme for motor cortical neuromodulation. These findings also indicated the future potential of using tTIS to carry out theta burst stimulation protocols in deep-brain networks for modulating neuroplasticity.
Collapse
Affiliation(s)
- Chun-Wei Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237303, Taiwan
| | - Zhao Zhang
- School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan City, Fujian Province, China
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wei-Lun Lo
- Department of Surgery, Division of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Li
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Shao-Chu Chiu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Nguyen TXD, Kuo CW, Peng CW, Liu HL, Chang MY, Hsieh TH. Transcranial burst electrical stimulation contributes to neuromodulatory effects in the rat motor cortex. Front Neurosci 2023; 17:1303014. [PMID: 38146544 PMCID: PMC10749301 DOI: 10.3389/fnins.2023.1303014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Abstract
Background and objective Transcranial Burst Electrical Stimulation (tBES) is an innovative non-invasive brain stimulation technique that combines direct current (DC) and theta burst stimulation (TBS) for brain neuromodulation. It has been suggested that the tBES protocol may efficiently induce neuroplasticity. However, few studies have systematically tested neuromodulatory effects and underlying neurophysiological mechanisms by manipulating the polarity of DC and TBS patterns. This study aimed to develop the platform and assess neuromodulatory effects and neuronal activity changes following tBES. Methods Five groups of rats were exposed to anodal DC combined with intermittent TBS (tBES+), cathodal DC combined with continuous TBS (tBES-), anodal and cathodal transcranial direct current stimulation (tDCS+ and tDCS-), and sham groups. The neuromodulatory effects of each stimulation on motor cortical excitability were analyzed by motor-evoked potentials (MEPs) changes. We also investigated the effects of tBES on both excitatory and inhibitory neural biomarkers. We specifically examined c-Fos and glutamic acid decarboxylase (GAD-65) using immunohistochemistry staining techniques. Additionally, we evaluated the safety of tBES by analyzing glial fibrillary acidic protein (GFAP) expression. Results Our findings demonstrated significant impacts of tBES on motor cortical excitability up to 30 min post-stimulation. Specifically, MEPs significantly increased after tBES (+) compared to pre-stimulation (p = 0.026) and sham condition (p = 0.025). Conversely, tBES (-) led to a notable decrease in MEPs relative to baseline (p = 0.04) and sham condition (p = 0.048). Although tBES showed a more favorable neuromodulatory effect than tDCS, statistical analysis revealed no significant differences between these two groups (p > 0.05). Additionally, tBES (+) exhibited a significant activation of excitatory neurons, indicated by increased c-Fos expression (p < 0.05), and a reduction in GAD-65 density (p < 0.05). tBES (-) promoted GAD-65 expression (p < 0.05) while inhibiting c-Fos activation (p < 0.05), suggesting the involvement of cortical inhibition with tBES (-). The expression of GFAP showed no significant difference between tBES and sham conditions (p > 0.05), indicating that tBES did not induce neural injury in the stimulated regions. Conclusion Our study indicates that tBES effectively modulates motor cortical excitability. This research significantly contributes to a better understanding of the neuromodulatory effects of tBES, and could provide valuable evidence for its potential clinical applications in treating neurological disorders.
