1
|
Mazzarini A, Fagioli I, Eken H, Livolsi C, Ciapetti T, Maselli A, Piazzini M, Macchi C, Davalli A, Gruppioni E, Trigili E, Crea S, Vitiello N. Improving Walking Energy Efficiency in Transtibial Amputees Through the Integration of a Low-Power Actuator in an ESAR Foot. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1397-1406. [PMID: 38507380 DOI: 10.1109/tnsre.2024.3379904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Reducing energy consumption during walking is a critical goal for transtibial amputees. The study presents the evaluation of a semi-active prosthesis with five transtibial amputees. The prosthesis has a low-power actuator integrated in parallel into an energy-storing-and-releasing foot. The actuator is controlled to compress the foot during the stance phase, supplementing the natural compression due to the user's dynamic interaction with the ground, particularly during the ankle dorsiflexion phase, and to release the energy stored in the foot during the push-off phase, to enhance propulsion. The control strategy is adaptive to the user's gait patterns and speed. The clinical protocol to evaluate the system included treadmill and overground walking tasks. The results showed that walking with the semi-active prosthesis reduced the Physiological Cost Index of transtibial amputees by up to 16% compared to walking using the subjects' proprietary prosthesis. No significant alterations were observed in the spatiotemporal gait parameters of the participants, indicating the module's compatibility with users' natural walking patterns. These findings highlight the potential of the mechatronic actuator in effectively reducing energy expenditure during walking for transtibial amputees. The proposed prosthesis may bring a positive impact on the quality of life, mobility, and functional performance of individuals with transtibial amputation.
Collapse
|
2
|
Cashaback JGA, Allen JL, Chou AHY, Lin DJ, Price MA, Secerovic NK, Song S, Zhang H, Miller HL. NSF DARE-transforming modeling in neurorehabilitation: a patient-in-the-loop framework. J Neuroeng Rehabil 2024; 21:23. [PMID: 38347597 PMCID: PMC10863253 DOI: 10.1186/s12984-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
In 2023, the National Science Foundation (NSF) and the National Institute of Health (NIH) brought together engineers, scientists, and clinicians by sponsoring a conference on computational modelling in neurorehabiilitation. To facilitate multidisciplinary collaborations and improve patient care, in this perspective piece we identify where and how computational modelling can support neurorehabilitation. To address the where, we developed a patient-in-the-loop framework that uses multiple and/or continual measurements to update diagnostic and treatment model parameters, treatment type, and treatment prescription, with the goal of maximizing clinically-relevant functional outcomes. This patient-in-the-loop framework has several key features: (i) it includes diagnostic and treatment models, (ii) it is clinically-grounded with the International Classification of Functioning, Disability and Health (ICF) and patient involvement, (iii) it uses multiple or continual data measurements over time, and (iv) it is applicable to a range of neurological and neurodevelopmental conditions. To address the how, we identify state-of-the-art and highlight promising avenues of future research across the realms of sensorimotor adaptation, neuroplasticity, musculoskeletal, and sensory & pain computational modelling. We also discuss both the importance of and how to perform model validation, as well as challenges to overcome when implementing computational models within a clinical setting. The patient-in-the-loop approach offers a unifying framework to guide multidisciplinary collaboration between computational and clinical stakeholders in the field of neurorehabilitation.
Collapse
Affiliation(s)
- Joshua G A Cashaback
- Biomedical Engineering, Mechanical Engineering, Kinesiology and Applied Physiology, Biome chanics and Movement Science Program, Interdisciplinary Neuroscience Graduate Program, University of Delaware, 540 S College Ave, Newark, DE, 19711, USA.
| | - Jessica L Allen
- Department of Mechanical Engineering, University of Florida, Gainesville, USA
| | | | - David J Lin
- Division of Neurocritical Care and Stroke Service, Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, Providence, USA
| | - Mark A Price
- Department of Mechanical and Industrial Engineering, Department of Kinesiology, University of Massachusetts Amherst, Amherst, USA
| | - Natalija K Secerovic
- School of Electrical Engineering, The Mihajlo Pupin Institute, University of Belgrade, Belgrade, Serbia
- Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems ETH Zürich, Zurich, Switzerland
| | - Seungmoon Song
- Mechanical and Industrial Engineering, Northeastern University, Boston, USA
| | - Haohan Zhang
- Department of Mechanical Engineering, University of Utah, Salt Lake City, USA
| | - Haylie L Miller
- School of Kinesiology, University of Michigan, 830 N University Ave, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Barberi F, Anselmino E, Mazzoni A, Goldfarb M, Micera S. Toward the Development of User-Centered Neurointegrated Lower Limb Prostheses. IEEE Rev Biomed Eng 2024; 17:212-228. [PMID: 37639425 DOI: 10.1109/rbme.2023.3309328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The last few years witnessed radical improvements in lower-limb prostheses. Researchers have presented innovative solutions to overcome the limits of the first generation of prostheses, refining specific aspects which could be implemented in future prostheses designs. Each aspect of lower-limb prostheses has been upgraded, but despite these advances, a number of deficiencies remain and the most capable limb prostheses fall far short of the capabilities of the healthy limb. This article describes the current state of prosthesis technology; identifies a number of deficiencies across the spectrum of lower limb prosthetic components with respect to users' needs; and discusses research opportunities in design and control that would substantially improve functionality concerning each deficiency. In doing so, the authors present a roadmap of patients related issues that should be addressed in order to fulfill the vision of a next-generation, neurally-integrated, highly-functional lower limb prosthesis.
