1
|
Lu L, Zhao H, Lu Y, Zhang Y, Wang X, Fan C, Li Z, Wu Z. Design and Control of the Magnetically Actuated Micro/Nanorobot Swarm toward Biomedical Applications. Adv Healthc Mater 2024; 13:e2400414. [PMID: 38412402 DOI: 10.1002/adhm.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Recently, magnetically actuated micro/nanorobots hold extensive promises in biomedical applications due to their advantages of noninvasiveness, fuel-free operation, and programmable nature. While effectively promised in various fields such as targeted delivery, most past investigations are mainly displayed in magnetic control of individual micro/nanorobots. Facing practical medical use, the micro/nanorobots are required for the development of swarm control in a closed-loop control manner. This review outlines the recent developments in magnetic micro/nanorobot swarms, including their actuating fundamentals, designs, controls, and biomedical applications. The fundamental principles and interactions involved in the formation of magnetic micro/nanorobot swarms are discussed first. The recent advances in the design of artificial and biohybrid micro/nanorobot swarms, along with the control devices and methods used for swarm manipulation, are presented. Furthermore, biomedical applications that have the potential to achieve clinical application are introduced, such as imaging-guided therapy, targeted delivery, embolization, and biofilm eradication. By addressing the potential challenges discussed toward the end of this review, magnetic micro/nanorobot swarms hold promise for clinical treatments in the future.
Collapse
Affiliation(s)
- Lu Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongqiao Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Yucong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuxuan Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinran Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Chengjuan Fan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zesheng Li
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiguang Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
2
|
Gao Q, Lin T, Liu Z, Chen Z, Chen Z, Hu C, Shen T. Study on Structural Design and Motion Characteristics of Magnetic Helical Soft Microrobots with Drug-Carrying Function. MICROMACHINES 2024; 15:731. [PMID: 38930701 PMCID: PMC11205992 DOI: 10.3390/mi15060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Magnetic soft microrobots have a wide range of applications in targeted drug therapy, cell manipulation, and other aspects. Currently, the research on magnetic soft microrobots is still in the exploratory stage, and most of the research focuses on a single helical structure, which has limited space to perform drug-carrying tasks efficiently and cannot satisfy specific medical goals in terms of propulsion speed. Therefore, balancing the motion speed and drug-carrying performance is a current challenge to overcome. In this paper, a magnetically controlled cone-helix soft microrobot structure with a drug-carrying function is proposed, its helical propulsion mechanism is deduced, a dynamical model is constructed, and the microrobot structure is prepared using femtosecond laser two-photon polymerization three-dimensional printing technology for magnetic drive control experiments. The results show that under the premise of ensuring sufficient drug-carrying space, the microrobot structure proposed in this paper can realize helical propulsion quickly and stably, and the speed of motion increases with increases in the frequency of the rotating magnetic field. The microrobot with a larger cavity diameter and a larger helical pitch exhibits faster rotary advancement speed, while the microrobot with a smaller helical height and a smaller helical cone angle outperforms other structures with the same feature sizes. The microrobot with a cone angle of 0.2 rad, a helical pitch of 100 µm, a helical height of 220 µm, and a cavity diameter of 80 µm achieves a maximum longitudinal motion speed of 390 µm/s.
Collapse
Affiliation(s)
- Qian Gao
- Luohe Institute of Technology, Henan University of Technology, No. 123, University Road, Yuanhui District, Luohe 462000, China;
| | - Tingting Lin
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| | - Ziteng Liu
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| | - Zebiao Chen
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| | - Zidong Chen
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| | - Cheng Hu
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| | - Teng Shen
- Higher Education Mega Center, Guangzhou University, No. 230, West Waihuan Street, Guangzhou 510006, China; (T.L.); (Z.L.); (Z.C.); (Z.C.)
| |
Collapse
|
3
|
Liu X, Jing Y, Xu C, Wang X, Xie X, Zhu Y, Dai L, Wang H, Wang L, Yu S. Medical Imaging Technology for Micro/Nanorobots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2872. [PMID: 37947717 PMCID: PMC10648532 DOI: 10.3390/nano13212872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Due to their enormous potential to be navigated through complex biological media or narrow capillaries, microrobots have demonstrated their potential in a variety of biomedical applications, such as assisted fertilization, targeted drug delivery, tissue repair, and regeneration. Numerous initial studies have been conducted to demonstrate the biomedical applications in test tubes and in vitro environments. Microrobots can reach human areas that are difficult to reach by existing medical devices through precise navigation. Medical imaging technology is essential for locating and tracking this small treatment machine for evaluation. This article discusses the progress of imaging in tracking the imaging of micro and nano robots in vivo and analyzes the current status of imaging technology for microrobots. The working principle and imaging parameters (temporal resolution, spatial resolution, and penetration depth) of each imaging technology are discussed in depth.
