1
|
Aziz S, Khan MU, Iqtidar K, Fernandez-Rojas R. Diagnosis of Schizophrenia Using EEG Sensor Data: A Novel Approach with Automated Log Energy-Based Empirical Wavelet Reconstruction and Cepstral Features. SENSORS (BASEL, SWITZERLAND) 2024; 24:6508. [PMID: 39459990 PMCID: PMC11510732 DOI: 10.3390/s24206508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Schizophrenia (SZ) is a severe mental disorder characterised by disruptions in cognition, behaviour, and perception, significantly impacting an individual's life. Traditional SZ diagnosis methods are labour-intensive and prone to errors. This study presents an innovative automated approach for detecting SZ acquired through electroencephalogram (EEG) sensor signals, aiming to improve diagnostic efficiency and accuracy. We utilised Fast Independent Component Analysis to remove artefacts from raw EEG sensor data. A novel Automated Log Energy-based Empirical Wavelet Reconstruction (ALEEWR) technique was introduced to reconstruct decomposed modes based on their variability, ensuring effective extraction of meaningful EEG signatures. Cepstral-based features-cepstral activity, cepstral mobility, and cepstral complexity-were used to capture the power, rate of change, and irregularity of the cepstrum of preprocessed EEG signals. ANOVA-based feature selection was applied to refine these features before classification using the K-Nearest Neighbour (KNN) algorithm. Our approach achieved an exceptional accuracy of 99.4%, significantly surpassing previous methods. The proposed ALEEWR and cepstral analysis demonstrated high precision, sensitivity, and specificity in the automated diagnosis of schizophrenia. This study introduces a highly accurate and efficient method for SZ detection using EEG technology. The proposed techniques offer significant improvements in diagnostic accuracy, with potential implications for enhancing SZ diagnosis and patient care through automated systems.
Collapse
Affiliation(s)
- Sumair Aziz
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (S.A.); (R.F.-R.)
| | - Muhammad Umar Khan
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (S.A.); (R.F.-R.)
| | - Khushbakht Iqtidar
- Department of Computer and Software Engineering, National University of Sciences and Technology, Islamabad 44000, ICT, Pakistan;
| | - Raul Fernandez-Rojas
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (S.A.); (R.F.-R.)
| |
Collapse
|
2
|
Al Fahoum A, Zyout A. Wavelet Transform, Reconstructed Phase Space, and Deep Learning Neural Networks for EEG-Based Schizophrenia Detection. Int J Neural Syst 2024; 34:2450046. [PMID: 39010724 DOI: 10.1142/s0129065724500461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
This study proposes an innovative expert system that uses exclusively EEG signals to diagnose schizophrenia in its early stages. For diagnosing psychiatric/neurological disorders, electroencephalogram (EEG) testing is considered a financially viable, safe, and reliable alternative. Using the reconstructed phase space (RPS) and the continuous wavelet transform, the researchers maximized the differences between the EEG nonstationary signals of normal and schizophrenia individuals, which cannot be observed in the time, frequency, or time-frequency domains. This reveals significant information, highlighting more distinguishable features. Then, a deep learning network was trained to enhance the accuracy of the resulting image classification. The algorithm's efficacy was confirmed through three distinct methods: employing 70% of the dataset for training, 15% for validation, and the remaining 15% for testing. This was followed by a 5-fold cross-validation technique and a leave-one-out classification approach. Each method was iterated 100 times to ascertain the algorithm's robustness. The performance metrics derived from these tests - accuracy, precision, sensitivity, F1 score, Matthews correlation coefficient, and Kappa - indicated remarkable outcomes. The algorithm demonstrated steady performance across all evaluation strategies, underscoring its relevance and reliability. The outcomes validate the system's accuracy, precision, sensitivity, and robustness by showcasing its capability to autonomously differentiate individuals diagnosed with schizophrenia from those in a state of normal health.
Collapse
Affiliation(s)
- Amjed Al Fahoum
- Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid 21163, Jordan
| | - Ala'a Zyout
- Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
3
|
Alazzawı A, Aljumaili S, Duru AD, Uçan ON, Bayat O, Coelho PJ, Pires IM. Schizophrenia diagnosis based on diverse epoch size resting-state EEG using machine learning. PeerJ Comput Sci 2024; 10:e2170. [PMID: 39314693 PMCID: PMC11419632 DOI: 10.7717/peerj-cs.2170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 09/25/2024]
Abstract
Schizophrenia is a severe mental disorder that impairs a person's mental, social, and emotional faculties gradually. Detection in the early stages with an accurate diagnosis is crucial to remedying the patients. This study proposed a new method to classify schizophrenia disease in the rest state based on neurologic signals achieved from the brain by electroencephalography (EEG). The datasets used consisted of 28 subjects, 14 for each group, which are schizophrenia and healthy control. The data was collected from the scalps with 19 EEG channels using a 250 Hz frequency. Due to the brain signal variation, we have decomposed the EEG signals into five sub-bands using a band-pass filter, ensuring the best signal clarity and eliminating artifacts. This work was performed with several scenarios: First, traditional techniques were applied. Secondly, augmented data (additive white Gaussian noise and stretched signals) were utilized. Additionally, we assessed Minimum Redundancy Maximum Relevance (MRMR) as the features reduction method. All these data scenarios are applied with three different window sizes (epochs): 1, 2, and 5 s, utilizing six algorithms to extract features: Fast Fourier Transform (FFT), Approximate Entropy (ApEn), Log Energy entropy (LogEn), Shannon Entropy (ShnEn), and kurtosis. The L2-normalization method was applied to the derived features, positively affecting the results. In terms of classification, we applied four algorithms: K-nearest neighbor (KNN), support vector machine (SVM), quadratic discriminant analysis (QDA), and ensemble classifier (EC). From all the scenarios, our evaluation showed that SVM had remarkable results in all evaluation metrics with LogEn features utilizing a 1-s window size, impacting the diagnosis of Schizophrenia disease. This indicates that an accurate diagnosis of schizophrenia can be achieved through the right features and classification model selection. Finally, we contrasted our results to recently published works using the same and a different dataset, where our method showed a notable improvement.
Collapse
Affiliation(s)
- Athar Alazzawı
- Electrical and Computer Engineering, School of Engineering and Natural Sciences, Altinbaş University, Istanbul, Turkey
| | - Saif Aljumaili
- Electrical and Computer Engineering, School of Engineering and Natural Sciences, Altinbaş University, Istanbul, Turkey
| | - Adil Deniz Duru
- Neuroscience and Psychology Research in Sports Lab, Faculty of Sport Science, Marmara University Istanbul, Istanbul, Turkey
| | - Osman Nuri Uçan
- Electrical and Computer Engineering, School of Engineering and Natural Sciences, Altinbaş University, Istanbul, Turkey
| | - Oğuz Bayat
- Electrical and Computer Engineering, School of Engineering and Natural Sciences, Altinbaş University, Istanbul, Turkey
| | - Paulo Jorge Coelho
- Polytechnic Institute of Leiria, Leiria, Portugal
- Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Coimbra, Portugal
| | - Ivan Miguel Pires
- Instituto de Telecomunicações, Escola Superior de Tecnologia e Gestão de Águeda, Universidade de Aveiro, Águeda, Portugal
| |
Collapse
|
4
|
Samal P, Hashmi MF. An improved empirical mode decomposition method with ensemble classifiers for analysis of multichannel EEG in BCI emotion recognition. Comput Methods Biomech Biomed Engin 2024:1-24. [PMID: 38920119 DOI: 10.1080/10255842.2024.2369257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Emotion recognition using EEG is a difficult study because the signals' unstable behavior, which is brought on by the brain's complex neuronal activity, makes it difficult to extract the underlying patterns inside it. Therefore, to analyse the signal more efficiently, in this article, a hybrid model based on IEMD-KW-Ens (Improved Empirical Mode Decomposition-Kruskal Wallis-Ensemble classifiers) technique is used. Here IEMD based technique is proposed to interpret EEG signals by adding an improved sifting stopping criterion with median filter to get the optimal decomposed EEG signals for further processing. A mixture of time, frequency and non-linear distinct features are extracted for constructing the feature vector. Afterward, we conducted feature selection using KW test to remove the insignificant ones from the feature set. Later the classification of emotions in three-dimensional model is performed in two categories i.e. machine learning based RUSBoosted trees and deep learning based convolutional neural network (CNN) for DEAP and DREAMER datasets and the outcomes are evaluated for valence, arousal, and dominance classes. The findings demonstrate that the hybrid model can successfully classify emotions in multichannel EEG signals. The decomposition approach is also instructive for improving the model's utility in emotional computing.
Collapse
Affiliation(s)
- Priyadarsini Samal
- Department of Electronics and Communication Engineering, National Institute of Technology, Warangal, Telangana, India
| | - Mohammad Farukh Hashmi
- Department of Electronics and Communication Engineering, National Institute of Technology, Warangal, Telangana, India
| |
Collapse
|
5
|
Xu X, Zhu G, Li B, Lin P, Li X, Wang Z. Automated diagnosis of schizophrenia based on spatial-temporal residual graph convolutional network. Biomed Eng Online 2024; 23:55. [PMID: 38886737 PMCID: PMC11181588 DOI: 10.1186/s12938-024-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Schizophrenia (SZ), a psychiatric disorder for which there is no precise diagnosis, has had a serious impact on the quality of human life and social activities for many years. Therefore, an advanced approach for accurate treatment is required. NEW METHOD In this study, we provide a classification approach for SZ patients based on a spatial-temporal residual graph convolutional neural network (STRGCN). The model primarily collects spatial frequency features and temporal frequency features by spatial graph convolution and single-channel temporal convolution, respectively, and blends them both for the classification learning, in contrast to traditional approaches that only evaluate temporal frequency information in EEG and disregard spatial frequency features across brain regions. RESULTS We conducted extensive experiments on the publicly available dataset Zenodo and our own collected dataset. The classification accuracy of the two datasets on our proposed method reached 96.32% and 85.44%, respectively. In the experiment, the dataset using delta has the best classification performance in the sub-bands. COMPARISON WITH EXISTING METHODS Other methods mainly rely on deep learning models dominated by convolutional neural networks and long and short time memory networks, lacking exploration of the functional connections between channels. In contrast, the present method can treat the EEG signal as a graph and integrate and analyze the temporal frequency and spatial frequency features in the EEG signal. CONCLUSION We provide an approach to not only performs better than other classic machine learning and deep learning algorithms on the dataset we used in diagnosing schizophrenia, but also understand the effects of schizophrenia on brain network features.