Collapse
|
4
|
Shi QQ, Yick KL, Wu J, Huang X, Tse CY, Chan MK. A Scientometric Analysis and Visualization of Prosthetic Foot Research Work: 2000 to 2022. Bioengineering (Basel) 2023; 10:1138. [PMID: 37892868 PMCID: PMC10604169 DOI: 10.3390/bioengineering10101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to highlight recent research work on topics around prosthetic feet through a scientometric analysis and historical review. The most cited publications from the Clarivate Analytics Web of Science Core Collection database were identified and analyzed from 1 January 2000 to 31 October 2022. Original articles, reviews with full manuscripts, conference proceedings, early access documents, and meeting abstracts were included. A scientometric visualization analysis of the bibliometric information related to the publications, including the countries, institutions, journals, references, and keywords, was conducted. A total of 1827 publications met the search criteria in this study. The related publications grouped by year show an overall trend of increase during the two decades from 2000 to 2022. The United States is ranked first in terms of overall influence in this field (n = 774). The Northwestern University has published the most papers on prosthetic feet (n = 84). Prosthetics and Orthotics International has published the largest number of studies on prosthetic feet (n = 151). During recent years, a number of studies with citation bursts and burst keywords (e.g., diabetes, gait, pain, and sensor) have provided clues on the hotspots of prosthetic feet and prosthetic foot trends. The findings of this study are based on a comprehensive analysis of the literature and highlight the research topics on prosthetic feet that have been primarily explored. The data provide guidance to clinicians and researchers to further studies in this field.
Collapse
Affiliation(s)
- Qiu-Qiong Shi
- Laboratory for Artificial Intelligence in Design, Hong Kong, China;
| | - Kit-Lun Yick
- Laboratory for Artificial Intelligence in Design, Hong Kong, China;
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Jinlong Wu
- College of Physical Education, Southwest University, Chongqing 400715, China;
| | - Xujia Huang
- School of Recreational Sports and Tourism, Beijing Sport University, Beijing 100084, China;
| | - Chi-Yung Tse
- Centre for Orthopaedic Surgery, Hong Kong, China;
| | - Mei-Ki Chan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China;
| |
Collapse
|
5
|
Norvell DC, Biggs WT, Bott J, Henderson AW, Moore KP, Czerniecki JM. PROClass: The Development and Validation of a Novel Prosthetic Component Sophistication Classification System. Arch Rehabil Res Clin Transl 2023; 5:100273. [PMID: 37744202 PMCID: PMC10517350 DOI: 10.1016/j.arrct.2023.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Objective To develop a lower limb prosthesis (LLP) sophistication classification system that categorizes prosthetic component prescriptions into "basic," "intermediate," and "advanced" and assess its content validity, reliability, and accuracy. Design Classification development and validation study. Setting The Veterans Affairs (VA) Corporate Data Warehouse database and National Prosthetics Patient Database were used to identify patients undergoing their first amputation at the transtibial or transfemoral level due to diabetes or peripheral artery disease and to identify the associated codes for each LLP. Participants An expert panel of 6 nationally recognized certified prosthetists, a national expert in VA prosthetics data and coding, a physical medicine and rehabilitation physician, and an epidemiologist developed an LLP classification system (PROClass) using 30 transfemoral and transtibial lower limb amputees. Main Outcome Measures The expert panel reviewed 20 consecutive participants meeting study criteria for the development of the PROClass system and a subsequent 30 consecutive cases for assessing the inter- and intra-rater reliability and accuracy. Results The interrater and intrarater reliability was almost perfect with Gwet's AC1 values ranging from .82 to .96 for both expert panel members and research assistants. The accuracy of the research assistant's classifications to the "criterion standard" was excellent with Gwet's AC1 values ranging between .75 and .92. Conclusions PROClass is a pragmatic, reliable, and accurate prosthetic classification system with strong face validity that will enable the classification of prosthetic components used for large data set research aimed at evaluating important clinical questions such as the effects of sophistication on patient outcomes.
Collapse
Affiliation(s)
- Daniel C. Norvell
- VA Puget Sound Health Care System, Seattle, WA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA
- VA Center for Limb Loss and MoBility (CLiMB), Seattle, WA
| | | | - Jeffrey Bott
- VA in the Orthotic, Prosthetic, and Orthic Clinical Services Program Office, Washington, DC
| | - Alison W. Henderson
- VA Puget Sound Health Care System, Seattle, WA
- VA Center for Limb Loss and MoBility (CLiMB), Seattle, WA
| | - Kathryn P. Moore
- VA Puget Sound Health Care System, Seattle, WA
- VA Seattle Epidemiologic Research and Information Center (ERIC), Seattle, WA
| | - Joseph M. Czerniecki
- VA Puget Sound Health Care System, Seattle, WA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA
- VA Center for Limb Loss and MoBility (CLiMB), Seattle, WA
| |
Collapse
|
6
|
Gehlhar R, Tucker M, Young AJ, Ames AD. A Review of Current State-of-the-Art Control Methods for Lower-Limb Powered Prostheses. ANNUAL REVIEWS IN CONTROL 2023; 55:142-164. [PMID: 37635763 PMCID: PMC10449377 DOI: 10.1016/j.arcontrol.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Lower-limb prostheses aim to restore ambulatory function for individuals with lower-limb amputations. While the design of lower-limb prostheses is important, this paper focuses on the complementary challenge - the control of lower-limb prostheses. Specifically, we focus on powered prostheses, a subset of lower-limb prostheses, which utilize actuators to inject mechanical power into the walking gait of a human user. In this paper, we present a review of existing control strategies for lower-limb powered prostheses, including the control objectives, sensing capabilities, and control methodologies. We separate the various control methods into three main tiers of prosthesis control: high-level control for task and gait phase estimation, mid-level control for desired torque computation (both with and without the use of reference trajectories), and low-level control for enforcing the computed torque commands on the prosthesis. In particular, we focus on the high- and mid-level control approaches in this review. Additionally, we outline existing methods for customizing the prosthetic behavior for individual human users. Finally, we conclude with a discussion on future research directions for powered lower-limb prostheses based on the potential of current control methods and open problems in the field.
