1
|
Dal Bò E, Cecchetto C, Callara AL, Greco A, Mura F, Vanello N, Di Francesco F, Scilingo EP, Gentili C. Emotion perception through the nose: how olfactory emotional cues modulate the perception of neutral facial expressions in affective disorders. Transl Psychiatry 2024; 14:342. [PMID: 39181892 PMCID: PMC11344772 DOI: 10.1038/s41398-024-03038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Humans can decode emotional states from the body odors of the conspecifics and this type of emotional communication is particularly relevant in conditions in which social interactions are impaired, as in depression and social anxiety. The present study aimed to explore how body odors collected in happiness and fearful conditions modulate the subjective ratings, the psychophysiological response and the neural processing of neutral faces in individuals with depressive symptoms, social anxiety symptoms, and healthy controls (N = 22 per group). To this aim, electrocardiogram (ECG) and HD-EEG were recorded continuously. Heart Rate Variability (HRV) was extracted from the ECG as a measure of vagal tone, event-related potentials (ERPs) and event-related spectral perturbations (ERPSs) were extracted from the EEG. The results revealed that the HRV increased during the fear and happiness body odors conditions compared to clean air, but no group differences emerged. For ERPs data, repeated measure ANOVA did not show any significant effects. However, the ERPSs analyses revealed a late increase in delta power and a reduced beta power both at an early and a late stage of stimulus processing in response to the neutral faces presented with the emotional body odors, regardless of the presence of depressive or social anxiety symptoms. The current research offers new insights, demonstrating that emotional chemosignals serve as potent environmental cues. This represents a substantial advancement in comprehending the impact of emotional chemosignals in both individuals with and without affective disorders.
Collapse
Grants
- 824153 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 824153 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 824153 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 824153 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 824153 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 824153 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 824153 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- DM 11/05/2017 n. 262 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- European Union - Next Generation EU, in the context of The National Recovery and Resilience Plan, Investment 1.5 Ecosystems of Innovation, Project Tuscany Health Ecosystem (THE), Spoke 3 "Advanced technologies, methods, materials and heath analytics " CUP: I53C22000780001
- PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 1 “Human-centered AI”, funded by the European Commission under the NextGeneration EU programme.
Collapse
Affiliation(s)
- Elisa Dal Bò
- Department of General Psychology, University of Padova, Padua, Italy.
| | - Cinzia Cecchetto
- Department of General Psychology, University of Padova, Padua, Italy
| | - Alejandro Luis Callara
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Alberto Greco
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Francesca Mura
- Department of General Psychology, University of Padova, Padua, Italy
| | - Nicola Vanello
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Enzo Pasquale Scilingo
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Claudio Gentili
- Department of General Psychology, University of Padova, Padua, Italy
| |
Collapse
|
2
|
Neri B, Callara AL, Vanello N, Menicucci D, Zaccaro A, Piarulli A, Laurino M, Norbu N, Kechok J, Sherab N, Gemignani A. Report from a Tibetan Monastery: EEG neural correlates of concentrative and analytical meditation. Front Psychol 2024; 15:1348317. [PMID: 38756494 PMCID: PMC11098278 DOI: 10.3389/fpsyg.2024.1348317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
The positive effects of meditation on human wellbeing are indisputable, ranging from emotion regulation improvement to stress reduction and present-moment awareness enhancement. Changes in brain activity regulate and support these phenomena. However, the heterogeneity of meditation practices and their cultural background, as well as their poor categorization limit the generalization of results to all types of meditation. Here, we took advantage of a collaboration with the very singular and precious community of the Monks and Geshes of the Tibetan University of Sera-Jey in India to study the neural correlates of the two main types of meditation recognized in Tibetan Buddhism, namely concentrative and analytical meditation. Twenty-three meditators with different levels of expertise underwent to an ecological (i.e., within the monastery) EEG acquisition consisting of an analytical and/or concentrative meditation session at "their best," and with the only constraint of performing a 5-min-long baseline at the beginning of the session. Time-varying power-spectral-density estimates of each session were compared against the baseline (i.e., within session) and between conditions (i.e., analytical vs. concentrative). Our results showed that concentrative meditation elicited more numerous and marked changes in the EEG power compared to analytical meditation, and mainly in the form of an increase in the theta, alpha and beta frequency ranges. Moreover, the full immersion in the Monastery life allowed to share the results and discuss their interpretation with the best scholars of the Monastic University, ensuring the identification of the most expert meditators, as well as to highlight better the differences between the different types of meditation practiced by each of them.