Collapse
Affiliation(s)
- Xinyi Xu
- College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Geng Zhu
- College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bin Li
- Shanghai Yangpu Mental Health Center, Shanghai, China
| | - Ping Lin
- College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoou Li
- College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China.
- Shanghai Yangpu Mental Health Center, Shanghai, China.
| | - Zhen Wang
- College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
6
|
Jamil M, Aziz MZ, Yu X. Exploring the potential of pretrained CNNs and time-frequency methods for accurate epileptic EEG classification: a comparative study. Biomed Phys Eng Express 2024; 10:045023. [PMID: 38599183 DOI: 10.1088/2057-1976/ad3cde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Prompt diagnosis of epilepsy relies on accurate classification of automated electroencephalogram (EEG) signals. Several approaches have been developed to characterize epileptic EEG data; however, none of them have exploited time-frequency data to evaluate the effect of tweaking parameters in pretrained frameworks for EEG data classification. This study compares the performance of several pretrained convolutional neural networks (CNNs) namely, AlexNet, GoogLeNet, MobileNetV2, ResNet-18 and SqueezeNet for the localization of epilepsy EEG data using various time-frequency data representation algorithms. Continuous wavelet transform (CWT), empirical Fourier decomposition (EFD), empirical mode decomposition (EMD), empirical wavelet transform (EWT), and variational mode decomposition (VMD) were exploited for the acquisition of 2D scalograms from 1D data. The research evaluates the effect of multiple factors, including noisy versus denoised scalograms, different optimizers, learning rates, single versus dual channels, model size, and computational time consumption. The benchmark Bern-Barcelona EEG dataset is used for testing purpose. Results obtained show that the combination of MobileNetV2, Continuous Wavelet Transform (CWT) and Adam optimizer at a learning rate of 10-4, coupled with dual-data channels, provides the best performance metrics. Specifically, these parameters result in optimal sensitivity, specificity, f1-score, and classification accuracy, with respective values of 96.06%, 96.15%, 96.08%, and 96.10%. To further corroborate the efficacy of opted pretrained models on exploited Signal Decomposition (SD) algorithms, the classifiers are also being simulated on Temple University database at pinnacle modeling composition. A similar pattern in the outcome readily validate the findings of our study and robustness of deep learning models on epilepsy EEG scalograms.The conclusions drawn emphasize the potential of pretrained CNN-based models to create a robust, automated system for diagnosing epileptiform. Furthermore, the study offers insights into the effectiveness of varying time-frequency techniques and classifier parameters for classifying epileptic EEG data.
Collapse
Affiliation(s)
- Mudasir Jamil
- School of Automation, Northwestern Polytechnical University, Xi'an, 710000, People's Republic of China
| | - Muhammad Zulkifal Aziz
- School of Automation, Northwestern Polytechnical University, Xi'an, 710000, People's Republic of China
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, 710000, People's Republic of China
| |
Collapse
|
7
|
Mostafavi M, Ko SB, Shokouhi SB, Ayatollahi A. Transfer learning and self-distillation for automated detection of schizophrenia using single-channel EEG and scalogram images. Phys Eng Sci Med 2024:10.1007/s13246-024-01420-1. [PMID: 38652347 DOI: 10.1007/s13246-024-01420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Schizophrenia (SZ) has been acknowledged as a highly intricate mental disorder for a long time. In fact, individuals with SZ experience a blurred line between fantasy and reality, leading to a lack of awareness about their condition, which can pose significant challenges during the treatment process. Due to the importance of the issue, timely diagnosis of this illness can not only assist patients and their families in managing the condition but also enable early intervention, which may help prevent its advancement. EEG is a widely utilized technique for investigating mental disorders like SZ due to its non-invasive nature, affordability, and wide accessibility. In this study, our main goal is to develop an optimized system that can achieve automatic diagnosis of SZ with minimal input information. To optimize the system, we adopted a strategy of using single-channel EEG signals and integrated knowledge distillation and transfer learning techniques into the model. This approach was designed to improve the performance and efficiency of our proposed method for SZ diagnosis. Additionally, to leverage the pre-trained models effectively, we converted the EEG signals into images using Continuous Wavelet Transform (CWT). This transformation allowed us to harness the capabilities of pre-trained models in the image domain, enabling automatic SZ detection with enhanced efficiency. To achieve a more robust estimate of the model's performance, we employed fivefold cross-validation. The accuracy achieved from the 5-s records of the EEG signal, along with the combination of self-distillation and VGG16 for the P4 channel, is 97.81. This indicates a high level of accuracy in diagnosing SZ using the proposed method.
Collapse
Affiliation(s)
- Mohammadreza Mostafavi
- Department of Electrical Engineering, Electronic Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Seok-Bum Ko
- Division of Biomedical Engineering, Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Canada.
| | - Shahriar Baradaran Shokouhi
- Department of Electrical Engineering, Electronic Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ahmad Ayatollahi
- Department of Electrical Engineering, Electronic Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
8
|
Li H, Wang C, Ma L, Xu C, Li H. EEG analysis in patients with schizophrenia based on microstate semantic modeling method. Front Hum Neurosci 2024; 18:1372985. [PMID: 38638803 PMCID: PMC11024310 DOI: 10.3389/fnhum.2024.1372985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Microstate analysis enables the characterization of quasi-stable scalp potential fields on a sub-second timescale, preserving the temporal dynamics of EEG and spatial information of scalp potential distributions. Owing to its capacity to provide comprehensive pathological insights, it has been widely applied in the investigation of schizophrenia (SCZ). Nevertheless, previous research has primarily concentrated on differences in individual microstate temporal characteristics, neglecting potential distinctions in microstate semantic sequences and not fully considering the issue of the universality of microstate templates between SCZ patients and healthy individuals. Methods This study introduced a microstate semantic modeling analysis method aimed at schizophrenia recognition. Firstly, microstate templates corresponding to both SCZ patients and healthy individuals were extracted from resting-state EEG data. The introduction of a dual-template strategy makes a difference in the quality of microstate sequences. Quality features of microstate sequences were then extracted from four dimensions: Correlation, Explanation, Residual, and Dispersion. Subsequently, the concept of microstate semantic features was proposed, decomposing the microstate sequence into continuous sub-sequences. Specific semantic sub-sequences were identified by comparing the time parameters of sub-sequences. Results The SCZ recognition test was performed on the public dataset for both the quality features and semantic features of microstate sequences, yielding an impressive accuracy of 97.2%. Furthermore, cross-subject experimental validation was conducted, demonstrating that the method proposed in this paper achieves a recognition rate of 96.4% between different subjects. Discussion This research offers valuable insights for the clinical diagnosis of schizophrenia. In the future, further studies will seek to augment the sample size to enhance the effectiveness and reliability of this method.
Collapse
Affiliation(s)
- Hongwei Li
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Changming Wang
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Lin Ma
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Cong Xu
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Haifeng Li
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
9
|
Srinivasan S, Johnson SD. Optimizing feature subset for schizophrenia detection using multichannel EEG signals and rough set theory. Cogn Neurodyn 2024; 18:431-446. [PMID: 38699607 PMCID: PMC11061098 DOI: 10.1007/s11571-023-10011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/06/2023] [Accepted: 09/16/2023] [Indexed: 05/05/2024] Open
Abstract
Schizophrenia (SZ) is a mental disorder that causes lifelong disorders based on delusions, cognitive deficits, and hallucinations. By visual assessment, SZ diagnosis is time-consuming and complicated, because brain states are more effectively revealed by electroencephalogram (EEG) signals, which are effectively used in SZ diagnosis. The application of existing deep learning methods in SZ detection is effective in the classification of 2-dimensional images, and these methods require more computational resources. Therefore, dimensionality reduction is necessary for SZ diagnosis using EEG signals. To reduce the dimensionality of the data, an improved CAO (ICAO) dimensionality reduction method is proposed, which integrates horizontal and vertical crossover approaches with AOA. The optimal feature subset is achieved by satisfying the ICAO conditions, and a fitness function is evaluated based on rough sets for improved accuracy in feature selection. Therefore a Crossover-boosted Archimedes optimization algorithm (AOA) with rough sets for Schizophrenia detection (CAORS-SD) was proposed using multichannel EEG signals from both SZ and normal patients. The signals are decomposed using multivariate empirical mode decomposition into multivariate intrinsic mode functions (MIMFs). Entropy metrics such as spectral entropy, permutation entropy, approximate entropy, sample entropy, and SVD entropy are evaluated on the MIMF domain to detect SZ. The processing time of the kernel support vector machine classifier is minimized with fewer features, reducing the risk Fof overfitting. Accuracy, sensitivity, specificity, precision, and F1-score of the CAORS-SD model should be conducted to diagnose SZ. Therefore, the proposed CAORS-SD method achieves the higher performance of accuracy, sensitivity, specificity, precision, and F1-score values of 96.34, 98.95, 96.86, 98.52, and 96.74% respectively. Also, the CAORS-SD method minimizes the error rate and significantly reduces the execution time.