Collapse
Affiliation(s)
- Rachel Gehlhar
- Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, 91125, CA, USA
| | - Maegan Tucker
- Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, 91125, CA, USA
| | - Aaron J Young
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Avenue, Atlanta, 30332, GA, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, North Avenue, Atlanta, 30332, GA, USA
| | - Aaron D Ames
- Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, 91125, CA, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, 91125, CA, USA
| |
Collapse
|
7
|
Collu R, Paolini R, Bilotta M, Demofonti A, Cordella F, Zollo L, Barbaro M. Wearable High Voltage Compliant Current Stimulator for Restoring Sensory Feedback. MICROMACHINES 2023; 14:782. [PMID: 37421015 DOI: 10.3390/mi14040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 07/09/2023]
Abstract
Transcutaneous Electrical Nerve Stimulation (TENS) is a promising technique for eliciting referred tactile sensations in patients with limb amputation. Although several studies show the validity of this technique, its application in daily life and away from laboratories is limited by the need for more portable instrumentation that guarantees the necessary voltage and current requirements for proper sensory stimulation. This study proposes a low-cost, wearable high-voltage compliant current stimulator with four independent channels based on Components-Off-The-Shelf (COTS). This microcontroller-based system implements a voltage-current converter controllable through a digital-to-analog converter that delivers up to 25 mA to load up to 3.6 kΩ. The high-voltage compliance enables the system to adapt to variations in electrode-skin impedance, allowing it to stimulate loads over 10 kΩ with currents of 5 mA. The system was realized on a four-layer PCB (115.9 mm × 61 mm, 52 g). The functionality of the device was tested on resistive loads and on an equivalent skin-like RC circuit. Moreover, the possibility of implementing an amplitude modulation was demonstrated.
Collapse
Affiliation(s)
- Riccardo Collu
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D'Armi, 09123 Cagliari, Italy
| | - Roberto Paolini
- Research Unit of Advanced Robotics and Human-Centred Technologies (CREO Lab), Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Martina Bilotta
- Research Unit of Advanced Robotics and Human-Centred Technologies (CREO Lab), Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Andrea Demofonti
- Research Unit of Advanced Robotics and Human-Centred Technologies (CREO Lab), Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Francesca Cordella
- Research Unit of Advanced Robotics and Human-Centred Technologies (CREO Lab), Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Loredana Zollo
- Research Unit of Advanced Robotics and Human-Centred Technologies (CREO Lab), Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Massimo Barbaro
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D'Armi, 09123 Cagliari, Italy
| |
Collapse
|
8
|
Liang W, Qian Z, Chen W, Song H, Cao Y, Wei G, Ren L, Wang K, Ren L. Mechanisms and component design of prosthetic knees: A review from a biomechanical function perspective. Front Bioeng Biotechnol 2022; 10:950110. [PMID: 36185421 PMCID: PMC9521192 DOI: 10.3389/fbioe.2022.950110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Prosthetic knees are state-of-the-art medical devices that use mechanical mechanisms and components to simulate the normal biological knee function for individuals with transfemoral amputation. A large variety of complicated mechanical mechanisms and components have been employed; however, they lack clear relevance to the walking biomechanics of users in the design process. This article aims to bridge this knowledge gap by providing a review of prosthetic knees from a biomechanical perspective and includes stance stability, early-stance flexion and swing resistance, which directly relate the mechanical mechanisms to the perceived walking performance, i.e., fall avoidance, shock absorption, and gait symmetry. The prescription criteria and selection of prosthetic knees depend on the interaction between the user and prosthesis, which includes five functional levels from K0 to K4. Misunderstood functions and the improper adjustment of knee prostheses may lead to reduced stability, restricted stance flexion, and unnatural gait for users. Our review identifies current commercial and recent studied prosthetic knees to provide a new paradigm for prosthetic knee analysis and facilitates the standardization and optimization of prosthetic knee design. This may also enable the design of functional mechanisms and components tailored to regaining lost functions of a specific person, hence providing individualized product design.
Collapse
Affiliation(s)
- Wei Liang
- Key Laboratory of Bionic Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Zhihui Qian
- Key Laboratory of Bionic Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Wei Chen
- Key Laboratory of Bionic Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Hounan Song
- Key Laboratory of Bionic Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Yu Cao
- Key Laboratory of Bionic Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Guowu Wei
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - Lei Ren
- Key Laboratory of Bionic Engineering, Jilin University, Ministry of Education, Changchun, China
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
- *Correspondence: Lei Ren, ; Kunyang Wang,
| | - Kunyang Wang
- Key Laboratory of Bionic Engineering, Jilin University, Ministry of Education, Changchun, China
- *Correspondence: Lei Ren, ; Kunyang Wang,
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Jilin University, Ministry of Education, Changchun, China
| |
Collapse
|
9
|
Clinical and Demographic Factors Influencing the Asymmetry of Gait in Lower-Limb Prosthetic Users. Symmetry (Basel) 2022. [DOI: 10.3390/sym14091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
(1) Background: A lower limb prosthesis replaces a lost body part with a differential representation of gait function and its symmetry. Many physical, personal, and specific factors in amputees influence gait asymmetry. The aim of this study was to determine the factors influencing the asymmetry of gait in amputated patients. (2) Methods: The study group consisted of 12 people. Gait quality was assessed using the MoCap OptiTrack® Motion Capture System and the results were correlated with demographic factors (age, gender), morphological features (height, weight), amputation-related factors (cause and side of amputation, prosthesis time, and prosthesis fixation), and ailment pain. The control group consisted of 12 people. (3) Results: In the study group, a positive correlation between the mean walking speed and height in the study group was demonstrated, as well as a positive correlation between the difference in ROM and height, and a negative correlation between the mean walking speed and age. A negative correlation between the difference in ROM and age was found in both groups. A positive correlation was found between the width of the support and the weight in the control group. No other statistical relationship with the parameters describing gait asymmetry was found. (4) Conclusions: Statistical analysis showed that mean walking speed and ROM difference in the study group were positively related to height and negatively to age. No other statistical relationship with the parameters describing gait asymmetry was found.