Collapse
Affiliation(s)
- Xuejia Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Chengxin Xu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Xiaoxiao Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Xiaopeng Xie
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
4
|
Wang T, Li H, Pu T, Yang L. Microsurgery Robots: Applications, Design, and Development. SENSORS (BASEL, SWITZERLAND) 2023; 23:8503. [PMID: 37896597 PMCID: PMC10611418 DOI: 10.3390/s23208503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Microsurgical techniques have been widely utilized in various surgical specialties, such as ophthalmology, neurosurgery, and otolaryngology, which require intricate and precise surgical tool manipulation on a small scale. In microsurgery, operations on delicate vessels or tissues require high standards in surgeons' skills. This exceptionally high requirement in skills leads to a steep learning curve and lengthy training before the surgeons can perform microsurgical procedures with quality outcomes. The microsurgery robot (MSR), which can improve surgeons' operation skills through various functions, has received extensive research attention in the past three decades. There have been many review papers summarizing the research on MSR for specific surgical specialties. However, an in-depth review of the relevant technologies used in MSR systems is limited in the literature. This review details the technical challenges in microsurgery, and systematically summarizes the key technologies in MSR with a developmental perspective from the basic structural mechanism design, to the perception and human-machine interaction methods, and further to the ability in achieving a certain level of autonomy. By presenting and comparing the methods and technologies in this cutting-edge research, this paper aims to provide readers with a comprehensive understanding of the current state of MSR research and identify potential directions for future development in MSR.
Collapse
Affiliation(s)
- Tiexin Wang
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Haoyu Li
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
| | - Tanhong Pu
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
| | - Liangjing Yang
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Mechanical Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Medical micro- and nanomotors in the body. Acta Pharm Sin B 2023; 13:517-541. [PMID: 36873176 PMCID: PMC9979267 DOI: 10.1016/j.apsb.2022.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Attributed to the miniaturized body size and active mobility, micro- and nanomotors (MNMs) have demonstrated tremendous potential for medical applications. However, from bench to bedside, massive efforts are needed to address critical issues, such as cost-effective fabrication, on-demand integration of multiple functions, biocompatibility, biodegradability, controlled propulsion and in vivo navigation. Herein, we summarize the advances of biomedical MNMs reported in the past two decades, with particular emphasis on the design, fabrication, propulsion, navigation, and the abilities of biological barriers penetration, biosensing, diagnosis, minimally invasive surgery and targeted cargo delivery. Future perspectives and challenges are discussed as well. This review can lay the foundation for the future direction of medical MNMs, pushing one step forward on the road to achieving practical theranostics using MNMs.
Collapse
|
6
|
Iordachita II, de Smet MD, Naus G, Mitsuishi M, Riviere CN. Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:893-908. [PMID: 36588782 PMCID: PMC9799958 DOI: 10.1109/jproc.2022.3169466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intraocular surgery, one of the most challenging discipline of microsurgery, requires sensory and motor skills at the limits of human physiological capabilities combined with tremendously difficult requirements for accuracy and steadiness. Nowadays, robotics combined with advanced imaging has opened conspicuous and significant directions in advancing the field of intraocular microsurgery. Having patient treatment with greater safety and efficiency as the final goal, similar to other medical applications, robotics has a real potential to fundamentally change microsurgery by combining human strengths with computer and sensor-based technology in an information-driven environment. Still in its early stages, robotic assistance for intraocular microsurgery has been accepted with precaution in the operating room and successfully tested in a limited number of clinical trials. However, owing to its demonstrated capabilities including hand tremor reduction, haptic feedback, steadiness, enhanced dexterity, micrometer-scale accuracy, and others, microsurgery robotics has evolved as a very promising trend in advancing retinal surgery. This paper will analyze the advances in retinal robotic microsurgery, its current drawbacks and limitations, as well as the possible new directions to expand retinal microsurgery to techniques currently beyond human boundaries or infeasible without robotics.
