1
|
Roytman S, Paalanen R, Carli G, Marusic U, Kanel P, van Laar T, Bohnen NI. Multisensory mechanisms of gait and balance in Parkinson's disease: an integrative review. Neural Regen Res 2025; 20:82-92. [PMID: 38767478 PMCID: PMC11246153 DOI: 10.4103/nrr.nrr-d-23-01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/13/2023] [Accepted: 01/18/2024] [Indexed: 05/22/2024] Open
Abstract
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population. Posture and gait control does not happen automatically, as previously believed, but rather requires continuous involvement of central nervous mechanisms. To effectively exert control over the body, the brain must integrate multiple streams of sensory information, including visual, vestibular, and somatosensory signals. The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work. Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults. Insufficient emphasis, however, has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance. In the present work, we review the contributions of somatosensory, visual, and vestibular modalities, along with their multisensory intersections to gait and balance in older adults and patients with Parkinson's disease. We also review evidence of vestibular contributions to multisensory temporal binding windows, previously shown to be highly pertinent to fall risk in older adults. Lastly, we relate multisensory vestibular mechanisms to potential neural substrates, both at the level of neurobiology (concerning positron emission tomography imaging) and at the level of electrophysiology (concerning electroencephalography). We hope that this integrative review, drawing influence across multiple subdisciplines of neuroscience, paves the way for novel research directions and therapeutic neuromodulatory approaches, to improve the lives of older adults and patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Paalanen
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Giulia Carli
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, USA
| | - Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
- Department of Health Sciences, Alma Mater Europaea – ECM, Maribor, Slovenia
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nico I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Hua A, Wang G, Bai J, Hao Z, Yang Y, Luo X, Liu J, Meng J, Wang J. Rapid reconfiguration of cortical networks after repeated exposure to visual-vestibular conflicts. Sci Rep 2024; 14:21943. [PMID: 39304732 DOI: 10.1038/s41598-024-73111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Visual-vestibular conflicts can induce motion sickness and further postural instability. Visual-vestibular habituation is recommended to reduce the symptoms of motion sickness and improve postural stability with an altered multisensory reweighting progress. However, it is unclear how the human brain reweights multisensory information after repeated exposure to visual-vestibular conflicts. Therefore, we synchronized a rotating platform and a virtual scene to present visual-vestibular congruent (natural visual stimulation) and incongruent (conflicted visual stimulation) conditions and collected EEG and center of pressure (COP) data. We constructed the effective brain connectivity of region of interest (ROI) derived from source-space EEG in theta-band activity, and quantified the postural stability and the inflow and outflow of each ROI. We found repeated exposure to congruent and incongruent conditions both decreased COP path length and increased COP complexity. Besides, we found that repeated exposure to the incongruent environment decreased the inflow into visual cortex, suggesting the brain down-weighted the less reliable visual information for postural stability. In contrast, repeated exposure to the congruent environment increased the inflow into posterior parietal cortex and the outflow from visual cortex and S1, suggesting an increase in efficiency of multisensory integration. We concluded that repeated exposure to congruent and incongruent conditions both improved postural stability with different multisensory reweighting patterns as revealed by different dynamic changes of brain networks.
Collapse
Affiliation(s)
- Anke Hua
- Department of Sports Science, Zhejiang University, Hangzhou, 310058, China
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, 21201, USA
| | - Guozheng Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou,, Taizhou, 318000, China
| | - Jingyuan Bai
- Department of Sports Science, Zhejiang University, Hangzhou, 310058, China
| | - Zengming Hao
- School of Sport And Physical Education, North University of China, Taiyuan, 030051, China
| | - Yi Yang
- Department of Sports Science, Zhejiang University, Hangzhou, 310058, China
| | - Xin Luo
- Department of Sports Science, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Jun Meng
- College of Control Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou, 310058, China.