Collapse
|
10
|
Wu R, Li M, Yao Z, Liu W, Si J, Huang H. Reinforcement Learning Impedance Control of a Robotic Prosthesis to Coordinate With Human Intact Knee Motion. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3179420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruofan Wu
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
| | - Minhan Li
- UNC/NCSU Department of Biomedical Engineering, NC State University, Raleigh, NC, USA
| | - Zhikai Yao
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
| | - Wentao Liu
- UNC/NCSU Department of Biomedical Engineering, NC State University, Raleigh, NC, USA
| | - Jennie Si
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
| | - He Huang
- UNC/NCSU Department of Biomedical Engineering, NC State University, Raleigh, NC, USA
| |
Collapse
|
11
|
Zhu B, Zhang D, Chu Y, Gu Y, Zhao X. SeNic: An Open Source Dataset for sEMG-Based Gesture Recognition in Non-ideal Conditions. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1252-1260. [PMID: 35533170 DOI: 10.1109/tnsre.2022.3173708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to reduce the gap between the laboratory environment and actual use in daily life of human-machine interaction based on surface electromyogram (sEMG) intent recognition, this paper presents a benchmark dataset of sEMG in non-ideal conditions (SeNic). The dataset mainly consists of 8-channel sEMG signals, and electrode shifts from an 3D-printed annular ruler. A total of 36 subjects participate in our data acquisition experiments of 7 gestures in non-ideal conditions, where non-ideal factors of 1) electrode shifts, 2) individual difference, 3) muscle fatigue, 4) inter-day difference, and 5) arm postures are elaborately involved. Signals of sEMG are validated first in temporal and frequency domains. Results of recognizing gestures in ideal conditions indicate the high quality of the dataset. Adverse impacts in non-ideal conditions are further revealed in the amplitudes of these data and recognition accuracies. To be concluded, SeNic is a benchmark dataset that introduces several non-ideal factors which often degrade the robustness of sEMG-based systems. It could be used as a freely available dataset and a common platform for researchers in the sEMG-based recognition community. The benchmark dataset SeNic are available online via the website3.
Collapse
|
12
|
Biomechanical evaluation over level ground walking of user-specific prosthetic feet designed using the lower leg trajectory error framework. Sci Rep 2022; 12:5306. [PMID: 35351910 PMCID: PMC8964743 DOI: 10.1038/s41598-022-09114-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
The walking pattern and comfort of a person with lower limb amputation are determined by the prosthetic foot’s diverse set of mechanical characteristics. However, most design methodologies are iterative and focus on individual parameters, preventing a holistic design of prosthetic feet for a user’s body size and walking preferences. Here we refined and evaluated the lower leg trajectory error (LLTE) framework, a novel quantitative and predictive design methodology that optimizes the mechanical function of a user’s prosthesis to encourage gait dynamics that match their body size and desired walking pattern. Five people with unilateral below-knee amputation walked over-ground at self-selected speeds using an LLTE-optimized foot made of Nylon 6/6, their daily-use foot, and a standardized commercial energy storage and return (ESR) foot. Using the LLTE feet, target able-bodied kinematics and kinetics were replicated to within 5.2% and 13.9%, respectively, 13.5% closer than with the commercial ESR foot. Additionally, energy return and center of mass propulsion work were 46% and 34% greater compared to the other two prostheses, which could lead to reduced walking effort. Similarly, peak limb loading and flexion moment on the intact leg were reduced by an average of 13.1%, lowering risk of long-term injuries. LLTE-feet were preferred over the commercial ESR foot across all users and preferred over the daily-use feet by two participants. These results suggest that the LLTE framework could be used to design customized, high performance ESR prostheses using low-cost Nylon 6/6 material. More studies with large sample size are warranted for further verification.
Collapse
|
13
|
Johnson RT, Lakeland D, Finley JM. Using Bayesian inference to estimate plausible muscle forces in musculoskeletal models. J Neuroeng Rehabil 2022; 19:34. [PMID: 35321736 PMCID: PMC8944069 DOI: 10.1186/s12984-022-01008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background Musculoskeletal modeling is currently a preferred method for estimating the muscle forces that underlie observed movements. However, these estimates are sensitive to a variety of assumptions and uncertainties, which creates difficulty when trying to interpret the muscle forces from musculoskeletal simulations. Here, we describe an approach that uses Bayesian inference to identify plausible ranges of muscle forces for a simple motion while representing uncertainty in the measurement of the motion and the objective function used to solve the muscle redundancy problem. Methods We generated a reference elbow flexion–extension motion and computed a set of reference forces that would produce the motion while minimizing muscle excitations cubed via OpenSim Moco. We then used a Markov Chain Monte Carlo (MCMC) algorithm to sample from a posterior probability distribution of muscle excitations that would result in the reference elbow motion. We constructed a prior over the excitation parameters which down-weighted regions of the parameter space with greater muscle excitations. We used muscle excitations to find the corresponding kinematics using OpenSim, where the error in position and velocity trajectories (likelihood function) was combined with the sum of the cubed muscle excitations integrated over time (prior function) to compute the posterior probability density. Results We evaluated the muscle forces that resulted from the set of excitations that were visited in the MCMC chain (seven parallel chains, 500,000 iterations per chain). The estimated muscle forces compared favorably with the reference forces generated with OpenSim Moco, while the elbow angle and velocity from MCMC matched closely with the reference (average RMSE for elbow angle = 2°; and angular velocity = 32°/s). However, our rank plot analyses and potential scale reduction statistics, which we used to evaluate convergence of the algorithm, indicated that the chains did not fully mix. Conclusions While the results from this process are a promising step towards characterizing uncertainty in muscle force estimation, the computational time required to search the solution space with, and the lack of MCMC convergence indicates that further developments in MCMC algorithms are necessary for this process to become feasible for larger-scale models. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-01008-4.