Collapse
Affiliation(s)
- Thi Xuan Dieu Nguyen
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Wei Kuo
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
3
|
Lin BS, Zhang Z, Peng CW, Chen SH, Chan WP, Lai CH. Effectiveness of Repetitive Transcranial Magnetic Stimulation Combined With Transspinal Electrical Stimulation on Corticospinal Excitability for Individuals With Incomplete Spinal Cord Injury: A Pilot Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4790-4800. [PMID: 38032783 DOI: 10.1109/tnsre.2023.3338226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) and transspinal electrical stimulation (tsES) have been proposed as a novel neurostimulation modality for individuals with incomplete spinal cord injury (iSCI). In this study, we integrated magnetic and electrical stimulators to provide neuromodulation therapy to individuals with incomplete spinal cord injury (iSCI). We designed a clinical trial comprising an 8-week treatment period and a 4-week treatment-free observation period. Cortical excitability, clinical features, inertial measurement unit and surface electromyography were assessed every 4 weeks. Twelve individuals with iSCI were recruited and randomly divided into a combined therapy group, a magnetic stimulation group, an electrical stimulation group, or a sham stimulation group. The magnetic and electric stimulations provided in this study were intermittent theta-burst stimulation (iTBS) and 2.5-mA direct current (DC) stimulation, respectively. Combined therapy, which involves iTBS and transspinal DC stimulation (tsDCS), was more effective than was iTBS alone or tsDCS alone in terms of increasing corticospinal excitability. In conclusion, the effectiveness of 8-week combined therapy in increasing corticospinal excitability faded 4 weeks after the cessation of treatment. According to the results, combination of iTBS rTMS and tsDCS treatment was more effective than was iTBS rTMS alone or tsDCS alone in enhancing corticospinal excitability. Although promising, the results of this study must be validated by studies with longer interventions and larger sample sizes.
Collapse
|
4
|
King H, Reiber M, Philippi V, Stirling H, Aulehner K, Bankstahl M, Bleich A, Buchecker V, Glasenapp A, Jirkof P, Miljanovic N, Schönhoff K, von Schumann L, Leenaars C, Potschka H. Anesthesia and analgesia for experimental craniotomy in mice and rats: a systematic scoping review comparing the years 2009 and 2019. Front Neurosci 2023; 17:1143109. [PMID: 37207181 PMCID: PMC10188949 DOI: 10.3389/fnins.2023.1143109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration https://osf.io/7d4qe.
Collapse
Affiliation(s)
- Hannah King
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marion Bankstahl
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aylina Glasenapp
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cathalijn Leenaars
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
- *Correspondence: Heidrun Potschka,
| |
Collapse
|
5
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
6
|
Huang YJ, Wang SM, Chen C, Chen CA, Wu CW, Chen JJ, Peng CW, Lin CW, Huang SW, Chen SC. High-Definition Transcranial Direct Current with Electrical Theta Burst on Post-Stroke Motor Rehabilitation: A Pilot Randomized Controlled Trial. Neurorehabil Neural Repair 2022; 36:645-654. [PMID: 36047662 DOI: 10.1177/15459683221121751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND High-definition transcranial electrical theta burst superimposing direct current stimulation (HD-tDCS-eTBS) not only incorporates the therapeutic advantages of tDCS and TBS but enhances stimulation focality and practicality. However, the applicability of this innovative neuromodulatory device in post-stroke rehabilitation remains uncertain. OBJECTIVE This study aimed to assess the efficacy and safety of the HD-tDCS-eTBS on upper extremity (UE) motor function in patients with chronic stroke. METHODS A patient-blinded, randomized controlled study was conducted. Twenty-four participants were randomly assigned into either the active HD-tDCS-eTBS group or sham HD-tDCS-eTBS group. Both groups received 20 minutes of active/sham HD-tDCS-eTBS combined with 30 minutes of conventional UE rehabilitation each time, 3 times a week for 4 weeks. Outcome measures including the Fugl-Meyer Assessment of Upper Extremity, Wolf Motor Function Test, Jebsen-Taylor Hand Function Test, Finger-Nose Test, and Modified Ashworth Scale were assessed before and immediately after the intervention period. RESULTS Spasticity of shoulder adductor (P = .05), elbow extensor (P = .04), and thumb flexor (P < .01) were significantly reduced in the active HD-tDCS-eTBS group versus the sham group. Nonsignificant trends in the improvements of most other outcome measures were in favor of the active HD-tDCS-eTBS group with moderate to large effect sizes (P = .06-.26, ηp2 = 0.06-0.16). No severe adverse events except for slight skin redness under the stimulus electrode was detected after the HD-tDCS-eTBS. CONCLUSIONS Our findings support that HD-tDCS-eTBS is safe and has therapeutic potential for post-stroke UE motor rehabilitation. TRIAL REGISTRATION ClinicalTrials.gov (ID: NCT04278105).