Collapse
Affiliation(s)
- Bruno Neri
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Nicola Vanello
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Andrea Zaccaro
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Andrea Piarulli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Ngawang Norbu
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Jampa Kechok
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Ngawang Sherab
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Callara AL, Greco A, Scilingo EP, Bonfiglio L. Neuronal correlates of eyeblinks are an expression of primary consciousness phenomena. Sci Rep 2023; 13:12617. [PMID: 37537328 PMCID: PMC10400571 DOI: 10.1038/s41598-023-39500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
The blinking rate far exceeds that required for moistening the cornea and changes depending on whether a person is resting or engaged in cognitive tasks. During ecological cognitive tasks (such as speaking, reading, and watching videos), blinks occur at breakpoints of attention suggesting a role in information segmentation, but the close relationship between cognition dynamics and blink timing still escapes a full understanding. The aim of the present study is to seek (1) if there is a temporal relationship between blink events and the consecutive steps of cognitive processing, and (2) if blink timing and the intensity of blink-related EEG responses are affected by task-relevance of stimuli. Our results show that, in a classical visual oddball task, (i) the occurrence of blinks is influenced by stimuli, irrespective of their relevance, (ii) blinks following relevant stimuli are only apparently delayed due to the need of finalizing a behavioural response, and (iii) stimulus relevance does not affect the intensity of the blink-related EEG response. This evidence reinforce the idea that blinks are not emitted until the last step of the processing sequence has been completed and suggests that blink-related EEG responses are generated by primary consciousness phenomena which are considered by their nature non-modulable (all-or-nothing) phenomena.
Collapse
Affiliation(s)
- Alejandro Luis Callara
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Alberto Greco
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Enzo Pasquale Scilingo
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Luca Bonfiglio
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
- Unit of Developmental Neurorehabilitation, Maternal and Child Department, Pisa University Hospital, Pisa, Italy.
| |
Collapse
|
4
|
EEG cortical activity and connectivity correlates of early sympathetic response during cold pressor test. Sci Rep 2023; 13:1338. [PMID: 36693870 PMCID: PMC9873641 DOI: 10.1038/s41598-023-27480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Previous studies have identified several brain regions involved in the sympathetic response and its integration with pain, cognition, emotions and memory processes. However, little is known about how such regions dynamically interact during a sympathetic activation task. In this study, we analyzed EEG activity and effective connectivity during a cold pressor test (CPT). A source localization analysis identified a network of common active sources including the right precuneus (r-PCu), right and left precentral gyri (r-PCG, l-PCG), left premotor cortex (l-PMC) and left anterior cingulate cortex (l-ACC). We comprehensively analyzed the network dynamics by estimating power variation and causal interactions among the network regions through the direct directed transfer function (dDTF). A connectivity pattern dominated by interactions in [Formula: see text] (8-12) Hz band was observed in the resting state, with r-PCu acting as the main hub of information flow. After the CPT onset, we observed an abrupt suppression of such [Formula: see text]-band interactions, followed by a partial recovery towards the end of the task. On the other hand, an increase of [Formula: see text]-band (1-4) Hz interactions characterized the first part of CPT task. These results provide novel information on the brain dynamics induced by sympathetic stimuli. Our findings suggest that the observed suppression of [Formula: see text] and rise of [Formula: see text] dynamical interactions could reflect non-pain-specific arousal and attention-related response linked to stimulus' salience.