Collapse
Affiliation(s)
- Russell T Johnson
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.
| | | | - James M Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Rabe KG, Fey NP. Evaluating Electromyography and Sonomyography Sensor Fusion to Estimate Lower-Limb Kinematics Using Gaussian Process Regression. Front Robot AI 2022; 9:716545. [PMID: 35386586 PMCID: PMC8977408 DOI: 10.3389/frobt.2022.716545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 02/17/2022] [Indexed: 01/23/2023] Open
Abstract
Research on robotic lower-limb assistive devices over the past decade has generated autonomous, multiple degree-of-freedom devices to augment human performance during a variety of scenarios. However, the increase in capabilities of these devices is met with an increase in the complexity of the overall control problem and requirement for an accurate and robust sensing modality for intent recognition. Due to its ability to precede changes in motion, surface electromyography (EMG) is widely studied as a peripheral sensing modality for capturing features of muscle activity as an input for control of powered assistive devices. In order to capture features that contribute to muscle contraction and joint motion beyond muscle activity of superficial muscles, researchers have introduced sonomyography, or real-time dynamic ultrasound imaging of skeletal muscle. However, the ability of these sonomyography features to continuously predict multiple lower-limb joint kinematics during widely varying ambulation tasks, and their potential as an input for powered multiple degree-of-freedom lower-limb assistive devices is unknown. The objective of this research is to evaluate surface EMG and sonomyography, as well as the fusion of features from both sensing modalities, as inputs to Gaussian process regression models for the continuous estimation of hip, knee and ankle angle and velocity during level walking, stair ascent/descent and ramp ascent/descent ambulation. Gaussian process regression is a Bayesian nonlinear regression model that has been introduced as an alternative to musculoskeletal model-based techniques. In this study, time-intensity features of sonomyography on both the anterior and posterior thigh along with time-domain features of surface EMG from eight muscles on the lower-limb were used to train and test subject-dependent and task-invariant Gaussian process regression models for the continuous estimation of hip, knee and ankle motion. Overall, anterior sonomyography sensor fusion with surface EMG significantly improved estimation of hip, knee and ankle motion for all ambulation tasks (level ground, stair and ramp ambulation) in comparison to surface EMG alone. Additionally, anterior sonomyography alone significantly improved errors at the hip and knee for most tasks compared to surface EMG. These findings help inform the implementation and integration of volitional control strategies for robotic assistive technologies.
Collapse
Affiliation(s)
- Kaitlin G. Rabe
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Texas Robotics Center of Excellence, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Kaitlin G. Rabe,
| | - Nicholas P. Fey
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Texas Robotics Center of Excellence, The University of Texas at Austin, Austin, TX, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
15
|
De Marchis C, Ranaldi S, Varrecchia T, Serrao M, Castiglia SF, Tatarelli A, Ranavolo A, Draicchio F, Lacquaniti F, Conforto S. Characterizing the Gait of People With Different Types of Amputation and Prosthetic Components Through Multimodal Measurements: A Methodological Perspective. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:804746. [PMID: 36189078 PMCID: PMC9397865 DOI: 10.3389/fresc.2022.804746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022]
Abstract
Prosthetic gait implies the use of compensatory motor strategies, including alterations in gait biomechanics and adaptations in the neural control mechanisms adopted by the central nervous system. Despite the constant technological advancements in prostheses design that led to a reduction in compensatory movements and an increased acceptance by the users, a deep comprehension of the numerous factors that influence prosthetic gait is still needed. The quantitative prosthetic gait analysis is an essential step in the development of new and ergonomic devices and to optimize the rehabilitation therapies. Nevertheless, the assessment of prosthetic gait is still carried out by a heterogeneous variety of methodologies, and this limits the comparison of results from different studies, complicating the definition of shared and well-accepted guidelines among clinicians, therapists, physicians, and engineers. This perspective article starts from the results of a project funded by the Italian Worker's Compensation Authority (INAIL) that led to the generation of an extended dataset of measurements involving kinematic, kinetic, and electrophysiological recordings in subjects with different types of amputation and prosthetic components. By encompassing different studies published along the project activities, we discuss the specific information that can be extracted by different kinds of measurements, and we here provide a methodological perspective related to multimodal prosthetic gait assessment, highlighting how, for designing improved prostheses and more effective therapies for patients, it is of critical importance to analyze movement neural control and its mechanical actuation as a whole, without limiting the focus to one specific aspect.