Collapse
Affiliation(s)
- Sridevi Srinivasan
- Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, India
| | - Shiny Duela Johnson
- Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, India
| |
Collapse
|
10
|
Raveendran S, Kenchaiah R, Kumar S, Sahoo J, Farsana MK, Chowdary Mundlamuri R, Bansal S, Binu VS, Ramakrishnan AG, Ramakrishnan S, Kala S. Variational mode decomposition-based EEG analysis for the classification of disorders of consciousness. Front Neurosci 2024; 18:1340528. [PMID: 38379759 PMCID: PMC10876804 DOI: 10.3389/fnins.2024.1340528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Aberrant alterations in any of the two dimensions of consciousness, namely awareness and arousal, can lead to the emergence of disorders of consciousness (DOC). The development of DOC may arise from more severe or targeted lesions in the brain, resulting in widespread functional abnormalities. However, when it comes to classifying patients with disorders of consciousness, particularly utilizing resting-state electroencephalogram (EEG) signals through machine learning methods, several challenges surface. The non-stationarity and intricacy of EEG data present obstacles in understanding neuronal activities and achieving precise classification. To address these challenges, this study proposes variational mode decomposition (VMD) of EEG before feature extraction along with machine learning models. By decomposing preprocessed EEG signals into specified modes using VMD, features such as sample entropy, spectral entropy, kurtosis, and skewness are extracted across these modes. The study compares the performance of the features extracted from VMD-based approach with the frequency band-based approach and also the approach with features extracted from raw-EEG. The classification process involves binary classification between unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS), as well as multi-class classification (coma vs. UWS vs. MCS). Kruskal-Wallis test was applied to determine the statistical significance of the features and features with a significance of p < 0.05 were chosen for a second round of classification experiments. Results indicate that the VMD-based features outperform the features of other two approaches, with the ensemble bagged tree (EBT) achieving the highest accuracy of 80.5% for multi-class classification (the best in the literature) and 86.7% for binary classification. This approach underscores the potential of integrating advanced signal processing techniques and machine learning in improving the classification of patients with disorders of consciousness, thereby enhancing patient care and facilitating informed treatment decision-making.
Collapse
Affiliation(s)
- Sreelakshmi Raveendran
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Kottayam, Kerala, India
| | | | - Santhos Kumar
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Kottayam, Kerala, India
| | - Jayakrushna Sahoo
- Department of Computer Science and Engineering, Indian Institute of Information Technology, Kottayam, Kerala, India
| | - M. K. Farsana
- Department of Neurology, NIMHANS, Bangalore, Karnataka, India
| | | | - Sonia Bansal
- Department of Neuroanaesthesia and Neurocritical Care, NIMHANS, Bangalore, Karnataka, India
| | - V. S. Binu
- Department of Biostatistics, NIMHANS, Bangalore, Karnataka, India
| | - A. G. Ramakrishnan
- Department of Electrical Engineering and Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - S. Kala
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Kottayam, Kerala, India
| |
Collapse
|
11
|
Zhang H, Zhou QQ, Chen H, Hu XQ, Li WG, Bai Y, Han JX, Wang Y, Liang ZH, Chen D, Cong FY, Yan JQ, Li XL. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Mil Med Res 2023; 10:67. [PMID: 38115158 PMCID: PMC10729551 DOI: 10.1186/s40779-023-00502-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Electroencephalography (EEG) is a non-invasive measurement method for brain activity. Due to its safety, high resolution, and hypersensitivity to dynamic changes in brain neural signals, EEG has aroused much interest in scientific research and medical fields. This article reviews the types of EEG signals, multiple EEG signal analysis methods, and the application of relevant methods in the neuroscience field and for diagnosing neurological diseases. First, three types of EEG signals, including time-invariant EEG, accurate event-related EEG, and random event-related EEG, are introduced. Second, five main directions for the methods of EEG analysis, including power spectrum analysis, time-frequency analysis, connectivity analysis, source localization methods, and machine learning methods, are described in the main section, along with different sub-methods and effect evaluations for solving the same problem. Finally, the application scenarios of different EEG analysis methods are emphasized, and the advantages and disadvantages of similar methods are distinguished. This article is expected to assist researchers in selecting suitable EEG analysis methods based on their research objectives, provide references for subsequent research, and summarize current issues and prospects for the future.
Collapse
Affiliation(s)
- Hao Zhang
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Qing-Qi Zhou
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 100041, China
| | - He Chen
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiao-Qing Hu
- Department of Psychology, the State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518057, Guangdong, China
| | - Wei-Guang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yang Bai
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Jun-Xia Han
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Yao Wang
- School of Communication Science, Beijing Language and Culture University, Beijing, 100083, China
| | - Zhen-Hu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China.
| | - Dan Chen
- School of Computer Science, Wuhan University, Wuhan, 430072, China.
| | - Feng-Yu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116081, Liaoning, China.
| | - Jia-Qing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 100041, China.
| | - Xiao-Li Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, China.
| |
Collapse
|
12
|
Jiang H, Chen P, Sun Z, Liang C, Xue R, Zhao L, Wang Q, Li X, Deng W, Gao Z, Huang F, Huang S, Zhang Y, Li T. Assisting schizophrenia diagnosis using clinical electroencephalography and interpretable graph neural networks: a real-world and cross-site study. Neuropsychopharmacology 2023; 48:1920-1930. [PMID: 37491671 PMCID: PMC10584957 DOI: 10.1038/s41386-023-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Schizophrenia (SCZ) is a chronic and serious mental disorder with a high mortality rate. At present, there is a lack of objective, cost-effective and widely disseminated diagnosis tools to address this mental health crisis globally. Clinical electroencephalogram (EEG) is a noninvasive technique to measure brain activity with high temporal resolution, and accumulating evidence demonstrates that clinical EEG is capable of capturing abnormal SCZ neuropathology. Although EEG-based automated diagnostic tools have obtained impressive performance on individual datasets, the transportability of potential EEG biomarkers in cross-site real-world application is still an open question. To address the challenges of small sample sizes and population heterogeneity, we develop an advanced interpretable deep learning model using multimodal clinical EEG features and demographic information as inputs to graph neural networks, and further propose different transfer learning strategies to adapt to different clinical scenarios. Taking the disease discrimination of health control (HC) and SCZ with 1030 participants as a use case, our model is trained on a small clinical dataset (N = 188, Chinese) and enhanced using a large-scale public dataset (N = 508, American) of adult participants. Cross-site validation from an independent dataset of adult participants (N = 157, Chinese) produced stable performance, with AUCs of 0.793-0.852 and accuracies of 0.786-0.858 for different SCZ prevalence, respectively. In addition, cross-site validation from another dataset of adolescent boys (N = 84, Russian) yielded an AUC of 0.702 and an accuracy of 0.690. Moreover, feature visualization further revealed that the ranking of feature importance varied significantly among different datasets, and that EEG theta and alpha band power appeared to be the most significant and translational biomarkers of SCZ pathology. Overall, our promising results demonstrate the feasibility of SCZ discrimination using EEG biomarkers in multiple clinical settings.
Collapse
Affiliation(s)
- Haiteng Jiang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Peiyin Chen
- Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Zhaohong Sun
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chengqian Liang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xue
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongke Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Fei Huang
- Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China
| | - Songfang Huang
- Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China
| | - Yaoyun Zhang
- Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Soria Bretones C, Roncero Parra C, Cascón J, Borja AL, Mateo Sotos J. Automatic identification of schizophrenia employing EEG records analyzed with deep learning algorithms. Schizophr Res 2023; 261:36-46. [PMID: 37690170 DOI: 10.1016/j.schres.2023.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Electroencephalography is a method of detecting and analyzing electrical activity in the brain. This electrical activity can be recorded and processed to aid in the clinical diagnosis of mental disorders. In this study, a novel system for classifying schizophrenia patients from EEG recordings is presented. The developed algorithm decomposes the EEG signals into a system of radial basis functions using the method of fuzzy means. This decomposition helps to obtain the information from the various electrodes of the EEG and allows separating between healthy controls and patients with schizophrenia. The proposed method has been compared with classical machine learning algorithms, such as, K-Nearest Neighbor, Adaboost, Support Vector Machine, and Bayesian Linear Discriminant Analysis. The results show that the proposed method obtains the highest values in terms of balanced accuracy, recall, precision and F1 score, close to 93 % in all cases. The model developed in this study can be implemented in brain activity analysis systems that help in the prediction of patients with schizophrenia.