Collapse
Affiliation(s)
- Yi-Jing Huang
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei
| | - Shun-Min Wang
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan
| | - Chieh Chen
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei
| | - Chien-An Chen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan
| | - Chun-Wei Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei
| | - Jia-Jin Chen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei.,School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei
| | - Che-Wei Lin
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan.,Medical Device Innovation Center, National Cheng Kung University, Tainan.,Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan.,Institute of Medical Informatics, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan
| | - Shih-Wei Huang
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei
| | - Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| |
Collapse
|
7
|
Adeel M, Lin BS, Chen HC, Lai CH, Liou JC, Wu CW, Chan WP, Peng CW. Motor Neuroplastic Effects of a Novel Paired Stimulation Technology in an Incomplete Spinal Cord Injury Animal Model. Int J Mol Sci 2022; 23:ijms23169447. [PMID: 36012710 PMCID: PMC9409074 DOI: 10.3390/ijms23169447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Paired stimulation of the brain and spinal cord can remodel the central nervous tissue circuitry in an animal model to induce motor neuroplasticity. The effects of simultaneous stimulation vary according to the extent and severity of spinal cord injury. Therefore, our study aimed to determine the significant effects on an incomplete SCI rat brain and spinal cord through 3 min and 20 min stimulations after 4 weeks of intervention. Thirty-three Sprague Dawley rats were classified into six groups: (1) normal, (2) sham, (3) iTBS/tsDCS, (4) iTBS/ts-iTBS, (5) rTMS/tsDCS, and (6) rTMS/ts-iTBS. Paired stimulation of the brain cortex and spinal cord thoracic (T10) level was applied simultaneously for 3−20 min. The motor evoked potential (MEP) and Basso, Beattie, and Bresnahan (BBB) scores were recorded after every week of intervention for four weeks along with wheel training for 20 min. Three-minute stimulation with the iTBS/tsDCS intervention induced a significant (p < 0.050 *) increase in MEP after week 2 and week 4 treatments, while 3 min iTBS/ts-iTBS significantly improved MEP (p < 0.050 *) only after the week 3 intervention. The 20 min rTMS/ts-iTBS intervention showed a significant change only in post_5 min after week 4. The BBB score also changed significantly in all groups except for the 20 min rTMS/tsDCS intervention. iTBS/tsDCS and rTMS/ts-iTBS interventions induce neuroplasticity in an incomplete SCI animal model by significantly changing electrophysiological (MEP) and locomotion (BBB) outcomes.
Collapse
Affiliation(s)
- Muhammad Adeel
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237, Taiwan
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237, Taiwan
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Chien-Hung Lai
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Wei Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Wing P. Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel./Fax: +886-2-2736-1661 (ext. 3070)
| |
Collapse
|
8
|
Adeel M, Chen CC, Lin BS, Chen HC, Liou JC, Li YT, Peng CW. Safety of Special Waveform of Transcranial Electrical Stimulation (TES): In Vivo Assessment. Int J Mol Sci 2022; 23:ijms23126850. [PMID: 35743291 PMCID: PMC9224937 DOI: 10.3390/ijms23126850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Intermittent theta burst (iTBS) powered by direct current stimulation (DCS) can safely be applied transcranially to induce neuroplasticity in the human and animal brain cortex. tDCS-iTBS is a special waveform that is used by very few studies, and its safety needs to be confirmed. Therefore, we aimed to evaluate the safety of tDCS-iTBS in an animal model after brain stimulations for 1 h and 4 weeks. Thirty-one Sprague Dawley rats were divided into two groups: (1) short-term stimulation for 1 h/session (sham, low, and high) and (2) long-term for 30 min, 3 sessions/week for 4 weeks (sham and high). The anodal stimulation applied over the primary motor cortex ranged from 2.5 to 4.5 mA/cm2. The brain biomarkers and scalp tissues were assessed using ELISA and histological analysis (H&E staining) after stimulations. The caspase-3 activity, cortical myelin basic protein (MBP) expression, and cortical interleukin (IL-6) levels increased slightly in both groups compared to sham. The serum MBP, cortical neuron-specific enolase (NSE), and serum IL-6 slightly changed from sham after stimulations. There was no obvious edema or cell necrosis seen in cortical histology after the intervention. The short- and long-term stimulations did not induce significant adverse effects on brain and scalp tissues upon assessing biomarkers and conducting histological analysis.