Collapse
Affiliation(s)
- Cristiano De Marchis
- Department of Industrial, Electronics and Mechanical Engineering, Roma Tre University, Rome, Italy
- Department of Engineering, University of Messina, Messina, Italy
- *Correspondence: Cristiano De Marchis
| | - Simone Ranaldi
- Department of Industrial, Electronics and Mechanical Engineering, Roma Tre University, Rome, Italy
| | - Tiwana Varrecchia
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Rome, Italy
| | - Mariano Serrao
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Stefano Filippo Castiglia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Antonella Tatarelli
- Department of Human Neurosciences, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Alberto Ranavolo
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Rome, Italy
| | - Francesco Draicchio
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Conforto
- Department of Industrial, Electronics and Mechanical Engineering, Roma Tre University, Rome, Italy
| |
Collapse
|
16
|
Meade ZS, Likens AD, Kent JA, Takahashi KZ, Wurdeman SR, Jacobsen AL, Hernandez ME, Stergiou N. Subthreshold Vibration Influences Standing Balance but Has Unclear Impact on Somatosensation in Persons With Transtibial Amputations. Front Physiol 2022; 13:810079. [PMID: 35185618 PMCID: PMC8847287 DOI: 10.3389/fphys.2022.810079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stochastic resonance has been successfully used to improve human movement when using subthreshold vibration. Recent work has shown promise in improving mobility in individuals with unilateral lower limb amputations. Furthering this work, we present an investigation of two different signal structures in the use of stochastic resonance to improve mobility in individuals with unilateral lower limb amputations. Cutaneous somatosensation and standing balance measures using spatial and temporal analysis were assessed. There were no differences in the somatosensation measures, but differences in the temporal characteristics of the standing measures were seen with the various vibration structures when compared to no vibration, one of which suggesting mass may play an important role in determining who may or may not benefit from this intervention. Stochastic resonance employed with subthreshold vibration influences mobility in individuals with unilateral amputations, but the full direction and extent of influence is yet to be understood.
Collapse
Affiliation(s)
- Zachary S. Meade
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Aaron D. Likens
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Jenny A. Kent
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kota Z. Takahashi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Shane R. Wurdeman
- Clinical and Scientific Affairs, Hanger Clinic, Austin, TX, United States
| | - Adam L. Jacobsen
- Prosthetics and Sensory Aids, Veterans Affairs Medical Center, Omaha, NE, United States
| | - Manuel E. Hernandez
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Nick Stergiou
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
- *Correspondence: Nick Stergiou,
| |
Collapse
|
17
|
Huang B, Chen W, Liang J, Cheng L, Xiong C. Characterization and Categorization of Various Human Lower Limb Movements Based on Kinematic Synergies. Front Bioeng Biotechnol 2022; 9:793746. [PMID: 35127668 PMCID: PMC8812690 DOI: 10.3389/fbioe.2021.793746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
A proper movement categorization reduces the complexity of understanding or reproducing human movements in fields such as physiology, rehabilitation, and robotics, through partitioning a wide variety of human movements into representative sub-motion groups. However, how to establish a categorization (especially a quantitative categorization) for various human lower limb movements is rarely investigated in literature and remains challenging due to the diversity and complexity of the lower limb movements (diverse gait modes and interaction styles with the environment). Here we present a quantitative categorization for the various lower limb movements. To this end, a similarity measure between movements was first built based on limb kinematic synergies that provide a unified and physiologically meaningful framework for evaluating the similarities among different types of movements. Then, a categorization was established via hierarchical cluster analysis for thirty-four lower limb movements, including walking, running, hopping, sitting-down-standing-up, and turning in different environmental conditions. According to the movement similarities, the various movements could be divided into three distinct clusters (cluster 1: walking, running, and sitting-down-standing-up; cluster 2: hopping; cluster 3: turning). In each cluster, cluster-specific movement synergies were required. Besides the uniqueness of each cluster, similarities were also found among part of the synergies employed by these different clusters, perhaps related to common behavioral goals in these clusters. The mix of synergies shared across the clusters and synergies for specific clusters thus suggests the coexistence of the conservation and augmentation of the kinematic synergies underlying the construction of the diverse and complex motor behaviors. Overall, the categorization presented here yields a quantitative and hierarchical representation of the various lower limb movements, which can serve as a basis for the understanding of the formation mechanisms of human locomotion and motor function assessment and reproduction in related fields.
Collapse
Affiliation(s)
| | | | | | | | - Caihua Xiong
- *Correspondence: Jiejunyi Liang, ; Caihua Xiong,
| |
Collapse
|
18
|
Wang X, Xiu H, Zhang Y, Liang W, Chen W, Wei G, Ren L, Ren L. Design and Validation of a Polycentric Hybrid Knee Prosthesis with Electromagnet-Controlled Mode Transition. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3193462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Haohua Xiu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Yao Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Wei Liang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Wei Chen
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Guowu Wei
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Lei Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
19
|
Nishikawa K, Huck TG. Muscle as a tunable material: implications for achieving muscle-like function in robotic prosthetic devices. J Exp Biol 2021; 224:272387. [PMID: 34605903 DOI: 10.1242/jeb.225086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An ideal prosthesis should perform as well as or better than the missing limb it was designed to replace. Although this ideal is currently unattainable, recent advances in design have significantly improved the function of prosthetic devices. For the lower extremity, both passive prostheses (which provide no added power) and active prostheses (which add propulsive power) aim to emulate the dynamic function of the ankle joint, whose adaptive, time-varying resistance to applied forces is essential for walking and running. Passive prostheses fail to normalize energetics because they lack variable ankle impedance that is actively controlled within each gait cycle. By contrast, robotic prostheses can normalize energetics for some users under some conditions. However, the problem of adaptive and versatile control remains a significant issue. Current prosthesis-control algorithms fail to adapt to changes in gait required for walking on level ground at different speeds or on ramps and stairs. A new paradigm of 'muscle as a tunable material' versus 'muscle as a motor' offers insights into the adaptability and versatility of biological muscles, which may provide inspiration for prosthesis design and control. In this new paradigm, neural activation tunes muscle stiffness and damping, adapting the response to applied forces rather than instructing the timing and amplitude of muscle force. A mechanistic understanding of muscle function is incomplete and would benefit from collaboration between biologists and engineers. An improved understanding of the adaptability of muscle may yield better models as well as inspiration for developing prostheses that equal or surpass the functional capabilities of biological limbs across a wide range of conditions.