Collapse
Affiliation(s)
| | - Carlos Roncero Parra
- Departamento de Sistema Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Joaquín Cascón
- Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Expert Group in Medical Analysis, Instituto de Tecnología, Construcción y Telecomunicaciones, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| | - Alejandro L Borja
- Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
| | - Jorge Mateo Sotos
- Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Expert Group in Medical Analysis, Instituto de Tecnología, Construcción y Telecomunicaciones, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| |
Collapse
|
14
|
Tasci B, Tasci G, Ayyildiz H, Kamath AP, Barua PD, Tuncer T, Dogan S, Ciaccio EJ, Chakraborty S, Acharya UR. Automated schizophrenia detection model using blood sample scattergram images and local binary pattern. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 83:42735-42763. [DOI: 10.1007/s11042-023-16676-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/23/2023] [Accepted: 08/27/2023] [Indexed: 10/05/2024]
|
15
|
Gosala B, Dindayal Kapgate P, Jain P, Nath Chaurasia R, Gupta M. Wavelet transforms for feature engineering in EEG data processing: An application on Schizophrenia. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
16
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
17
|
Soria C, Arroyo Y, Torres AM, Redondo MÁ, Basar C, Mateo J. Method for Classifying Schizophrenia Patients Based on Machine Learning. J Clin Med 2023; 12:4375. [PMID: 37445410 DOI: 10.3390/jcm12134375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Schizophrenia is a chronic and severe mental disorder that affects individuals in various ways, particularly in their ability to perceive, process, and respond to stimuli. This condition has a significant impact on a considerable number of individuals. Consequently, the study, analysis, and characterization of this pathology are of paramount importance. Electroencephalography (EEG) is frequently utilized in the diagnostic assessment of various brain disorders due to its non-intrusiveness, excellent resolution and ease of placement. However, the manual analysis of electroencephalogram (EEG) recordings can be a complex and time-consuming task for healthcare professionals. Therefore, the automated analysis of EEG recordings can help alleviate the burden on doctors and provide valuable insights to support clinical diagnosis. Many studies are working along these lines. In this research paper, the authors propose a machine learning (ML) method based on the eXtreme Gradient Boosting (XGB) algorithm for analyzing EEG signals. The study compares the performance of the proposed XGB-based approach with four other supervised ML systems. According to the results, the proposed XGB-based method demonstrates superior performance, with an AUC value of 0.94 and an accuracy value of 0.94, surpassing the other compared methods. The implemented system exhibits high accuracy and robustness in accurately classifying schizophrenia patients based on EEG recordings. This method holds the potential to be implemented as a valuable complementary tool for clinical use in hospitals, supporting clinicians in their clinical diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Carmen Soria
- Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain
- Clinical Neurophysiology Service, Virgen de la Luz Hospital, 16002 Cuenca, Spain
| | - Yoel Arroyo
- Faculty of Social Sciences and Information Technology, University of Castilla-La Mancha, 45600 Talavera de la Reina, Spain
| | - Ana María Torres
- Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain
| | - Miguel Ángel Redondo
- School of Informatics, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Christoph Basar
- Faculty of Human and Health Sciences, University of Bremen, 28359 Bremen, Germany
| | - Jorge Mateo
- Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain
| |
Collapse
|
18
|
Siuly S, Guo Y, Alcin OF, Li Y, Wen P, Wang H. Exploring deep residual network based features for automatic schizophrenia detection from EEG. Phys Eng Sci Med 2023; 46:561-574. [PMID: 36947384 DOI: 10.1007/s13246-023-01225-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023]
Abstract
Schizophrenia is a severe mental illness which can cause lifelong disability. Most recent studies on the Electroencephalogram (EEG)-based diagnosis of schizophrenia rely on bespoke/hand-crafted feature extraction techniques. Traditional manual feature extraction methods are time-consuming, imprecise, and have a limited ability to balance accuracy and efficiency. Addressing this issue, this study introduces a deep residual network (deep ResNet) based feature extraction design that can automatically extract representative features from EEG signal data for identifying schizophrenia. This proposed method consists of three stages: signal pre-processing by average filtering method, extraction of hidden patterns of EEG signals by deep ResNet, and classification of schizophrenia by softmax layer. To assess the performance of the obtained deep features, ResNet softmax classifier and also several machine learning (ML) techniques are applied on the same feature set. The experimental results for a Kaggle schizophrenia EEG dataset show that the deep features with support vector machine classifier could achieve the highest performances (99.23% accuracy) compared to the ResNet classifier. Furthermore, the proposed model performs better than the existing approaches. The findings suggest that our proposed strategy has capability to discover important biomarkers for automatic diagnosis of schizophrenia from EEG, which will aid in the development of a computer assisted diagnostic system by specialists.
Collapse
Affiliation(s)
- Siuly Siuly
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia.
- Centre for Health Research, University of Southern Queensland, Toowoomba, Australia.
| | - Yanhui Guo
- Department of Computer Science, University of Illinois at Springfield, Springfield, IL, 62703, USA
| | - Omer Faruk Alcin
- Department of Electrical-Electronics Engineering, Faculty of Engineering and Natural Sciences, Malatya Turgut Ozal University, Malatya, Turkey
| | - Yan Li
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia
| | - Peng Wen
- School of Engineering, University of Southern Queensland, Toowoomba, Australia
| | - Hua Wang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia
| |
Collapse
|
19
|
Baygin M, Barua PD, Chakraborty S, Tuncer I, Dogan S, Palmer E, Tuncer T, Kamath AP, Ciaccio EJ, Acharya UR. CCPNet136: automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals. Physiol Meas 2023; 44. [PMID: 36599170 DOI: 10.1088/1361-6579/acb03c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Objective.Schizophrenia (SZ) is a severe, chronic psychiatric-cognitive disorder. The primary objective of this work is to present a handcrafted model using state-of-the-art technique to detect SZ accurately with EEG signals.Approach.In our proposed work, the features are generated using a histogram-based generator and an iterative decomposition model. The graph-based molecular structure of the carbon chain is employed to generate low-level features. Hence, the developed feature generation model is called the carbon chain pattern (CCP). An iterative tunable q-factor wavelet transform (ITQWT) technique is implemented in the feature extraction phase to generate various sub-bands of the EEG signal. The CCP was applied to the generated sub-bands to obtain several feature vectors. The clinically significant features were selected using iterative neighborhood component analysis (INCA). The selected features were then classified using the k nearest neighbor (kNN) with a 10-fold cross-validation strategy. Finally, the iterative weighted majority method was used to obtain the results in multiple channels.Main results.The presented CCP-ITQWT and INCA-based automated model achieved an accuracy of 95.84% and 99.20% using a single channel and majority voting method, respectively with kNN classifier.Significance.Our results highlight the success of the proposed CCP-ITQWT and INCA-based model in the automated detection of SZ using EEG signals.
Collapse
Affiliation(s)
- Mehmet Baygin
- Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey
| | - Prabal Datta Barua
- School of Management & Enterprise, University of Southern Queensland, Australia.,Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
| | - Subrata Chakraborty
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia.,Center for Advanced Modelling and Geospatial Information Systems, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ilknur Tuncer
- Elazig Governorship, Interior Ministry, Elazig, Turkey
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Elizabeth Palmer
- Centre of Clinical Genetics, Sydney Children's Hospitals Network, Randwick 2031, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick 2031, Australia
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Aditya P Kamath
- Biomedical Engineering, Brown University, Providence, RI, United States of America
| | - Edward J Ciaccio
- Department of Medicine, Columbia University Irving Medical Center, United States of America
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, S599489, Singapore.,Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore.,Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Khare SK, Bajaj V, Acharya UR. SchizoNET: a robust and accurate Margenau-Hill time-frequency distribution based deep neural network model for schizophrenia detection using EEG signals. Physiol Meas 2023; 44. [PMID: 36787641 DOI: 10.1088/1361-6579/acbc06] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
Objective.Schizophrenia (SZ) is a severe chronic illness characterized by delusions, cognitive dysfunctions, and hallucinations that impact feelings, behaviour, and thinking. Timely detection and treatment of SZ are necessary to avoid long-term consequences. Electroencephalogram (EEG) signals are one form of a biomarker that can reveal hidden changes in the brain during SZ. However, the EEG signals are non-stationary in nature with low amplitude. Therefore, extracting the hidden information from the EEG signals is challenging.Approach.The time-frequency domain is crucial for the automatic detection of SZ. Therefore, this paper presents the SchizoNET model combining the Margenau-Hill time-frequency distribution (MH-TFD) and convolutional neural network (CNN). The instantaneous information of EEG signals is captured in the time-frequency domain using MH-TFD. The time-frequency amplitude is converted to two-dimensional plots and fed to the developed CNN model.Results.The SchizoNET model is developed using three different validation techniques, including holdout, five-fold cross-validation, and ten-fold cross-validation techniques using three separate public SZ datasets (Dataset 1, 2, and 3). The proposed model achieved an accuracy of 97.4%, 99.74%, and 96.35% on Dataset 1 (adolescents: 45 SZ and 39 HC subjects), Dataset 2 (adults: 14 SZ and 14 HC subjects), and Dataset 3 (adults: 49 SZ and 32 HC subjects), respectively. We have also evaluated six performance parameters and the area under the curve to evaluate the performance of our developed model.Significance.The SchizoNET is robust, effective, and accurate, as it performed better than the state-of-the-art techniques. To the best of our knowledge, this is the first work to explore three publicly available EEG datasets for the automated detection of SZ. Our SchizoNET model can help neurologists detect the SZ in various scenarios.
Collapse
Affiliation(s)
- Smith K Khare
- Electrical and Computer Engineering Department, Aarhus University, Denmark
| | - Varun Bajaj
- Discipline of Electronics and Communication Engineering, Indian Institute of Information Technology, Design, and Manufacturing (IIITDM) Jabalpur, India
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, Australia.,Department of Biomedical Engineering, School of Science and Technology, University of Social Sciences, Singapore.,Department of Biomedical Informatics and Medical Engineering, Asia University, Taiwan.,Distinguished Professor, Kumamoto University, Japan.,Adjunct Professor, University of Malaya, Malaysia
| |
Collapse
|
21
|
Agarwal M, Singhal A. Fusion of pattern-based and statistical features for Schizophrenia detection from EEG signals. Med Eng Phys 2023; 112:103949. [PMID: 36842772 DOI: 10.1016/j.medengphy.2023.103949] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Schizophrenia (SZ) is a chronic disorder affecting the functioning of the brain. It can lead to irrational behaviour amongst the patients suffering from this disease. A low-cost diagnostic needs to be developed for SZ so that timely treatment can be provided to the patients. In this work, we propose an accurate and easy-to-implement system to detect SZ using electroencephalogram (EEG) signals. The signal is divided into sub-band components by a Fourier-based technique that can be implemented in real-time using fast Fourier transform. Thereafter, statistical features are computed from these components. Further, look ahead pattern (LAP) is developed as a feature to capture local variations in the EEG signal. The fusion of these two distinct schemes enables a thorough examination of EEG signals. Kruskal-Wallis test is utilized for the selection of significant features. Various machine learning classifiers are employed and the proposed framework achieves 98.62% and 99.24% accuracy in identifying SZ cases, considering two distinct datasets, using boosted trees classifier. This method provides a promising candidate for widespread deployment in efficient real-time systems for SZ detection.