Collapse
Affiliation(s)
- Muhammad Adeel
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.A.); (J.-C.L.)
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Ching Chen
- Department of Interaction Design, College of Design, National Taipei University of Technology, Taipei 106, Taiwan;
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237, Taiwan;
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.A.); (J.-C.L.)
| | - Yu-Ting Li
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 30261, Taiwan;
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.A.); (J.-C.L.)
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Zhang Z, Lin BS, Wu CWG, Hsieh TH, Liou JC, Li YT, Peng CW. Designing and Pilot Testing a Novel Transcranial Temporal Interference Stimulation Device for Neuromodulation. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1483-1493. [PMID: 35657852 DOI: 10.1109/tnsre.2022.3179537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcranial temporal interference stimulation (tTIS) has been proposed as a new neuromodulation technology for non-invasive deep-brain stimulation (DBS). However, few studies have detailed the design method of a tTIS device and provided system validation. Thus, a detailed design and validation scheme of a novel tTIS device for animal brain stimulation are presented in this study. In the proposed tTIS device, a direct digital synthesizer (DDS) was used to generate a sine wave potential of different frequencies, which was converted to an adjustable sine wave current. A current transformer was used to produce electrical isolation of different channels, which eliminated the current crosstalk between channels and greatly increased the load capacity by amplifying the output voltage. Several in vitro experiments were first conducted to validate the tTIS device. Our results indicated that the error percentages of the stimulation currents were within ±2%. Current crosstalk between channels was almost completely eliminated. Then, in vivo electric field measurement shows that the 2-pole arrangement may provide better cortical targeting than the 4-pole mode. A pilot animal experiment was conducted in which evoked motion and electromyographic activation of the contralateral forelimb were observed, which indicated that the 2-pole tTIS had successfully activated the primary motor cortex in a rat. Motor activation induced by the 2-pole tTIS demonstrated the feasibility and safety potential when applying our tTIS device for neuromodulation.
Collapse
|
10
|
Modulation of Interhemispheric Synchronization and Cortical Activity in Healthy Subjects by High-Definition Theta-Burst Electrical Stimulation. Neural Plast 2022; 2022:3593262. [PMID: 35529454 PMCID: PMC9076342 DOI: 10.1155/2022/3593262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Various forms of theta-burst stimulation (TBS) such as intermittent TBS (iTBS) and continuous TBS (cTBS) have been introduced as novel facilitation/suppression schemes during repetitive transcranial magnetic stimulation (rTMS), demonstrating a better efficacy than conventional paradigms. Herein, we extended the rTMS-TBS schemes to electrical stimulation of high-definition montage (HD-TBS) and investigated its neural effects on the human brain. Methods In a within-subject design, fifteen right-handed healthy adults randomly participated in 10 min and 2 mA HD-TBS sessions: unilateral (Uni)-iTBS, bilateral (Bi)-cTBS/iTBS, and sham stimulation over primary motor cortex regions. A 20-channel near-infrared spectroscopy (NIRS) system was covered on the bilateral prefrontal cortex (PFC), sensory motor cortex (SMC), and parietal lobe (PL) for observing cerebral hemodynamic responses in the resting-state and during fast finger-tapping tasks at pre-, during, and poststimulation. Interhemispheric correlation coefficient (IHCC) and wavelet phase coherence (WPCO) from resting-state NIRS and concentration of oxyhemoglobin during fast finger-tapping tasks were explored to reflect the symmetry between the two hemispheres and cortical activity, respectively. Results The IHCC and WPCO of NIRS data in the SMC region under Bi-cTBS/iTBS showed relatively small values at low-frequency bands III (0.06–0.15 Hz) and IV (0.02–0.06), indicating a significant desynchronization in both time and frequency domains. In addition, the SMC activation induced by fast finger-tapping exercise was significantly greater during Uni-iTBS as well as during and post Bi-cTBS/iTBS sessions. Conclusions It appears that a 10 min and 2 mA Bi-cTBS/iTBS applied over two hemispheres within the primary motor cortex region could effectively modulate the interhemispheric synchronization and cortical activation in the SMC of healthy subjects. Our study demonstrated that bilateral HD-TBS approaches is an effective noninvasive brain stimulation scheme which could be a novel therapeutic for inducing effects of neuromodulation on various neurological disorders caused by ischemic stroke or traumatic brain injuries.