Collapse
Affiliation(s)
- Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| | - Thomas G Huck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| |
Collapse
|
20
|
Design and Trajectory Tracking Control of a Magnetorheological Prosthetic Knee Joint. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper developed a new magnetorheological (MR) prosthetic knee joint using an MR damper as the brake. According to the gait data of healthy people walking on flat ground, the structure of a MR prosthetic knee joint was expounded in detail, and its motion and dynamic model was also established. In addition, an MR damper was developed according to the specific needs of an MR prosthesis. The forward and reverse mechanical models of the MR damper were established, and its damping performance was obtained through experimental tests. In addition, to solve the problems of uncertainty and external interference in the MR prosthetic knee joint system, a second-order sliding mode controller was proposed. The experimental test results show the maximum positive error of the knee joint swing trajectory is 9.4°, which effectively tracks the reference swing trajectory.
Collapse
|
21
|
Inter-limb weight transfer strategy during walking after unilateral transfemoral amputation. Sci Rep 2021; 11:4793. [PMID: 33637849 PMCID: PMC7910552 DOI: 10.1038/s41598-021-84357-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Although weight transfer is an important component of gait rehabilitation, the biomechanical strategy underlying the vertical ground reaction force loading/unloading in individuals with unilateral transfemoral amputation between intact and prosthetic limbs remains unclear. We investigated weight transfer between limbs at different walking speeds in 15 individuals with unilateral transfemoral amputation and 15 individuals without amputation as controls, who walked on an instrumented treadmill. The normalized unloading and loading rates were calculated as the slope of decay and rise phase of the vertical ground reaction force, respectively. We performed linear regression analyses for trailing limb's unloading rate and leading limb's loading rate between the prosthetic, intact, and control limbs. While loading rate increased with walking speed in all three limbs, the greatest increase was observed in the intact limb. In contrast to the other limbs, the prosthetic limb unloading rate was relatively insensitive to speed changes. Consequently, the regression line between trailing prosthetic and leading intact limbs deviated from other relationships. These results suggest that weight transfer is varied whether the leading or trailing limb is the prosthetic or intact side, and the loading rate of the leading limb is partially affected by the unloading rate of the contralateral trailing limb.
Collapse
|
22
|
Elery T, Rezazadeh S, Reznick E, Gray L, Gregg RD. Effects of a Powered Knee-Ankle Prosthesis on Amputee Hip Compensations: A Case Series. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2944-2954. [PMID: 33232241 DOI: 10.1109/tnsre.2020.3040260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transfemoral amputee gait often exhibits compensations due to the lack of ankle push-off power and control over swing foot position using passive prostheses. Powered prostheses can restore this functionality, but their effects on compensatory behaviors, specifically at the residual hip, are not well understood. This paper investigates residual hip compensations through walking experiments with three transfemoral amputees using a low-impedance powered knee-ankle prosthesis compared to their day-to-day passive prosthesis. The powered prosthesis used impedance control during stance for compliant interaction with the ground, a time-based push-off controller to deliver high torque and power, and phase-based trajectory tracking during swing to provide user control over foot placement. Experiments show that when subjects utilized the powered ankle push-off, less mechanical pull-off power was required from the residual hip to progress the limb forward. Overall positive work at the residual hip was reduced for 2 of 3 subjects, and negative work was reduced for all subjects. Moreover, all subjects displayed increased step length, increased propulsive impulses on the prosthetic side, and improved impulse symmetries. Hip circumduction improved for subjects who had previously exhibited this compensation on their passive prosthesis. These improvements in gait, especially reduced residual hip power and work, have the potential to reduce fatigue and overuse injuries in persons with transfemoral amputation.
Collapse
|
23
|
Torricelli D, Rodriguez-Guerrero C, Veneman JF, Crea S, Briem K, Lenggenhager B, Beckerle P. Benchmarking Wearable Robots: Challenges and Recommendations From Functional, User Experience, and Methodological Perspectives. Front Robot AI 2020; 7:561774. [PMID: 33501326 PMCID: PMC7805816 DOI: 10.3389/frobt.2020.561774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Wearable robots (WRs) are increasingly moving out of the labs toward real-world applications. In order for WRs to be effectively and widely adopted by end-users, a common benchmarking framework needs to be established. In this article, we outline the perspectives that in our opinion are the main determinants of this endeavor, and exemplify the complex landscape into three areas. The first perspective is related to quantifying the technical performance of the device and the physical impact of the device on the user. The second one refers to the understanding of the user's perceptual, emotional, and cognitive experience of (and with) the technology. The third one proposes a strategic path for a global benchmarking methodology, composed by reproducible experimental procedures representing real-life conditions. We hope that this paper can enable developers, researchers, clinicians and end-users to efficiently identify the most promising directions for validating their technology and drive future research efforts in the short and medium term.
Collapse
Affiliation(s)
- Diego Torricelli
- Cajal institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Carlos Rodriguez-Guerrero
- Robotics and Multibody Mechanics Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | | | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Kristin Briem
- Department of Physical Therapy, Faculty of Medicine, Research Centre of Movement Science, University of Iceland, Reykjavík, Iceland
| | | | - Philipp Beckerle
- Elastic Lightweight Robotics Group, Department of Electrical Engineering and Information Technology, Robotics Research Institute, Technische Universität Dortmund, Dortmund, Germany
- Institute for Mechatronic Systems, Department of Mechanical Engineering, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
24
|
A systematic review on design technology and application of polycentric prosthetic knee in amputee rehabilitation. Phys Eng Sci Med 2020; 43:781-798. [PMID: 32638327 DOI: 10.1007/s13246-020-00882-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/27/2020] [Indexed: 10/23/2022]
Abstract
The objective of this paper is to conduct a systematic review on design technology and clinical application of polycentric prosthetic knee joint in the rehabilitation of trans-femoral amputees. Relevant studies were identified using electronic database such as PubMed, EMBASE, SCOPUS and the Cochrane Controlled Trials Register (Rehabilitation and Related Therapies) up to February 2020. Screening of abstracts and application of inclusion and exclusion criteria were made. Design, modeling, material use, kinematic study, simulation technique and clinical application of polycentric knee models used in many developed and developing countries have been reviewed. Out of 516 potentially relevant studies, 43 articles were included. Specific variables on technical and clinical aspects were extracted and added to summary tables. The results reveal that polycentric knees have a variety of geometries but the methods for comparing their performances are rare. The data of structural analysis using different simulation techniques are validated with experimental results for determining model accuracy. Gait analysis using the polycentric knee components provides a valid tool to correlate with experimental results. There are well-designed studies on the technological development of polycentric knees, however, high-quality clinical researches are scarce. Conventional clinical knowledge had considerable gaps concerning the effects of polycentric knee and their mechanical characteristics on human functioning with a lower-limb prosthesis. Still, further research is needed to develop and implement standardized measures on prosthetic knee joints for their effective use, function, durability, and cost-effectiveness.