Collapse
Affiliation(s)
- Megha Agarwal
- Department of Electronics & Communication Engineering, Jaypee Institute of Information Technology, Noida, India.
| | - Amit Singhal
- Department of Electronics & Communication Engineering, Netaji Subhas University of Technology, Delhi, India.
| |
Collapse
|
22
|
Merlo A, Campanini I. Automatic Identification of Involuntary Muscle Activity in Subacute Patients with Upper Motor Neuron Lesion at Rest-A Validation Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:866. [PMID: 36679664 PMCID: PMC9866882 DOI: 10.3390/s23020866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Sustained involuntary muscle activity (IMA) is a highly disabling phenomenon that arises in the acute phase of an upper motor neuron lesion (UMNL). Wearable probes for long-lasting surface EMG (sEMG) recordings have been recently recommended to detect IMA insurgence and to quantify its evolution over time, in conjunction with a complex algorithm for IMA automatic identification and classification. In this study, we computed sensitivity (Se), specificity (Sp), and overall accuracy (Acc) of this algorithm by comparing it with the classification provided by two expert assessors. Based on sample size estimation, 6020 10 s-long sEMG epochs were classified by both the algorithm and the assessors. Epochs were randomly extracted from long-lasting sEMG signals collected in-field from 14 biceps brachii (BB) muscles of 10 patients (5F, age range 50-71 years) hospitalized in an acute rehabilitation ward following a stroke or a post-anoxic coma and complete upper limb (UL) paralysis. Among the 14 BB muscles assessed, Se was 85.6% (83.6-87.4%); Sp was 89.7% (88.6-90.7%), and overall Acc was 88.5% (87.6-89.4%) and ranged between 78.6% and 98.7%. The presence of IMA was detected correctly in all patients. These results support the algorithm's use for in-field IMA assessment based on data acquired with wearable sensors. The assessment and monitoring of IMA in acute and subacute patients with UMNL could improve the quality of care needed by triggering early treatments to lessen long-term complications.
Collapse
Affiliation(s)
- Andrea Merlo
- LAM-Motion Analysis Laboratory, S. Sebastiano Hospital, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Via Circondaria 29, 42015 Correggio, Italy
- Merlo Bioengineering, 43121 Parma, Italy
| | - Isabella Campanini
- LAM-Motion Analysis Laboratory, S. Sebastiano Hospital, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Via Circondaria 29, 42015 Correggio, Italy
| |
Collapse
|
23
|
Kim D, Woo J, Jeong J, Kim S. The sound stimulation method and EEG change analysis for development of digital therapeutics that can stimulate the nervous system: Cortical activation and drug substitution potential. CNS Neurosci Ther 2023; 29:402-411. [PMID: 36377425 PMCID: PMC9804039 DOI: 10.1111/cns.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The purpose of this study is to propose a treatment method and the effect on the nervous system of digital therapeutics, which is a new treatment method to replace surgery and drug prescription for the treatment and prevention of diseases. METHODS The 20 subjects who participated in the experiment, including men and women, had an average age of 26 ± 2.40 years. The proposed treatment method used three types of sound stimulation and air or bone conduction sound transmission methods to induce total of 6-time EEG electroencephalogram(EEG) changes. EEG was measured with 200 sampling rate each in the P4, Cz, F8 and T7 channel located in the parietal, central, frontal and temporal lobes, respectively, according to the 10/10 system. A total of 2 min of data were created by extracting EEG signals with less noise from the measured data and the extracted data were applied with a 1-40 Hz Butterworth filter and a 50 Hz notch filter with a quality factor of 30. After that, EEG are subdivided into delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz) bands. Finally, EEG changes in response to sound stimuli were analyzed using power spectral density and T-test validation in the frequency band. RESULTS When a sound stimulus of less than 1 KHz was stimulated by air conduction, brainstem activation was induced and the reticular activation system was activated. In addition, a great potential for replacing drugs was confirmed by inducing changes in the nervous system similar to drugs used for sedation. CONCLUSION These results will be able to expand the concept of digital therapeutics, and it is expected that it will be developed as a safer treatment method that can replace surgery and drugs.
Collapse
Affiliation(s)
- Deachang Kim
- Department of Medical BiotechnologyDongguk University‐Bio Medi CampusSouth Korea
| | - JaeHyun Woo
- Department of R&D SupportResearch Institute for Commercialization of Biomedical Convergence TechnologySeoulSouth Korea
| | - Jeahoon Jeong
- Research Institute for Commercialization of Biomedical Convergence TechnologyDongguk UniversitySouth Korea
| | - Sungmin Kim
- Department of Medical BiotechnologyDongguk University‐Bio Medi CampusSouth Korea
| |
Collapse
|
24
|
Manic KS, Rajinikanth V, Al-Bimani AS, Taniar D, Kadry S. Framework to Detect Schizophrenia in Brain MRI Slices with Mayfly Algorithm-Selected Deep and Handcrafted Features. SENSORS (BASEL, SWITZERLAND) 2022; 23:280. [PMID: 36616876 PMCID: PMC9823879 DOI: 10.3390/s23010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Brain abnormality causes severe human problems, and thorough screening is necessary to identify the disease. In clinics, bio-image-supported brain abnormality screening is employed mainly because of its investigative accuracy compared with bio-signal (EEG)-based practice. This research aims to develop a reliable disease screening framework for the automatic identification of schizophrenia (SCZ) conditions from brain MRI slices. This scheme consists following phases: (i) MRI slices collection and pre-processing, (ii) implementation of VGG16 to extract deep features (DF), (iii) collection of handcrafted features (HF), (iv) mayfly algorithm-supported optimal feature selection, (v) serial feature concatenation, and (vi) binary classifier execution and validation. The performance of the proposed scheme was independently tested with DF, HF, and concatenated features (DF+HF), and the achieved outcome of this study verifies that the schizophrenia screening accuracy with DF+HF is superior compared with other methods. During this work, 40 patients’ brain MRI images (20 controlled and 20 SCZ class) were considered for the investigation, and the following accuracies were achieved: DF provided >91%, HF obtained >85%, and DF+HF achieved >95%. Therefore, this framework is clinically significant, and in the future, it can be used to inspect actual patients’ brain MRI slices.
Collapse
Affiliation(s)
- K. Suresh Manic
- National University of Science and Technology, Muscat P.O. Box 112, Oman
| | - Venkatesan Rajinikanth
- Department of Computer Science and Engineering, Division of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Ali Saud Al-Bimani
- National University of Science and Technology, Muscat P.O. Box 112, Oman
| | - David Taniar
- Faculty of Information Technology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
25
|
Tawhid MNA, Siuly S, Wang K, Wang H. Textural feature based intelligent approach for neurological abnormality detection from brain signal data. PLoS One 2022; 17:e0277555. [PMID: 36374850 PMCID: PMC9662730 DOI: 10.1371/journal.pone.0277555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate. This is a time-consuming, error-prone, subjective, and exhausting process. Moreover, recent advances in EEG classification have mostly focused on classifying patients of a specific disease from healthy subjects using EEG data, which is not cost effective as it requires multiple systems for checking a subject's EEG data for different neurological disorders. This forces researchers to advance their work and create a single, unified classification framework for identifying various neurological diseases from EEG signal data. Hence, this study aims to meet this requirement by developing a machine learning (ML) based data mining technique for categorizing multiple abnormalities from EEG data. Textural feature extractors and ML-based classifiers are used on time-frequency spectrogram images to develop the classification system. Initially, noises and artifacts are removed from the signal using filtering techniques and then normalized to reduce computational complexity. Afterwards, normalized signals are segmented into small time segments and spectrogram images are generated from those segments using short-time Fourier transform. Then two histogram based textural feature extractors are used to calculate features separately and principal component analysis is used to select significant features from the extracted features. Finally, four different ML based classifiers are used to categorize those selected features into different disease classes. The developed method is tested on four real-time EEG datasets. The obtained result has shown potential in classifying various abnormality types, indicating that it can be utilized to identify various neurological abnormalities from brain signal data.
Collapse
Affiliation(s)
- Md. Nurul Ahad Tawhid
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| | - Siuly Siuly
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| | - Kate Wang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Hua Wang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Luján MÁ, Sotos JM, Santos JL, Borja AL. Accurate neural network classification model for schizophrenia disease based on electroencephalogram data. INT J MACH LEARN CYB 2022. [DOI: 10.1007/s13042-022-01668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2022]
|
27
|
Parija S, Sahani M, Bisoi R, Dash PK. Autoencoder-based improved deep learning approach for schizophrenic EEG signal classification. Pattern Anal Appl 2022. [DOI: 10.1007/s10044-022-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Siuly S, Li Y, Wen P, Alcin OF. SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1992596. [PMID: 36120676 PMCID: PMC9477585 DOI: 10.1155/2022/1992596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Schizophrenia (SZ) is a severe and prolonged disorder of the human brain where people interpret reality in an abnormal way. Traditional methods of SZ detection are based on handcrafted feature extraction methods (manual process), which are tedious and unsophisticated, and also limited in their ability to balance efficiency and accuracy. To solve this issue, this study designed a deep learning-based feature extraction scheme involving the GoogLeNet model called "SchizoGoogLeNet" that can efficiently and automatically distinguish schizophrenic patients from healthy control (HC) subjects using electroencephalogram (EEG) signals with improved performance. The proposed framework involves multiple stages of EEG data processing. First, this study employs the average filtering method to remove noise and artifacts from the raw EEG signals to improve the signal-to-noise ratio. After that, a GoogLeNet model is designed to discover significant hidden features from denoised signals to identify schizophrenic patients from HC subjects. Finally, the obtained deep feature set is evaluated by the GoogleNet classifier and also some renowned machine learning classifiers to find a sustainable classification method for the obtained deep feature set. Experimental results show that the proposed deep feature extraction model with a support vector machine performs the best, producing a 99.02% correct classification rate for SZ, with an overall accuracy of 98.84%. Furthermore, our proposed model outperforms other existing methods. The proposed design is able to accurately discriminate SZ from HC, and it will be useful for developing a diagnostic tool for SZ detection.