- Center for Psychological Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Yan T, Liang M, Peng J, Yu Q, Li Y, Yang J, Zhang S, Wang C. Cortical Mechanisms Underlying Effects of Repetitive Peripheral Magnetic Stimulation on Dynamic and Static Postural Control in Patients with Chronic Non-Specific Low Back Pain: A Double-Blind Randomized Clinical Trial. Pain Ther 2024; 13:953-970. [PMID: 38896200 PMCID: PMC11255159 DOI: 10.1007/s40122-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Patients with chronic non-specific low back pain (CNLBP) often experience impaired postural control, contributing to pain recurrence. Although repetitive peripheral magnetic stimulation (rPMS) combined with core muscle training (CMT) could improve postural control, its neural mechanism remains unclear. This study aims to investigate the postural control-related cortical mechanism of the effect of rPMS on patients with CNLBP. METHODS This unicentric, prospective, randomized, double-blind, controlled trial was conducted in a public hospital from May to December 2023. A total of 40 patients (27 females and 13 males, mean age 29.38 ± 7.72) with CNLBP were randomly assigned to either the rPMS group (real rPMS with CMT) or the sham-rPMS group (sham-rPMS with CMT) for 12 sessions over 4 weeks. The rPMS was applied to the lumbar paravertebral multifidus muscle on the painful side. Pain and disability were quantified using the visual analog scale (VAS) and Oswestry dysfunction index (ODI) pre- and post-intervention. Furthermore, the sway area and velocity of the center of pressure (COP) were measured using a force platform. The cortical activities in 6 regions of interest during 4 tasks (standing with eyes open/closed on a stable/unstable plane) were recorded by functional near-infrared spectroscopy (fNIRS) pre- and post-intervention. The repeated measure ANOVA was applied for statistical analysis. Spearman's correlation was used to determine the relationships between variables. RESULTS After the intervention, the rPMS group showed decreased pain intensity (p = 0.001) and sway area (unstable eyes-closed task) (p = 0.046) compared to the sham-rPMS group. Additionally, the rPMS group exhibited increased activation in left primary motor cortex (M1) (p = 0.042) and reduced in left supplementary motor area (SMA) (p = 0.045), whereas the sham-rPMS group showed no significant changes. The increased activation of left M1 was negatively correlated to the reduction of pain intensity (r = - 0.537, p = 0.018) and sway area (r = - 0.500, p = 0.029) under the static balancing task. Furthermore, there was a positive correlation between sway velocity and VAS (r = 0.451, p = 0.046) post-rPMS intervention. CONCLUSION Repetitive peripheral magnetic stimulation combined with core muscle training demonstrated better analgesic effects and postural control improvements, compared to sham-stimulation. This may be attributed to the increased activation of the left primary motor cortex. CLINICAL TRIAL REGISTRATION The trial was registered on ClinicalTrials.gov (ChiCTR2300070943).
Collapse
Affiliation(s)
- Takyu Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Meizhen Liang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiahui Peng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiuhua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiajia Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Siyun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Qiu Y, Luo Z. Research on Brain Networks of Human Balance Based on Phase Estimation Synchronization. Brain Sci 2024; 14:448. [PMID: 38790427 PMCID: PMC11118820 DOI: 10.3390/brainsci14050448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Phase synchronization serves as an effective method for analyzing the synchronization of electroencephalogram (EEG) signals among brain regions and the dynamic changes of the brain. The purpose of this paper is to study the construction of the functional brain network (FBN) based on phase synchronization, with a special focus on neural processes related to human balance regulation. This paper designed four balance paradigms of different difficulty by blocking vision or proprioception and collected 19-channel EEG signals. Firstly, the EEG sequences are segmented by sliding windows. The phase-locking value (PLV) of core node pairs serves as the phase-screening index to extract the valid data segments, which are recombined into new EEG sequences. Subsequently, the multichannel weighted phase lag index (wPLI) is calculated based on the new EEG sequences to construct the FBN. The experimental results show that due to the randomness of the time points of body balance adjustment, the degree of phase synchronization of the datasets screened by PLV is more obvious, improving the effective information expression of the subsequent EEG data segments. The FBN topological structures of the wPLI show that the connectivity of various brain regions changes structurally as the difficulty of human balance tasks increases. The frontal lobe area is the core brain region for information integration. When vision or proprioception is obstructed, the EEG synchronization level of the corresponding occipital lobe area or central area decreases. The synchronization level of the frontal lobe area increases, which strengthens the synergistic effect among the brain regions and compensates for the imbalanced response caused by the lack of sensory information. These results show the brain regional characteristics of the process of human balance regulation under different balance paradigms, providing new insights into endogenous neural mechanisms of standing balance and methods of constructing brain networks.