Collapse
Affiliation(s)
- Iulian I Iordachita
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Marc D de Smet
- Microinvasive Ocular Surgery Center (MIOS), Lausanne, Switzerland
| | | | - Mamoru Mitsuishi
- Department of Mechanical Engineering, The University of Tokyo, Japan
| | | |
Collapse
|
7
|
Pane S, Faoro G, Sinibaldi E, Iacovacci V, Menciassi A. Ultrasound Acoustic Phase Analysis Enables Robotic Visual-Servoing of Magnetic Microrobots. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2022.3143072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
3D Navigation Control of Untethered Magnetic Microrobot in Centimeter-Scale Workspace Based on Field-of-View Tracking Scheme. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2021.3118205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Wang Q, Yang L, Yu J, Chiu PWY, Zheng YP, Zhang L. Real-Time Magnetic Navigation of a Rotating Colloidal Microswarm Under Ultrasound Guidance. IEEE Trans Biomed Eng 2020; 67:3403-3412. [PMID: 32305888 DOI: 10.1109/tbme.2020.2987045] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Untethered microrobots hold great promise for applications in biomedical field including targeted delivery, biosensing, and microsurgery. A major challenge of using microrobots to perform in vivo tasks is the real-time localization and motion control using medical imaging technologies. Here we report real-time magnetic navigation of a paramagnetic nanoparticle-based microswarm under ultrasound guidance. METHODS A three-axis Helmholtz electromagnetic coil system integrated with an ultrasound imaging system is developed for generation, actuation, and closed-loop control of the microswarm. The magnetite nanoparticle-based microswarm is generated and navigated using rotating magnetic fields. In order to localize the microswarm in real time, the dynamic imaging contrast has been analyzed and exploited in image process to increase the signal-to-noise ratio. Moreover, imaging of the microswarm at different depths are experimentally studied and analyzed, and the minimal dose of nanoparticles for localizing a microswarm at different depths is ex vivo investigated. For real-time navigating the microswarm in a confined environment, a PI control scheme is designed. RESULTS Image differencing-based processing increases the signal-to-noise ratio, and the microswarm can be ex vivo localized at depth of 2.2-7.8 cm. Experimental results show that the microswarm is able to be real-time navigated along a planned path in a channel, and the average steady-state error is 0.27 mm ( ∼ 33.7% of the body length). SIGNIFICANCE The colloidal microswarm is real-time localized and navigated using ultrasound feedback, which shows great potential for biomedical applications that require real-time noninvasive tracking.
Collapse
|
10
|
Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, Medina-Sánchez M, Schmidt OG. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS NANO 2020; 14:10865-10893. [PMID: 32869971 DOI: 10.1021/acsnano.0c05530] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stefano Pane
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Nektarios Koukourakis
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Jürgen Czarske
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, Reichenhainer Strasse 10, 09107 Chemnitz, Germany
- School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
11
|
Vyskočil J, Mayorga-Martinez CC, Jablonská E, Novotný F, Ruml T, Pumera M. Cancer Cells Microsurgery via Asymmetric Bent Surface Au/Ag/Ni Microrobotic Scalpels Through a Transversal Rotating Magnetic Field. ACS NANO 2020; 14:8247-8256. [PMID: 32544324 DOI: 10.1021/acsnano.0c01705] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The actuation of micro/nanomachines by means of a magnetic field is a promising fuel-free way to transport cargo in microscale dimensions. This type of movement has been extensively studied for a variety of micro/nanomachine designs, and a special magnetic field configuration results in a near-surface walking. We developed "walking" micromachines which transversally move in a magnetic field, and we used them as microrobotic scalpels to enter and exit an individual cancer cell and cut a small cellular fragment. In these microscalpels, the center of mass lies approximately in the middle of their length. The microrobotic scalpels show good propulsion efficiency and high step-out frequencies of the magnetic field. Au/Ag/Ni microrobotic scalpels controlled by a transversal rotating magnetic field can enter the cytoplasm of cancer cells and also are able to remove a piece of the cytosol while leaving the cytoplasmic membrane intact in a microsurgery-like manner. We believe that this concept can be further developed for potential biological or medical applications.