Collapse
Affiliation(s)
- Siuly Siuly
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia
| | - Yan Li
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia
| | - Peng Wen
- School of Engineering, University of Southern Queensland, Toowoomba, Australia
| | - Omer Faruk Alcin
- Department of Electrical and Electronics Engineering, Turgut Ozal University, Malatya, Turkey
| |
Collapse
|
29
|
Lei X, Ji W, Guo J, Wu X, Wang H, Zhu L, Chen L. Research on the Method of Depression Detection by Single-Channel Electroencephalography Sensor. Front Psychol 2022; 13:850159. [PMID: 35911025 PMCID: PMC9326502 DOI: 10.3389/fpsyg.2022.850159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is a common mental health illness worldwide that affects our quality of life and ability to work. Although prior research has used EEG signals to increase the accuracy to identify depression, the rates of underdiagnosis remain high, and novel methods are required to identify depression. In this study, we built a model based on single-channel, dry-electrode EEG sensor technology to detect state depression, which measures the intensity of depressive feelings and cognitions at a particular time. To test the accuracy of our model, we compared the results of our model with other commonly used methods for depression diagnosis, including the PHQ-9, Hamilton Depression Rating Scale (HAM-D), and House-Tree-Person (HTP) drawing test, in three different studies. In study 1, we compared the results of our model with PHQ-9 in a sample of 158 senior high students. The results showed that the consistency rate of the two methods was 61.4%. In study 2, the results of our model were compared with HAM-D among 71 adults. We found that the consistency rate of state-depression identification by the two methods was 63.38% when a HAM-D score above 7 was considered depression, while the consistency rate increased to 83.10% when subjects showed at least one depressive symptom (including depressed mood, guilt, suicide, lack of interest, retardation). In study 3, 68 adults participated in the study, and the results revealed that the consistency rate of our model and HTP drawing test was 91.2%. The results showed that our model is an effective means to identify state depression. Our study demonstrates that using our model, people with state depression could be identified in a timely manner and receive interventions or treatments, which may be helpful for the early detection of depression.
Collapse
Affiliation(s)
- Xue Lei
- School of Business, East China University of Science and Technology, Shanghai, China
| | - Weidong Ji
- Mental Health Center, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Jingzhou Guo
- School of Business, East China University of Science and Technology, Shanghai, China
| | - Xiaoyue Wu
- School of Business, East China University of Science and Technology, Shanghai, China
| | - Huilin Wang
- Shanghai Fujia Cultural Development Co., Ltd., Shanghai, China
| | - Lina Zhu
- School of Business, East China University of Science and Technology, Shanghai, China
| | - Liang Chen
- School of Business, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
30
|
Prabhakar SK, Rajaguru H, Kim C, Won DO. A Fusion-Based Technique With Hybrid Swarm Algorithm and Deep Learning for Biosignal Classification. Front Hum Neurosci 2022; 16:895761. [PMID: 35721347 PMCID: PMC9203681 DOI: 10.3389/fnhum.2022.895761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
The vital data about the electrical activities of the brain are carried by the electroencephalography (EEG) signals. The recordings of the electrical activity of brain neurons in a rhythmic and spontaneous manner from the scalp surface are measured by EEG. One of the most important aspects in the field of neuroscience and neural engineering is EEG signal analysis, as it aids significantly in dealing with the commercial applications as well. To uncover the highly useful information for neural classification activities, EEG studies incorporated with machine learning provide good results. In this study, a Fusion Hybrid Model (FHM) with Singular Value Decomposition (SVD) Based Estimation of Robust Parameters is proposed for efficient feature extraction of the biosignals and to understand the essential information it has for analyzing the brain functionality. The essential features in terms of parameter components are extracted using the developed hybrid model, and a specialized hybrid swarm technique called Hybrid Differential Particle Artificial Bee (HDPAB) algorithm is proposed for feature selection. To make the EEG more practical and to be used in a plethora of applications, the robust classification of these signals is necessary thereby relying less on the trained professionals. Therefore, the classification is done initially using the proposed Zero Inflated Poisson Mixture Regression Model (ZIPMRM) and then it is also classified with a deep learning methodology, and the results are compared with other standard machine learning techniques. This proposed flow of methodology is validated on a few standard Biosignal datasets, and finally, a good classification accuracy of 98.79% is obtained for epileptic dataset and 98.35% is obtained for schizophrenia dataset.
Collapse
Affiliation(s)
- Sunil Kumar Prabhakar
- Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, South Korea
| | - Harikumar Rajaguru
- Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam, India
| | - Chulho Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | - Dong-Ok Won
- Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, South Korea
- *Correspondence: Dong-Ok Won,
| |
Collapse
|
31
|
A major depressive disorder diagnosis approach based on EEG signals using dictionary learning and functional connectivity features. Phys Eng Sci Med 2022; 45:705-719. [DOI: 10.1007/s13246-022-01135-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
32
|
Aslan Z. An Empirical Mode Decomposition approach for automated diagnosis of migraine. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Yu X, Aziz MZ, Sadiq MT, Jia K, Fan Z, Xiao G. Computerized Multidomain EEG Classification System: A New Paradigm. IEEE J Biomed Health Inform 2022; 26:3626-3637. [PMID: 35157605 DOI: 10.1109/jbhi.2022.3151570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recent advancements in electroencephalogram (EEG) signals classification largely center around the domainspecific solutions that hinder the algorithm cross-discipline adaptability. This study introduces a computer-aided broad learning EEG system (CABLS) for the classification of six distinct EEG domains under a unified sequential framework. Specifically, this paper proposes three novel modules namely, complex variational mode decomposition (CVMD), ensemble optimization-based features selection (EOFS), and t-distributed stochastic neighbor embeddingbased samples reduction (TSNE-SR) methods respectively for the realization o CABLES. Extensive experiments are carried out on seven different datasets from diverse disciplines using different variants of the neural network, extreme learning machine, and machine learning classifiers employing a 10-fold cross-validation strategy. Results compared with existing studies reveal that the highest classification accuracy of 99.1%, 97.8%, 94.3%, 91.5%, 98.9%, 95.3%, and 92% is achieved for the motor imagery dataset A, dataset B, slow cortical potentials, epilepsy, alcoholic, and schizophrenia EEG datasets respectively. The overall empirical analysis authenticates that the proposed CABLES framework outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus can be endorsed as an effective automated neural rehabilitation system.
Collapse
|
34
|
Empirical mode decomposition and convolutional neural network-based approach for diagnosing psychotic disorders from eeg signals. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
35
|
Chen J, Li H, Ma L, Soong F. DEEMD-SPP: A Novel Framework for Emotion Recognition Based on EEG Signals. Front Psychiatry 2022; 13:885120. [PMID: 35573327 PMCID: PMC9091650 DOI: 10.3389/fpsyt.2022.885120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) is one of the most widely-used biosignal capturing technology for investigating brain activities, cognitive diseases, and affective disorders. To understand the underlying principles of brain activities and affective disorders using EEG data, one of the fundamental tasks is to accurately identify emotions from EEG signals, which has attracted huge attention in the field of affective computing. To improve the accuracy and effectiveness of emotion recognition based on EEG data, previous studies have successfully developed numerous feature extraction methods and classifiers. Among them, ensemble empirical mode decomposition (EEMD) is an efficient signal decomposition technique for extracting EEG features. It can alleviate the mode-mixing problem by adding white noise to the source signal. However, there remain some issues when applying this method to recognition tasks. As the added noise cannot be filtered completely, spurious modes are generated due to the residual noise. Therefore, it is crucial to perform intrinsic mode function (IMF) selection to find the most valuable IMF components that represent brain activities. Furthermore, the number of decomposed IMFs is various to different original signals, thus how to unify feature dimensions needs better solutions. To solve these issues, we propose a novel forecasting framework, named DEEMD-SPP, to identify emotions from EEG signals, based on the combination of denoising ensemble empirical mode decomposition (DEEMD) and Spatial Pyramid Pooling Network (SPP-Net). First, DEEMD is proposed to decompose the EEG signals, which effectively eliminates residual noise in the IMFs and selects the most valuable IMFs. Second, time-domain and frequency-domain features are extracted from the selected IMFs. Finally, SPP-net is employed as the classifier to recognize emotions, which can effectively transform various-sized feature maps into fixed-sized feature vectors through the pyramid pooling layer. The experimental results demonstrate that our proposed DEEMD-SPP framework can effectively reduce the effect of spike-in white noise, accurately extract EEG features, and significantly improve the performance of emotion recognition.
Collapse
Affiliation(s)
- Jing Chen
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Haifeng Li
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Lin Ma
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Frank Soong
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China.,Speech Group, Microsoft Research Asia, Beijing, China
| |
Collapse
|
36
|
Shoeibi A, Sadeghi D, Moridian P, Ghassemi N, Heras J, Alizadehsani R, Khadem A, Kong Y, Nahavandi S, Zhang YD, Gorriz JM. Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models. Front Neuroinform 2021; 15:777977. [PMID: 34899226 PMCID: PMC8657145 DOI: 10.3389/fninf.2021.777977] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SZ) is a mental disorder whereby due to the secretion of specific chemicals in the brain, the function of some brain regions is out of balance, leading to the lack of coordination between thoughts, actions, and emotions. This study provides various intelligent deep learning (DL)-based methods for automated SZ diagnosis via electroencephalography (EEG) signals. The obtained results are compared with those of conventional intelligent methods. To implement the proposed methods, the dataset of the Institute of Psychiatry and Neurology in Warsaw, Poland, has been used. First, EEG signals were divided into 25 s time frames and then were normalized by z-score or norm L2. In the classification step, two different approaches were considered for SZ diagnosis via EEG signals. In this step, the classification of EEG signals was first carried out by conventional machine learning methods, e.g., support vector machine, k-nearest neighbors, decision tree, naïve Bayes, random forest, extremely randomized trees, and bagging. Various proposed DL models, namely, long short-term memories (LSTMs), one-dimensional convolutional networks (1D-CNNs), and 1D-CNN-LSTMs, were used in the following. In this step, the DL models were implemented and compared with different activation functions. Among the proposed DL models, the CNN-LSTM architecture has had the best performance. In this architecture, the ReLU activation function with the z-score and L2-combined normalization was used. The proposed CNN-LSTM model has achieved an accuracy percentage of 99.25%, better than the results of most former studies in this field. It is worth mentioning that to perform all simulations, the k-fold cross-validation method with k = 5 has been used.