Collapse
|
11
|
Effects of paired stimulation with specific waveforms on cortical and spinal plasticity in subjects with a chronic spinal cord injury. J Formos Med Assoc 2022; 121:2044-2056. [DOI: 10.1016/j.jfma.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
|
12
|
Wang SMS, Huang YJ, Chen JJJ, Wu CW, Chen CA, Lin CW, Nguyen VT, Peng CW. Designing and pilot testing a novel high-definition transcranial burst electrostimulation device for neurorehabilitation. J Neural Eng 2021; 18. [PMID: 34479230 DOI: 10.1088/1741-2552/ac23be] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023]
Abstract
Objective.Non-invasive brain stimulation has been promoted to facilitate neuromodulation in treating neurological diseases. Recently, high-definition (HD) transcranial electrical stimulation and a novel electrical waveform combining a direct current (DC) and theta burst stimulation (TBS)-like protocol were proposed and demonstrated high potential to enhance neuroplastic effects in a more-efficient manner. In this study, we designed a novel HD transcranial burst electrostimulation device and to preliminarily examined its therapeutic potential in neurorehabilitation.Approach.A prototype of the transcranial burst electrostimulation device was developed, which can flexibly output a waveform that combined a DC and TBS-like protocol and can equally distribute the current into 4 × 1 HD electrical stimulation by automatic impedance adjustments. The safety and accuracy of the device were then validated in a series ofin vitroexperiments. Finally, a pilot clinical trial was conducted to assess its clinical safety and therapeutic potential on upper-extremity rehabilitation in six patients with chronic stroke, where patients received either active or sham HD transcranial burst electrostimulation combined with occupational therapy three times per week for four weeks.Main results.The prototype was tested, and it was found to comply with all safety requirements. The output parameters were accurate and met the clinical study needs. The pilot clinical study demonstrated that the active HD transcranial burst electrostimulation group had greater improvement in voluntary motor function and coordination of the upper extremity than the sham control group. Additionally, no severe adverse events were noted, but slight skin redness under the stimulus electrode immediately after stimulation was seen.Conclusions.The results demonstrated the feasibility of incorporating the HD electrical DC and TBS-like protocol in our device; and the novel neuromodulatory device produced positive neurorehabilitation outcomes in a safe fashion, which could be the basis for the future clinical implementation for treating neurological diseases.Trial registration:ClinicalTrials.gov Identifier: NCT04278105. Registered on 20 February 2020.