Collapse
Affiliation(s)
| | - Zhizeng Luo
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
5
|
Hua A, Wang G, Bai J, Hao Z, Liu J, Meng J, Wang J. Nonlinear dynamics of postural control system under visual-vestibular habituation balance practice: evidence from EEG, EMG and center of pressure signals. Front Hum Neurosci 2024; 18:1371648. [PMID: 38736529 PMCID: PMC11082324 DOI: 10.3389/fnhum.2024.1371648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Human postural control system is inherently complex with nonlinear interaction among multiple subsystems. Accordingly, such postural control system has the flexibility in adaptation to complex environments. Previous studies applied complexity-based methods to analyze center of pressure (COP) to explore nonlinear dynamics of postural sway under changing environments, but direct evidence from central nervous system or muscular system is limited in the existing literature. Therefore, we assessed the fractal dimension of COP, surface electromyographic (sEMG) and electroencephalogram (EEG) signals under visual-vestibular habituation balance practice. We combined a rotating platform and a virtual reality headset to present visual-vestibular congruent or incongruent conditions. We asked participants to undergo repeated exposure to either congruent (n = 14) or incongruent condition (n = 13) five times while maintaining balance. We found repeated practice under both congruent and incongruent conditions increased the complexity of high-frequency (0.5-20 Hz) component of COP data and the complexity of sEMG data from tibialis anterior muscle. In contrast, repeated practice under conflicts decreased the complexity of low-frequency (<0.5 Hz) component of COP data and the complexity of EEG data of parietal and occipital lobes, while repeated practice under congruent environment decreased the complexity of EEG data of parietal and temporal lobes. These results suggested nonlinear dynamics of cortical activity differed after balance practice under congruent and incongruent environments. Also, we found a positive correlation (1) between the complexity of high-frequency component of COP and the complexity of sEMG signals from calf muscles, and (2) between the complexity of low-frequency component of COP and the complexity of EEG signals. These results suggested the low- or high-component of COP might be related to central or muscular adjustment of postural control, respectively.
Collapse
Affiliation(s)
- Anke Hua
- Department of Sports Science, Zhejiang University, Hangzhou, China
- Sciences Cognitives et Sciences Affectives, University of Lille, Lille, France
| | - Guozheng Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, China
| | - Jingyuan Bai
- Department of Sports Science, Zhejiang University, Hangzhou, China
| | - Zengming Hao
- Department of Rehabilitation Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jun Meng
- College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou, China
- Center for Psychological Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Maslova O, Shusharina N, Videnin A, Pyatin V. Integrative function of proprioceptive system in the acute effects of whole body vibration on the movement performance in young adults. Front Sports Act Living 2024; 6:1357199. [PMID: 38654753 PMCID: PMC11035735 DOI: 10.3389/fspor.2024.1357199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background The proprioceptive system coordinates locomotion, but its role in short-term integration and recovery of motor activity in imbalance of motor patterns and body remains debated. The aim of this study is investigating the functional role of proprioceptive system in motor patterns and body balance in healthy young adults. Methods 70 participants (aged 20.1 ± 0.3) were divided into experimental groups EG1 (n = 30), EG2 (n = 30), control group (CG, n = 10). EG1 performed single WBV session on Power Plate (7 exercises adapted to Functional Movement Screen (FMS). EG2 performed single session of FMS Exercises (FMSE). CG didn't perform any physical activity. All participants performed