Collapse
Affiliation(s)
- Jan Vyskočil
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Eva Jablonská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Filip Novotný
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402 Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno 612 00, Czech Republic
| |
Collapse
|
12
|
Kim D, Lee H, Kwon S, Sung YJ, Song WK, Park S. Bilayer Hydrogel Sheet-Type Intraocular Microrobot for Drug Delivery and Magnetic Nanoparticles Retrieval. Adv Healthc Mater 2020; 9:e2000118. [PMID: 32431072 DOI: 10.1002/adhm.202000118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Indexed: 12/27/2022]
Abstract
By virtue of minimum invasiveness and driving ability using a magnetic field, drug delivery with the aid of a microrobot has an inherent potential for targeted treatment for the eye. The use of microrobots, however, has the limitation of leaving magnetic nanoparticles (MNPs) in the eye that can cause side effects. In this study, a bilayer hydrogel microrobot capable of retrieving MNPs after drug delivery is proposed that overcomes the limitations of existing microrobots. The bilayer hydrogel microrobot is composed of an MNPs layer and a therapeutic layer. Upon applying an alternating magnetic field (AMF) at the target point, the therapeutic layer is dissolved to deliver drug particles, and then the MNPs layer can be retrieved using a magnetic field. The targeting and MNPs retrieval tests validate the drug delivery and MNPs retrieval ability of the microrobot. The ex vivo bovine vitreous and in vitro cell tests demonstrate the potential for the vitreous migration of the microrobot and the therapeutic effect against retinoblastoma Y79 cancer cells. This bilayer hydrogel sheet-type intraocular microrobot provides a new drug delivery paradigm that overcomes the limitations of microrobot by maintaining the advantages of conventional microrobots in delivering drugs to the eye and retrieving MNPs after drug delivery.
Collapse
Affiliation(s)
- Dong‐In Kim
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology Daegu 42988 Republic of Korea
| | - Hyoryong Lee
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology Daegu 42988 Republic of Korea
| | - Su‐Hyun Kwon
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology Daegu 42988 Republic of Korea
| | - Young Je Sung
- Department of OphthalmologyCHA Bundang Medical CenterCHA University College of Medicine Bundang‐gu Seongnam Gyunggido 13496 Republic of Korea
| | - Won Kyung Song
- Department of OphthalmologyCHA Bundang Medical CenterCHA University College of Medicine Bundang‐gu Seongnam Gyunggido 13496 Republic of Korea
| | - Sukho Park
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology Daegu 42988 Republic of Korea
| |
Collapse
|
13
|
Cohn D, Sloutski A, Elyashiv A, Varma VB, Ramanujan R. In Situ Generated Medical Devices. Adv Healthc Mater 2019; 8:e1801066. [PMID: 30828989 DOI: 10.1002/adhm.201801066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Medical devices play a major role in all areas of modern medicine, largely contributing to the success of clinical procedures and to the health of patients worldwide. They span from simple commodity products such as gauzes and catheters, to highly advanced implants, e.g., heart valves and vascular grafts. In situ generated devices are an important family of devices that are formed at their site of clinical function that have distinct advantages. Among them, since they are formed within the body, they only require minimally invasive procedures, avoiding the pain and risks associated with open surgery. These devices also display enhanced conformability to local tissues and can reach sites that otherwise are inaccessible. This review aims at shedding light on the unique features of in situ generated devices and to underscore leading trends in the field, as they are reflected by key developments recently in the field over the last several years. Since the uniqueness of these devices stems from their in situ generation, the way they are formed is crucial. It is because of this fact that in this review, the medical devices are classified depending on whether their in situ generation entails chemical or physical phenomena.
Collapse
Affiliation(s)
- Daniel Cohn
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Aaron Sloutski
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ariel Elyashiv
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Vijaykumar B. Varma
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Raju Ramanujan
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| |
Collapse
|
14
|
Yang S, Martel JN, Lobes LA, Riviere CN. Techniques for robot-aided intraocular surgery using monocular vision. Int J Rob Res 2018; 37:931-952. [PMID: 30739976 DOI: 10.1177/0278364918778352] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents techniques for robot-aided intraocular surgery using monocular vision in order to overcome erroneous stereo reconstruction in an intact eye. We propose a new retinal surface estimation method based on a structured-light approach. A handheld robot known as the Micron enables automatic scanning of a laser probe, creating projected beam patterns on the retinal surface. Geometric analysis of the patterns then allows planar reconstruction of the surface. To realize automated surgery in an intact eye, monocular hybrid visual servoing is accomplished through a scheme that incorporates surface reconstruction and partitioned visual servoing. We investigate the sensitivity of the estimation method according to relevant parameters and also evaluate its performance in both dry and wet conditions. The approach is validated through experiments for automated laser photocoagulation in a realistic eye phantom in vitro. Finally, we present the first demonstration of automated intraocular laser surgery in porcine eyes ex vivo.