Collapse
Affiliation(s)
- Shun-Min Samuel Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yi-Jing Huang
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Jin Jason Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Wei Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chien-An Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Che-Wei Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Van-Truong Nguyen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Zhang Z, Lin BS, Peng CW, Chan WP, Lin BS, Lai CH. Design of a Novel Paired Associative Nerve Stimulation System and Treatment Strategy for Incomplete Spinal Cord Injury: A Preliminary Study. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1341-1349. [PMID: 34242169 DOI: 10.1109/tnsre.2021.3095842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paired associative nerve stimulation (PANS) was proposed as a potential nerve rehabilitation treatment strategy. However, few relevant documents are available regarding the strategy, and only a few clinical studies have involved healthy people. To determine the feasibility of the neurorehabilitation treatment and to estimate the effect of PANS on nerve plasticity for individuals with incomplete spinal cord injury (iSCI), a design combining repetitive transcranial magnetic stimulation (rTMS) with trans-spinal electrical stimulation was developed for treating individuals with iSCI in this pilot case study. First, a novel PANS system with multiple stimulation modes was designed and verified with resistors and a metal coil as load. Then, the system was applied to three individuals with iSCI, and five types of paired associative stimulation was performed to confirm the feasibility of the system and determine the most effective treatment strategy. The preliminary result showed that 20-Hz rTMS combined with cathodal trans-spinal direct current stimulation (tsDCS) had the greatest effect on corticospinal excitability. Next, stimulations of 20-Hz rTMS (brain) and sham (spine) as well as sham (brain) and cathode tsDCS (spine) were administered to individuals with iSCI, and the results revealed that paired associative stimulation of brain and spine was more effective than only 20-Hz rTMS brain stimulation or cathodal tsDCS stimulation for corticospinal plasticity.
Collapse
|
14
|
Chen SC, Yang LY, Adeel M, Lai CH, Peng CW. Transcranial electrostimulation with special waveforms enhances upper-limb motor function in patients with chronic stroke: a pilot randomized controlled trial. J Neuroeng Rehabil 2021; 18:106. [PMID: 34193179 PMCID: PMC8244182 DOI: 10.1186/s12984-021-00901-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) and intermittent theta burst stimulation (iTBS) were both demonstrated to have therapeutic potentials to rapidly induce neuroplastic effects in various rehabilitation training regimens. Recently, we developed a novel transcranial electrostimulation device that can flexibly output an electrical current with combined tDCS and iTBS waveforms. However, limited studies have determined the therapeutic effects of this special waveform combination on clinical rehabilitation. Herein, we investigated brain stimulation effects of tDCS-iTBS on upper-limb motor function in chronic stroke patients. Methods Twenty-four subjects with a chronic stroke were randomly assigned to a real non-invasive brain stimulation (NIBS; who received the real tDCS + iTBS output) group or a sham NIBS (who received sham tDCS + iTBS output) group. All subjects underwent 18 treatment sessions of 1 h of a conventional rehabilitation program (3 days a week for 6 weeks), where a 20-min NIBS intervention was simultaneously applied during conventional rehabilitation. Outcome measures were assessed before and immediately after the intervention period: Fugl-Meyer Assessment-Upper Extremity (FMA-UE), Jebsen-Taylor Hand Function Test (JTT), and Finger-to-Nose Test (FNT). Results Both groups showed improvements in FMA-UE, JTT, and FNT scores after the 6-week rehabilitation program. Notably, the real NIBS group had greater improvements in the JTT (p = 0. 016) and FNT (p = 0. 037) scores than the sham NIBS group, as determined by the Mann–Whitney rank-sum test. Conclusions Patients who underwent the combined ipsilesional tDCS-iTBS stimulation with conventional rehabilitation exhibited greater impacts than did patients who underwent sham stimulation-conventional rehabilitation in statistically significant clinical responses of the total JTT time and FNT after the stroke. Preliminary results of upper-limb functional recovery suggest that tDCS-iTBS combined with a conventional rehabilitation intervention may be a promising strategy to enhance therapeutic benefits in future clinical settings. Trial registration: ClinicalTrials.gov Identifier: NCT04369235. Registered on 30 April 2020.
Collapse
Affiliation(s)
- Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ling-Yu Yang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Muhammad Adeel
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hung Lai
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. .,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. .,School of Gerontology Health Management, College of Nursing, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| |
Collapse
|