Collapse
Affiliation(s)
- Afshin Shoeibi
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Delaram Sadeghi
- Department of Medical Engineering, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Parisa Moridian
- Faculty of Engineering, Islamic Azad University of Science and Research, Tehran, Iran
| | - Navid Ghassemi
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Jónathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, Logroño, Spain
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Ali Khadem
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Yinan Kong
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Yu-Dong Zhang
- Department of Informatics, University of Leicester, Leicester, United Kingdom
| | - Juan Manuel Gorriz
- Department of Signal Theory, Telematics and Communications, ETS of Computer and Telecommunications Engineering, University of Granada, Granada, Spain
| |
Collapse
|
37
|
Aslan Z, Akin M. A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals. Phys Eng Sci Med 2021; 45:83-96. [PMID: 34822131 DOI: 10.1007/s13246-021-01083-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
This study presents a method with high accuracy performance that aims to automatically detect schizophrenia (SZ) from electroencephalography (EEG) records. Unlike related literature studies using traditional machine learning algorithms, the features required for the training of the network are automatically extracted from the EEG records in our method. In order to obtain the time frequency features of the EEG signals, the signal was converted into 2D by using the Continuous Wavelet Transform method. This study has the highest accuracy performance in the relevant literature by using 2D time frequency features in automatic detection of SZ disease. It is trained with Visual Geometry Group-16 (VGG16), an advanced convolutional neural networks (CNN) deep learning network architecture, to extract key features found on scalogram images and train the network. The study shows a high success in classifying SZ patients and healthy individuals with a very satisfactory accuracy of 98% and 99.5%, respectively, using two different datasets consisting of individuals from different age groups. Using different techniques [Activization Maximization, Saliency Map, and Gradient-weighted Class Activation Mapping (Grad-CAM)] to visualize the learning outcomes of the CNN network, the relationship of frequency components between SZ and the healthy individual is clearly shown. Moreover, with these interpretable outcomes, the difference between SZ patients and healthy individuals can be distinguished very easily help for expert opinion.
Collapse
Affiliation(s)
- Zülfikar Aslan
- Technical Sciences Vocational School, Gaziantep University, Gaziantep, 27310, Turkey.
| | - Mehmet Akin
- Electrical-Electronics Engineering, Faculty of Engineering, Dicle University, Diyarbakir, 21280, Turkey
| |
Collapse
|
38
|
Khare SK, Bajaj V. A hybrid decision support system for automatic detection of Schizophrenia using EEG signals. Comput Biol Med 2021; 141:105028. [PMID: 34836626 DOI: 10.1016/j.compbiomed.2021.105028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) is a serious neurological condition in which people suffer with distorted perception of reality. SCZ may result in a combination of delusions, hallucinations, disordered thinking, and behavior. This causes permanent disability and hampers routine functioning. Trained neurologists use interviewing and visual inspection techniques for the detection and diagnosis of SCZ. These techniques are manual, time-consuming, subjective, and error-prone. Therefore, there is a need to develop an automatic model for SCZ classification. The aim of this study is to develop an automated SCZ classification model using electroencephalogram (EEG) signals. The EEG signals can capture the changes in neural dynamics of human cognition during SCZ. METHOD Based on the nature of the SCZ condition, the EEG signals must be examined. For accurate interpretation of EEG signals during SCZ, an automated model integrating a robust variational mode decomposition (RVMD) and an optimized extreme learning machine (OELM) classifier is developed. Traditional VMD suffers from noisy mode generation, mode duplication, under segmentation, and mode discarding. These problems are suppressed in RVMD by automating the selection of quadratic penalty factor (α) and a number of modes (L). The hyperparameters (HPM) of the OELM classifier are automatically selected to ensure maximum accuracy for each mode without overfitting or underfitting. For the selection of α and L in RVMD and HPM in the OELM classifier, a whale optimization algorithm is used. The root mean square error is minimized for RVMD and classification accuracy of each mode is maximized for the OELM classifier. The EEG signals of three conditions performing basic sensory tasks have been analyzed to detect SCZ. RESULTS The Kruskal Wallis test is used to select different features extracted from the modes produced by RVMD. An OELM classifier is tested using a ten-fold cross-validation technique. An accuracy, precision, specificity, F-1 measure, sensitivity, and Cohen's Kappa of 92.93%, 93.94%, 91.06% 94.07%, 97.15%, and 85.32% are obtained. CONCLUSION The third mode's chaotic features helped to capture the significant changes that occurred during the SCZ state. The findings of the RVMD-OELM-based hybrid decision support system can help neuro-experts for the accurate identification of SCZ in real-time scenarios.
Collapse
Affiliation(s)
- Smith K Khare
- Electronics and Communication Discipline, Indian Institute of Information Technology Design and Manufacturing, Jabalpur, MP, 482005, India
| | - Varun Bajaj
- Electronics and Communication Discipline, Indian Institute of Information Technology Design and Manufacturing, Jabalpur, MP, 482005, India.
| |
Collapse
|
39
|
Persistent Homology-Based Topological Analysis on the Gestalt Patterns during Human Brain Cognition Process. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2334332. [PMID: 34760139 PMCID: PMC8575602 DOI: 10.1155/2021/2334332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The neuropsychological characteristics inside the brain are still not sufficiently understood in previous Gestalt psychological analyses. In particular, the extraction and analysis of human brain consciousness information itself have not received enough attention for the time being. In this paper, we aim to investigate the features of EEG signals from different conscious thoughts. Specifically, we try to extract the physiologically meaningful features of the brain responding to different contours and shapes in images in Gestalt cognitive tests by combining persistent homology analysis with electroencephalogram (EEG). The experimental results show that more brain regions in the frontal lobe are involved when the subject perceives the random and disordered combination of images compared to the ordered Gestalt images. Meanwhile, the persistence entropy of EEG data evoked by random sequence diagram (RSD) is significantly different from that evoked by the ordered Gestalt (GST) images in several frequency bands, which indicate that the human cognition of the shape and contour of images can be separated to some extent through topological analysis. This implies the feasibility to digitize the neural signals while preserving the whole and local features of the original signals, which are further verified by our extensive experiments. In general, this paper evaluates and quantifies cognitively related neural correlates by persistent homology features of EEG signals, which provides an approach to realizing the digitization of neural signals. Preliminary verification of the analyzability of human consciousness signals provides reliable research ideas and directions for the realization of feature extraction and analysis of human brain consciousness cognition.
Collapse
|
40
|
Khare SK, Bajaj V. A self-learned decomposition and classification model for schizophrenia diagnosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 211:106450. [PMID: 34619600 DOI: 10.1016/j.cmpb.2021.106450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Schizophrenia (SZ) is a type of neurological disorder that is diagnosed by professional psychiatrists based on interviews and manual screening of patients. The procedures are time-consuming, burdensome, and prone to human error. This urgently necessitates the development of an effective and precise computer-aided design for the detection of SZ. One such efficient source for SZ detection is the electroencephalogram (EEG) signals. Because EEG signals are non-stationary, it is challenging to find representative information in its raw form. Decomposing the signals into multi-modes can provide detailed insight information from it. But the choice of uniform decomposition and hyper-parameters leads to information loss affecting system performance drastically. METHOD In this paper, automatic signal decomposition and classification methods are proposed for the detection of SZ and healthy control EEG signals. The Fisher score method is used for the selection of the most discriminant channel. Flexible tunable Q wavelet transform (F-TQWT) is developed for efficient decomposition of EEG signals by reducing root mean square error with grey wolf optimization (GWO) algorithm. Five features are extracted from the adaptively generated subbands and selected by the Kruskal Wallis test. The feature matrix is given as an input to the flexible least square support vector machine (F-LSSVM) classifier. The hyper-parameters and kernel of classifier are selected such that the accuracy of each subband is maximized using GWO algorithm. RESULTS The effectiveness and superiority of the proposed method is tested by evaluating seven performance parameters. An accuracy of 91.39%, sensitivity, specificity, precision, F-1 measure, false positive rate and error of 92.65%, 93.22%, 95.57%, 0.9306, 6.78% and 8.61% is achieved. The results prove superiority of the developed F-TQWT decomposition and F-LSSVM classifier over existing methodologies. CONCLUSION The EEG signals of healthy control and SZ subjects performing motor and auditory tasks simultaneously provide higher discrimination ability over the subjects performing auditory and motory tasks separately. The developed model is accurate, robust, and effective as it is developed on a relatively larger data-set, obtained maximum performance, and tested using ten-fold cross-validation technique. This proposed model is ready to be put to test for real-time SZ detection.