pre- and post-session of FMS and stabilometric measurements. Results FMS total score in EG1 increased by 2.0 ± 0.2 (p0 < 0.001), this was significantly differed (p0 < 0.001) from EG2 and CG. Acute effects of WBV and FMSE on rate of change and standard deviation (SD) of pressure center (COP) were shown in all groups during Static Test (p0 < 0.01). SD increased (p0 < 0.01) in Given Setting Test in EG1 and EG2, and in Romberg Test (p0 < 0.001) in EG1. Length, width and area (p0 < 0.01) of confidence ellipse, containing 95% of the statokinesiogram points, decreased in Static Test in EG1; width and area (p0 < 0.01) decreased in EG2 group. Significant (p0 < 0.01) decrease in Given Setting Test was in EG1, and significant (p0 < 0.01) increase was in Romberg Test (open eyes) in CG. Maximum amplitude of COP oscillations: significantly (p0 < 0.01) decreasing along X and Y axes in EG1 and EG2, and along Y axis in CG during Static Test; along Y axis (p0 < 0.01) in all groups during Given Setting Test. Significant differences were identified (p0 < 0.01) in calculated energy consumption for COP moving during all stabilometric tests. However, inter-group differences in COP after acute WBV and FMSE sessions have not been identified. Conclusions Acute WBV session eliminates the deficits in motor patterns which is not the case after acute FMSE session, which, according to our integrative movement tuning hypothesis, is due to high activation of integrative function of proprioceptive system. Efficacy of WBV and FMSE on COP performance indicates a high sensitivity of postural control to different levels of proprioceptive system activity.
Collapse
Affiliation(s)
- Olga Maslova
- Neurosociology Laboratory, Neurosciences Research Institute, Samara State Medical University, Samara, Russia
| | - Natalia Shusharina
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Arseniy Videnin
- Physiology Department, Samara State Medical University, Samara, Russia
| | - Vasiliy Pyatin
- Neurointerfaces and Neurotechnologies Laboratory, Neurosciences Research Institute, Samara State Medical University, Samara, Russia
| |
Collapse
|
7
|
Adebisi AT, Lee HW, Veluvolu KC. EEG-Based Brain Functional Network Analysis for Differential Identification of Dementia-Related Disorders and Their Onset. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1198-1209. [PMID: 38451768 DOI: 10.1109/tnsre.2024.3374651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Diagnosing and treating dementia, including mild cognitive impairment (MCI), is challenging due to diverse disease types and overlapping symptoms. Early MCI detection is vital as it can precede dementia, yet distinguishing it from later stage dementia is intricate due to subtle symptoms. The primary objective of this study is to adopt a complex network perspective to unravel the underlying pathophysiological mechanisms of dementia-related disorders. Leveraging the extensive availability of electroencephalogram (EEG) data, our study focuses on the meticulous identification and analysis of EEG-based brain functional network (BFNs) associated with dementia-related disorders. To achieve this, we employ the Phase Lag Index (PLI) as a connectivity measure, offering a comprehensive view of neural interactions. To enhance the analytical rigor, we introduce a data-driven threshold selection technique. This innovative approach allows us to compare the topological structures of the formulated BFNs using complex network measures quantitatively and statistically. Furthermore, we harness the power of these BFNs by utilizing them as pre-defined graph inputs for a Graph Convolution Network (GCN-net) based approach. The results demonstrate that graph theory metrics, such as the rich-club coefficient, transitivity, and assortativity coefficients, effectively distinguish between MCI, Alzheimer's disease (AD) and vascular dementia (VD). Furthermore, GCN-net achieves high accuracy (95.07% delta, 80.62% theta) and F1-scores (0.92 delta, 0.67 theta), highlighting the effectiveness of EEG-based BFNs in the analysis of dementia-related disorders.