Collapse
|
5
|
Callara AL, Greco A, Frasnelli J, Rho G, Vanello N, Scilingo EP. Cortical network and connectivity underlying hedonic olfactory perception. J Neural Eng 2021; 18. [PMID: 34547740 DOI: 10.1088/1741-2552/ac28d2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Objective.The emotional response to olfactory stimuli implies the activation of a complex cascade of events triggered by structures lying in the limbic system. However, little is known about how this activation is projected up to cerebral cortex and how different cortical areas dynamically interact each other.Approach.In this study, we acquired EEG from human participants performing a passive odor-perception task with odorants conveying positive, neutral and negative valence. A novel methodological pipeline integrating global field power (GFP), independent component analysis (ICA), dipole source localization was applied to estimate effective connectivity in the challenging scenario of single-trial low-synchronized stimulation.Main results.We identified the brain network and the neural paths, elicited at different frequency bands, i.e.θ(4-7Hz),α(8-12Hz)andβ(13-30Hz), involved in odor valence processing. This brain network includes the orbitofrontal cortex (OFC), the cingulate gyrus (CgG), the superior temporal gyrus (STG), the posterior cingulate cortex/precuneus (PCC/PCu) and the parahippocampal gyrus (PHG). It was analyzed using a time-varying multivariate autoregressive model to resolve time-frequency causal interactions. Specifically, the OFC acts as the main node for odor perception and evaluation of pleasant and unpleasant stimuli, whereas no specific path was observed for a neutral stimulus.Significance.The results introduce new evidences on the role of the OFC during hedonic perception and underpin its specificity during the odor valence assessment. Our findings suggest that, after the odor onset different, bidirectional interactions occur between the OFC and other brain regions associated with emotion recognition/categorization and memory according to the stimulus valence. This outcome unveils how the hedonic olfactory network dynamically changes based on odor valence.
Collapse
Affiliation(s)
- Alejandro Luis Callara
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.,Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Alberto Greco
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.,Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Johannes Frasnelli
- Département d'anatomie, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, G9A 5H7
- Local 3439 L.-P, Trois-Rivières, Québec, Canada
| | - Gianluca Rho
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Nicola Vanello
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.,Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Enzo Pasquale Scilingo
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.,Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| |
Collapse
|
6
|
Morelli MS, Vanello N, Callara AL, Hartwig V, Maestri M, Bonanni E, Emdin M, Passino C, Giannoni A. Breath-hold task induces temporal heterogeneity in electroencephalographic regional field power in healthy subjects. J Appl Physiol (1985) 2021; 130:298-307. [PMID: 33300854 DOI: 10.1152/japplphysiol.00232.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrated that changes in CO2 values cause oscillations in the cortical activity in δ-and α-bands. The analysis of the regional field power (RFP) showed evidence that different cortical areas respond with different time delays to CO2 challenges. An opposite behavior was found for the end-tidal O2. We suppose that the different cortical time delays likely expresse specific ascending pathways to the cortex, generated by chemoreceptor nuclei in the brain stem. Although the brain stem is in charge of the automatic control of ventilation, the cortex is involved in the voluntary control of breathing but also receives inputs from the brain stem, which influences the perception of breathing, the arousal state and sleep architecture in conditions of hypoxia/hypercapnia. We evaluated in 11 healthy subjects the effects of breath hold (BH; 30 s of apneas and 30 s of normal breathing) and BH-related CO2/O2 changes on electroencephalogram (EEG) global field power (GFP) and RFP in nine different areas (3 rostrocaudal sections: anterior, central, and posterior; and 3 sagittal sections: left, middle, and right) in the δ- and α-bands by cross correlation analysis. No significant differences were observed in GFP or RFP when comparing free breathing (FB) with the BH task. Within the BH task, the shift from apnea to normal ventilation was accompanied by an increase in the δ-power and a decrease in the α-power. The end-tidal pressure of CO2 ([Formula: see text]) was positively correlated with the δ-band and negatively with the α- band with a positive time shift, whereas an opposite behavior was found for the end-tidal pressure of O2 ([Formula: see text]). Notably, the time shift between [Formula: see text] / [Formula: see text] signals and cortical activity at RFP was heterogenous and seemed to follow a hierarchical activation, with the δ-band responding earlier than the α-band. Overall, these findings suggest that the effect of BH on the cortex may follow specific ascending pathways from the brain stem and be related to chemoreflex stimulation.NEW & NOTEWORTHY We demonstrated that the end tidal CO2 oscillation causes oscillations of delta and alpha bands. The analysis of the regional field power showed that different cortical areas respond with different time delays to CO2 challenges. An opposite behavior was found for the end-tidal O2. We can suppose that the different cortical time delay response likely expresses specific ascending pathways to the cortex generated by chemoreceptor nuclei in the brainstem.
Collapse
Affiliation(s)
- Maria Sole Morelli
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Nicola Vanello
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Valentina Hartwig
- Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | | | - Enrica Bonanni
- Departement of Neuroscience, University of Pisa, Pisa, Italy
| | - Michele Emdin
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Claudio Passino
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|