Collapse
|
25
|
Schuy J, Stech N, Harris G, Beckerle P, Zahedi S, Rinderknecht S. A Prosthetic Shank With Adaptable Torsion Stiffness and Foot Alignment. Front Neurorobot 2020; 14:23. [PMID: 32457590 PMCID: PMC7225318 DOI: 10.3389/fnbot.2020.00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Torsion adapters in lower limb prostheses aim to increase comfort, mobility and health of users by allowing rotation in the transversal plane. A preliminary study with two transtibial amputees indicated correlations between torsional stiffness and foot alignment to increase comfort and stability of the user depending on the gait situation and velocity. This paper presents the design and proof-of-concept of an active, bio-inspired prosthetic shank adapter and a novel approach to create a user-specific human-machine interaction through adapting the device's properties. To provide adequate support, load data and subjective feedback of subjects are recorded and analyzed regarding defined gait situations. The results are merged to an user individual preference-setting matrix to select optimal parameters for each gait situation and velocity. A control strategy is implemented to render the specified desired torsional stiffness and transversal foot alignment values to achieve situation-dependent adaptation based on the input of designed gait detection algorithms. The proposed parallel elastic drive train mimics the functions of bones and muscles in the human shank. It is designed to provide the desired physical human-machine interaction properties along with optimized actuator energy consumption. Following test bench verification, trials with five participants with lower limb amputation at different levels are performed for basic validation. The results suggest improved movement support in turning maneuvers. Subjective user feedback confirmed a noticeable reduction of load at the stump and improved ease of turning.
Collapse
Affiliation(s)
- Jochen Schuy
- Continental Teves AG & Co. oHG, Frankfurt am Main, Germany
| | | | - Graham Harris
- Chas a Blatchford & Sons Ltd, Basingstoke, United Kingdom
| | - Philipp Beckerle
- Institute for Mechatronic Systems, Mechanical Engineering, Technische Universität Darmstadt, Darmstadt, Germany.,Elastic Lightweight Robotics Group, Robotics Research Institute, Department of Electrical Engineering and Information Technology, Technische Universität Dortmund, Dortmund, Germany
| | - Saeed Zahedi
- Chas a Blatchford & Sons Ltd, Basingstoke, United Kingdom
| | - Stephan Rinderknecht
- Institute for Mechatronic Systems, Mechanical Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
26
|
Gao F, Liu G, Liang F, Liao WH. IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and Exoskeletons. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1334-1343. [PMID: 32286999 DOI: 10.1109/tnsre.2020.2987155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Active transtibial prostheses, orthoses, and exoskeletons hold the promise of improving the mobility of lower-limb impaired or amputated individuals. Locomotion mode identification (LMI) is essential for these devices precisely reproducing the required function in different terrains. In this study, a terrain geometry-based LMI algorithm is proposed. The environment should be built according to the inclination grade of the ground. For example, when the inclination angle is between 7 degrees and 15 degrees, the environment should be a ramp. If the inclination angle is around 30 degrees, the environment is preferred to be equipped with stairs. Given that, the locomotion mode/terrain can be classified by the inclination grade. Besides, human feet always move along the surface of terrain to minimize the energy expenditure for transporting lower limbs and get the required foot clearance. Hence, the foot trajectory estimated by an IMU was used to derive the inclination grade of the terrain that we traverse to identify the locomotion mode. In addition, a novel trigger condition (an elliptical boundary) is proposed to activate the decision-making of the LMI algorithm before the next foot strike thus leaving enough time for performing preparatory work in the swing phase. When the estimated foot trajectory goes across the elliptical boundary, the decision-making will be executed. Experimental results show that the average accuracy for three healthy subjects and three below-knee amputees is 98.5% in five locomotion modes: level-ground walking, up slope, down slope, stair descent, and stair ascent. Besides, all the locomotion modes can be identified before the next foot strike.
Collapse
|
27
|
Ren H, Shang W, Li N, Wu X. A fast parameterized gait planning method for a lower-limb exoskeleton robot. INT J ADV ROBOT SYST 2020. [DOI: 10.1177/1729881419893221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In order to meet requirements of diverse activities of exoskeleton robot in practical application, a dynamic motion planning system is proposed using a fast parameterized gait planning method in this article. This method can plan the required gait data by adaptively adjusting very few parameters according to different application requirements. The inverted pendulum model is used to ensure the sagittal stability of the robot in the planning process. And this article specifies the end location of robot and iterates the associated joint angles by inverse kinematics. The gait trajectories generated by the proposed method are applied to the lightweight lower-limb exoskeleton robot. The results demonstrate that the trajectories of gait can be online generated smoothly and correctly, meanwhile every variable step can be satisfied as expected.
Collapse
Affiliation(s)
- Hao Ren
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanfeng Shang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Niannian Li
- Otolaryngology Research Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xinyu Wu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|