Collapse
|
8
|
Hao Z, Xia X, Pan Y, Bai Y, Wang Y, Peng B, Dou W. Uncovering Brain Network Insights for Prognosis in Disorders of Consciousness: EEG Source Space Analysis and Brain Dynamics. IEEE Trans Neural Syst Rehabil Eng 2024; 32:144-153. [PMID: 38145522 DOI: 10.1109/tnsre.2023.3346947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Accurate prognostic prediction in patients with disorders of consciousness (DOC) is a core clinical concern and a formidable challenge in neuroscience. Resting-state EEG has shown promise in identifying electrophysiological prognostic markers and may be easily deployed at the bedside. However, the lack of brain dynamic modeling and the spatial mixture of signals in scalp EEG have constrained our exploration of biomarkers and comprehension of the mechanisms underlying consciousness recovery. Here, we introduce EEG source space analysis and brain dynamics to investigate the brain networks of patients with DOC (n = 178) with different outcomes (six-month follow-up), followed by graph theory and high-order topological analysis to explore the relationship between network structure and prognosis, and finally assess the importance of features. We show that a positive prognosis is associated with large-scale lower levels of low-frequency hypersynchrony. Moreover, we provide evidence that this pattern is driven not by all brain states but only by specific states. Analyses reveal that the positive prognosis is attributed to the network retaining lower segregation, higher integration, and stronger stability compared to the negative prognosis. Furthermore, our results highlight the importance of brain networks derived from brain dynamics in prognosis. The prognosis models based on clinical and neural features can achieve acceptable and even excellent performance under different outcome definitions (AUC = 0.714-0.893). Overall, our study offers new perspectives for the identification of prognostic biomarkers and provides avenues for profound insights into the mechanisms underlying consciousness improvement or recovery.
Collapse
|
9
|
Khajuria A, Sharma R, Joshi D. EEG Dynamics of Locomotion and Balancing: Solution to Neuro-Rehabilitation. Clin EEG Neurosci 2024; 55:143-163. [PMID: 36052404 DOI: 10.1177/15500594221123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past decade has witnessed tremendous growth in analyzing the cortical representation of human locomotion and balance using Electroencephalography (EEG). With the advanced developments in miniaturized electronics, wireless brain recording systems have been developed for mobile recordings, such as in locomotion. In this review, the cortical dynamics during locomotion are presented with extensive focus on motor imagery, and employing the treadmill as a tool for performing different locomotion tasks. Further, the studies that examine the cortical dynamics during balancing, focusing on two types of balancing tasks, ie, static and dynamic, with the challenges in sensory inputs and cognition (dual-task), are presented. Moreover, the current literature demonstrates the advancements in signal processing methods to detect and remove the artifacts from EEG signals. Prior studies show the electrocortical sources in the anterior cingulate, posterior parietal, and sensorimotor cortex was found to be activated during locomotion. The event-related potential has been observed to increase in the fronto-central region for a wide range of balance tasks. The advanced knowledge of cortical dynamics during mobility can benefit various application areas such as neuroprosthetics and gait/balance rehabilitation. This review will be beneficial for the development of neuroprostheses, and rehabilitation devices for patients suffering from movement or neurological disorders.
Collapse
Affiliation(s)
- Aayushi Khajuria
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Richa Sharma
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Deepak Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Zhang S, Zhang W, Wu D. West Syndrone Seizure Detection Algorithm based on Fusion Network of EEG and EMG. 2023 IEEE 6TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (PRAI) 2023:545-550. [DOI: 10.1109/prai59366.2023.10332003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Shuchang Zhang
- Hangzhou Dianzi University,School of Communication Engineering,Hangzhou,China
| | - Wei Zhang
- Hangzhou Dianzi University,School of Communication Engineering,Hangzhou,China
| | - Duanpo Wu
- Hangzhou Dianzi University,School of Communication Engineering,Hangzhou,China
| |
Collapse
|
11
|
Roytman S, Paalanen R, Griggs A, David S, Pongmala C, Koeppe RA, Scott PJH, Marusic U, Kanel P, Bohnen NI. Cholinergic system correlates of postural control changes in Parkinson's disease freezers. Brain 2023; 146:3243-3257. [PMID: 37086478 PMCID: PMC10393403 DOI: 10.1093/brain/awad134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 04/24/2023] Open