Collapse
Affiliation(s)
- Smith K Khare
- Electronics and Communication Discipline, Indian Institute of Information Technology Design and Manufacturing, Jabalpur, MP, 482005, India.
| | - Varun Bajaj
- Electronics and Communication Discipline, Indian Institute of Information Technology Design and Manufacturing, Jabalpur, MP, 482005, India
| |
Collapse
|
41
|
Exploiting Feature Selection and Neural Network Techniques for Identification of Focal and Nonfocal EEG Signals in TQWT Domain. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6283900. [PMID: 34659691 PMCID: PMC8418932 DOI: 10.1155/2021/6283900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
For drug resistance patients, removal of a portion of the brain as a cause of epileptic seizures is a surgical remedy. However, before surgery, the detailed analysis of the epilepsy localization area is an essential and logical step. The Electroencephalogram (EEG) signals from these areas are distinct and are referred to as focal, while the EEG signals from other normal areas are known as nonfocal. The visual inspection of multiple channels for detecting the focal EEG signal is time-consuming and prone to human error. To address this challenge, we propose a novel method based on differential operator and Tunable Q-factor wavelet transform (TQWT) to distinguish the focal and nonfocal signals. For this purpose, first, the EEG signal was differenced and then decomposed by TQWT. Second, several entropy-based features were derived from the TQWT subbands. Third, the efficacy of the six binary feature selection algorithms, binary bat algorithm (BBA), binary differential evolution (BDE) algorithm, firefly algorithm (FA), genetic algorithm (GA), grey wolf optimization (GWO), and particle swarm optimization (PSO), was evaluated. In the end, the selected features were fed to several machine learning and neural network classifiers. We observed that the PSO with neural networks provides an effective solution for the application of focal EEG signal detection. The proposed framework resulted in an average classification accuracy of 97.68%, a sensitivity of 97.26%, and a specificity of 98.11% in a tenfold cross-validation strategy, which is higher than the state of the art used in the public Bern-Barcelona EEG database.
Collapse
|
42
|
Janisch J, Mitoyen C, Perinot E, Spezie G, Fusani L, Quigley C. Video Recording and Analysis of Avian Movements and Behavior: Insights from Courtship Case Studies. Integr Comp Biol 2021; 61:1378-1393. [PMID: 34037219 PMCID: PMC8516111 DOI: 10.1093/icb/icab095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Video recordings are useful tools for advancing our understanding of animal movements and behavior. Over the past decades, a burgeoning area of behavioral research has put forward innovative methods to investigate animal movement using video analysis, which includes motion capture and machine learning algorithms. These tools are particularly valuable for the study of elaborate and complex motor behaviors, but can be challenging to use. We focus in particular on elaborate courtship displays, which commonly involve rapid and/or subtle motor patterns. Here, we review currently available tools and provide hands-on guidelines for implementing these techniques in the study of avian model species. First, we suggest a set of possible strategies and solutions for video acquisition based on different model systems, environmental conditions, and time or financial budget. We then outline the available options for video analysis and illustrate how different analytical tools can be chosen to draw inference about animal motor performance. Finally, a detailed case study describes how these guidelines have been implemented to study courtship behavior in golden-collared manakins (Manacus vitellinus).
Collapse
Affiliation(s)
- Judith Janisch
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Clementine Mitoyen
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - Elisa Perinot
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Giovanni Spezie
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - Cliodhna Quigley
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
43
|
Baygin M, Yaman O, Tuncer T, Dogan S, Barua PD, Acharya UR. Automated accurate schizophrenia detection system using Collatz pattern technique with EEG signals. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Alvi AM, Siuly S, Wang H. Neurological abnormality detection from electroencephalography data: a review. Artif Intell Rev 2021. [DOI: 10.1007/s10462-021-10062-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Chang Q, Li C, Tian Q, Bo Q, Zhang J, Xiong Y, Wang C. Classification of First-Episode Schizophrenia, Chronic Schizophrenia and Healthy Control Based on Brain Network of Mismatch Negativity by Graph Neural Network. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1784-1794. [PMID: 34406943 DOI: 10.1109/tnsre.2021.3105669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mismatch negativity (MMN) has been consistently found deficit in schizophrenia, which was considered as a promising biomarker for assessing the impairments in pre-attentive auditory processing. However, the functional connectivity between brain regions based on MMN is not clear. This study provides an in-depth investigation in brain functional connectivity during MMN process among patients with first-episode schizophrenia (FESZ), chronic schizophrenia (CSZ) and healthy control (HC). Electroencephalography (EEG) data of 128 channels is recorded during frequency and duration MMN in 40 FESZ, 40 CSZ patients and 40 matched HC subjects. We reconstruct the cortical endogenous electrical activity from EEG recordings using exact low-resolution electromagnetic tomography and build functional brain networks based on source-level EEG data. Then, graph-theoretic features are extracted from the brain networks with the support vector machine (SVM) to classify FESZ, CSZ and HC groups, since the SVM has good generalization ability and robustness as a universally applicable nonlinear classifier. Furthermore, we introduce the graph neural network (GNN) model to directly learn for the network topology of brain network. Compared to HC, the damaged brain areas of CSZ are more extensive than FESZ, and the damaged area involved the auditory cortex. These results demonstrate the heterogeneity of the impacts of schizophrenia for different disease courses and the association between MMN and the auditory cortex. More importantly, the GNN classification results are significantly better than those of SVM, and hence the EEG-based GNN model of brain networks provides an effective method for discriminating among FESZ, CSZ and HC groups.
Collapse
|
46
|
Akbari H, Ghofrani S, Zakalvand P, Tariq Sadiq M. Schizophrenia recognition based on the phase space dynamic of EEG signals and graphical features. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Baygin M. An accurate automated schizophrenia detection using TQWT and statistical moment based feature extraction. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Classification of normal and depressed EEG signals based on centered correntropy of rhythms in empirical wavelet transform domain. Health Inf Sci Syst 2021; 9:9. [PMID: 33604030 DOI: 10.1007/s13755-021-00139-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
A widespread brain disorder of present days is depression which influences 264 million of the world's population. Depression may cause diverse undesirable consequences, including poor physical health, suicide, and self-harm if left untreated. Depression may have adverse effects on the personal, social, and professional lives of individuals. Both neurologists and researchers are trying to detect depression by challenging brain signals of Electroencephalogram (EEG) with chaotic and non-stationary characteristics. It is essential to detect early-stage depression to help patients obtain the best treatment promptly to prevent harmful consequences. In this paper, we proposed a new method based on centered correntropy (CC) and empirical wavelet transform (EWT) for the classification of normal and depressed EEG signals. The EEG signals are decomposed to rhythms by EWT and then CC of rhythms is computed as the discrimination feature and fed to K-nearest neighbor and support vector machine (SVM) classifiers. The proposed method was evaluated using EEG signals recorded from 22 depression and 22 normal subjects. We achieved 98.76%, 98.47%, and 99.05% average classification accuracy (ACC), sensitivity, and specificity in a 10-fold cross-validation strategy by using an SVM classifier. Such efficient results conclude that the method proposed can be used as a fast and accurate computer-aided detection system for the diagnosis of patients with depression in clinics and hospitals.
Collapse
|
49
|
Sharma M, Acharya UR. Automated detection of schizophrenia using optimal wavelet-based l 1 norm features extracted from single-channel EEG. Cogn Neurodyn 2021; 15:661-674. [PMID: 34367367 DOI: 10.1007/s11571-020-09655-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
Schizophrenia (SZ) is a mental disorder, which affects the ability of human thinking, memory, and way of living. Manual screening of SZ patients is tedious, laborious and prone to human errors. Hence, we developed a computer-aided diagnosis (CAD) system to diagnose SZ patients accurately using single-channel electroencephalogram (EEG) signals. The EEG signals are nonlinear and non-stationary. Hence, we have used wavelet-based features to capture the hidden non-stationary nature present in the signal. First, the EEG signals are subjected to the the wavelet decomposition through six iterations, which yields seven sub-bands. The l 1 norm is computed for each sub-band. The extracted norm features are disseminated to various classification algorithms. We have obtained the highest accuracy of 99.21% and 97.2% using K-nearest neighbor classifiers with ten-fold and leave-one-subject-out cross-validations. The developed single-channel EEG wavelet-based CAD model can help the clinicians to confirm the outcome of their manual screening and obtain an accurate diagnosis.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad, India
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore.,Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan, ROC
| |
Collapse
|
50
|
Murugappan M, Alshuaib W, Bourisly AK, Khare SK, Sruthi S, Bajaj V. Tunable Q wavelet transform based emotion classification in Parkinson's disease using Electroencephalography. PLoS One 2020; 15:e0242014. [PMID: 33211717 PMCID: PMC7676721 DOI: 10.1371/journal.pone.0242014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a severe incurable neurological disorder. It is mostly characterized by non-motor symptoms like fatigue, dementia, anxiety, speech and communication problems, depression, and so on. Electroencephalography (EEG) play a key role in the detection of the true emotional state of a person. Various studies have been proposed for the detection of emotional impairment in PD using filtering, Fourier transforms, wavelet transforms, and non-linear methods. However, these methods require a selection of basis and are confined in terms of accuracy. In this paper, tunable Q wavelet transform (TQWT) is proposed for the classification of emotions in PD and normal controls (NC). EEG signals of six emotional states namely happiness, sadness, fear, anger, surprise, and disgust are studied. Power, entropy, and statistical moments based features are elicited from the highpass and lowpass sub-bands of TQWT. Six features selected by statistical analysis are classified with a k-nearest neighbor, probabilistic neural network, random forest, decision tree, and extreme learning machine. Three performance measures are obtained, maximum mean accuracy, sensitivity, and specificity of 96.16%, 97.59%, and 88.51% for NC and 93.88%, 96.33%, and 81.67% for PD are achieved with a probabilistic neural network. The proposed method proved to be very effective such that it classifies emotions in PD and could be used as a potential tool for diagnosing emotional impairment in hospitals.
Collapse
Affiliation(s)
- Murugappan Murugappan
- Intelligent Signal Processing Research Lab, Department of Electronics and Communication Engineering, Kuwait College of Science and Technology (A Private University), Doha, Kuwait
| | - Waleed Alshuaib
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ali K. Bourisly
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Smith K. Khare
- Department of Electronics and Communication, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
| | - Sai Sruthi
- Intelligent Signal Processing Research Lab, Department of Electronics and Communication Engineering, Kuwait College of Science and Technology (A Private University), Doha, Kuwait
| | - Varun Bajaj
- Department of Electronics and Communication, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
| |
Collapse
|