Abstract
Postural instability and freezing of gait are the most debilitating dopamine-refractory motor impairments in advanced stages of Parkinson's disease because of increased risk of falls and poorer quality of life. Recent findings suggest an inability to efficaciously utilize vestibular information during static posturography among people with Parkinson's disease who exhibit freezing of gait, with associated changes in cholinergic system integrity as assessed by vesicular acetylcholine transporter PET. There is a lack of adequate understanding of how postural control varies as a function of available sensory information in patients with Parkinson's disease with freezing of gait. The goal of this cross-sectional study was to examine cerebral cholinergic system changes that associate with inter-sensory postural control processing features as assessed by dynamic computerized posturography and acetylcholinesterase PET. Seventy-five participants with Parkinson's disease, 16 of whom exhibited freezing of gait, underwent computerized posturography on the NeuroCom© Equitest sensory organization test platform, striatal dopamine, and acetylcholinesterase PET scanning. Findings demonstrated that patients with Parkinson's disease with freezing of gait have greater difficulty maintaining balance in the absence of reliable proprioceptive cues as compared to those without freezing of gait [β = 0.28 (0.021, 0.54), P = 0.034], an effect that was independent of disease severity [β = 0.16 (0.062, 0.26), P < 0.01] and age [β = 0.092 (-0.005, 0.19), P = 0.062]. Exploratory voxel-based analysis revealed an association between postural control and right hemispheric cholinergic network related to visual-vestibular integration and self-motion perception. High anti-cholinergic burden predicted postural control impairment in a manner dependent on right hemispheric cortical cholinergic integrity [β = 0.34 (0.065, 0.61), P < 0.01]. Our findings advance the perspective that cortical cholinergic system might play a role in supporting postural control after nigro-striatal dopaminergic losses in Parkinson's disease. Failure of cortex-dependent visual-vestibular integration may impair detection of postural instability in absence of reliable proprioceptive cues. Better understanding of how the cholinergic system plays a role in this process may augur novel treatments and therapeutic interventions to ameliorate debilitating symptoms in patients with advanced Parkinson's disease.
Collapse
Affiliation(s)
- Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca Paalanen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexis Griggs
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon David
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chatkaew Pongmala
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Uros Marusic
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Institute for Kinesiology Research, Science and Research Centre Koper, 6000 Koper, Slovenia
- Department of Health Sciences, Alma Mater Europaea—ECM, 2000 Maribor, Slovenia
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
12
|
Safder SNUH, Akram MU, Dar MN, Khan AA, Khawaja SG, Subhani AR, Niazi IK, Gul S. Analysis of EEG signals using deep learning to highlight effects of vibration-based therapy on brain. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Sensorimotor recalibration of postural control strategies occurs after whole body vibration. Sci Rep 2023; 13:522. [PMID: 36627328 PMCID: PMC9831994 DOI: 10.1038/s41598-022-27117-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
Efficient postural control results from an effective interplay between sensory feedbacks integration and muscle modulation and can be affected by ageing and neuromuscular injuries. With this study, we investigated the effect of whole-body vibratory stimulation on postural control strategies employed to maintain an upright posture. We explored both physiological and posturography metrics, through corticomuscular and intramuscular coherence, and muscle networks analyses. The stimulation disrupts balance in the short term, but leads to a greater contribution of cortical activity, necessary to modulate muscle activation via the formation of (new) synergies. We also observed a reconfiguration of muscle recruitment patterns that returned to pre-stimulation levels after few minutes, accompanied by a slight improvement of balance in the anterior-posterior direction. Our results suggest that, in the context of postural control, appropriate mechanical stimulation is capable of triggering a recalibration of the sensorimotor set and might offer new perspectives for motor re-education.
Collapse
|
14
|
Hu Y, Petruzzello SJ, Hernandez ME. Beta cortical oscillatory activities and their relationship to postural control in a standing balance demanding test: influence of aging. Front Aging Neurosci 2023; 15:1126002. [PMID: 37213543 PMCID: PMC10196243 DOI: 10.3389/fnagi.2023.1126002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/14/2023] [Indexed: 05/23/2023] Open
Abstract
Background Age-related changes in the cortical control of standing balance may provide a modifiable mechanism underlying falls in older adults. Thus, this study examined the cortical response to sensory and mechanical perturbations in older adults while standing and examined the relationship between cortical activation and postural control. Methods A cohort of community dwelling young (18-30 years, N = 10) and older adults (65-85 years, N = 11) performed the sensory organization test (SOT), motor control test (MCT), and adaptation test (ADT) while high-density electroencephalography (EEG) and center of pressure (COP) data were recorded in this cross-sectional study. Linear mixed models examined cohort differences for cortical activities, using relative beta power, and postural control performance, while Spearman correlations were used to investigate the relationship between relative beta power and COP indices in each test. Results Under sensory manipulation, older adults demonstrated significantly higher relative beta power at all postural control-related cortical areas (p < 0.01), while under rapid mechanical perturbations, older adults demonstrated significantly higher relative beta power at central areas (p < 0.05). As task difficulty increased, young adults had increased relative beta band power while older adults demonstrated decreased relative beta power (p < 0.01). During sensory manipulation with mild mechanical perturbations, specifically in eyes open conditions, higher relative beta power at the parietal area in young adults was associated with worse postural control performance (p < 0.001). Under rapid mechanical perturbations, specifically in novel conditions, higher relative beta power at the central area in older adults was associated with longer movement latency (p < 0.05). However, poor reliability measures of cortical activity assessments were found during MCT and ADT, which limits the ability to interpret the reported results. Discussion Cortical areas are increasingly recruited to maintain upright postural control, even though cortical resources may be limited, in older adults. Considering the limitation regarding mechanical perturbation reliability, future studies should include a larger number of repeated mechanical perturbation trials.
Collapse
Affiliation(s)
- Yang Hu
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology, College of Health and Human Science, San José State University, San Jose, CA, United States
- *Correspondence: Yang Hu,
| | - Steven J. Petruzzello
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Manuel E. Hernandez
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
15
|
Petel A, Jacob D, Aubonnet R, Frismand S, Petersen H, Gargiulo P, Perrin P. Motion sickness susceptibility and visually induced motion sickness as diagnostic signs in Parkinson's disease. Eur J Transl Myol 2022; 32:10884. [PMID: 36458415 PMCID: PMC9830408 DOI: 10.4081/ejtm.2022.10884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022] Open
Abstract
Postural instability and loss of vestibular and somatosensory acuity can be part of the signs encountered in Parkinson's Disease (PD). Visual dependency is described in PD. These modifications of sensory input hierarchy are predictors of motion sickness (MS). The aim of this study was to assess MS susceptibility and effects of real induced MS in posture. 63 PD patients, whose medication levels (levodopa) reflected the pathology were evaluated, and 27 healthy controls, filled a MS questionnaire; 9 PD patients and 43 healthy controls were assessed by posturography using virtual reality. Drug amount predicted visual MS (p=0.01), but not real induced MS susceptibility. PD patients did not experience postural instability in virtual reality, contrary to healthy controls. Since PD patients do not seem to feel vestibular stimulated MS, they may not rely on vestibular and somatosensory inputs during the stimulation. However, they feel visually induced MS more with increased levodopa drug effect. Levodopa amount can increase visual dependency. The strongest MS predictors must be studied in PD to better understand the effect of visual stimulation and its absence in vestibular stimulation.
Collapse
Affiliation(s)
- Arthur Petel
- EA 3450 DevAH - Development, Adaptation and Handicap, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France,*These authors contributed equally
| | - Deborah Jacob
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland,*These authors contributed equally
| | - Romain Aubonnet
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Solène Frismand
- Neurology Department, University Hospital of Nancy, Nancy, France
| | - Hannes Petersen
- Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland; Akureyri Hospital, Akureyri, Iceland, Department of Science, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland, Department of Science, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Philippe Perrin
- EA 3450 DevAH - Development, Adaptation and Handicap, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France, Laboratory for the Analysis of Posture, Equilibrium and Motor Function (LAPEM), University Hospital of Nancy, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|