Collapse
Affiliation(s)
- Sungwook Yang
- Center for BioMicrosystems, Korea Institute of Science and Technology, Korea
| | - Joseph N Martel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, USA
| | - Louis A Lobes
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, USA
| | | |
Collapse
|
15
|
Closed loop control of microscopic particles incorporating steady streaming and visual feedback. Biomed Microdevices 2018. [PMID: 29524045 DOI: 10.1007/s10544-018-0271-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Automatic manipulation of microscopic particles is very important in biology, especially in new lab-on-chip systems for automatic testing and DNA manipulation. We suggest a particle manipulation system (PMS) based on vibrating piezoelectric beams creating steady streaming flow in a viscous liquid. The flow is nearly unidirectional and it is used to control the position and velocity of the particles in the workspace of the PMS. The particles position in the PMS are controlled by visual feedback. This study presents the manipulation method, the system's model describing its behavior and characterizes experimentally its performance. The PMS is capable moving a 2-200 μm particle in a workspace of 8x8 mm2 with an absolute accuracy of 0.2 μm. The characteristic velocity in 500 cP Si oil, is 20 μm/s using an actuation voltage amplitude of 5 V and can reach 250 μm/s using 15 V respectively. We can also move a constellation of several particles in various sizes without changing the distance between them. The accuracy of the manipulation can be increased by enhancing the amplification of the microscope on the expanse of a smaller workspace field of view.
Collapse
|
16
|
Pieters RS, Tung HW, Nelson BJ. Microrobots for Active Object Manipulation. ADVANCED MECHATRONICS AND MEMS DEVICES II 2017. [DOI: 10.1007/978-3-319-32180-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Ullrich F, Michels S, Lehmann D, Pieters RS, Becker M, Nelson BJ. Assistive Device for Efficient Intravitreal Injections. Ophthalmic Surg Lasers Imaging Retina 2016; 47:752-62. [DOI: 10.3928/23258160-20160808-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/07/2016] [Indexed: 11/20/2022]
|
18
|
Kim S, Lee S, Choi H. Review on Fabrication and Manipulation of Scaffold and Ciliary Microrobots. ACTA ACUST UNITED AC 2016. [DOI: 10.7599/hmr.2016.36.4.235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sangwon Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873, Daegu, South Korea
- DGIST-ETH Microrobot Research Center, DGIST, 711-873, Daegu, South Korea
| | - Seungmin Lee
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873, Daegu, South Korea
- DGIST-ETH Microrobot Research Center, DGIST, 711-873, Daegu, South Korea
| | - Hongsoo Choi
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873, Daegu, South Korea
- DGIST-ETH Microrobot Research Center, DGIST, 711-873, Daegu, South Korea
| |
Collapse
|
19
|
Sliker L, Ciuti G, Rentschler M, Menciassi A. Magnetically driven medical devices: a review. Expert Rev Med Devices 2015; 12:737-52. [PMID: 26295303 DOI: 10.1586/17434440.2015.1080120] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A widely accepted definition of a medical device is an instrument or apparatus that is used to diagnose, prevent or treat disease. Medical devices take a broad range of forms and utilize various methods to operate, such as physical, mechanical or thermal. Of particular interest in this paper are the medical devices that utilize magnetic field sources to operate. The exploitation of magnetic fields to operate or drive medical devices has become increasingly popular due to interesting characteristics of magnetic fields that are not offered by other phenomena, such as mechanical contact, hydrodynamics and thermodynamics. Today, there is a wide range of magnetically driven medical devices purposed for different anatomical regions of the body. A review of these devices is presented and organized into two groups: permanent magnetically driven devices and electromagnetically driven devices. Within each category, the discussion will be further segregated into anatomical regions (e.g., gastrointestinal, ocular, abdominal, thoracic, etc.).
Collapse
Affiliation(s)
- Levin Sliker
- a 1 Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309-0427, USA
| | - Gastone Ciuti
- b 2 The BioRobotics Institute, Scuola Superiore Sant'Anna , 56025 Pontedera, Pisa, Italy
| | - Mark Rentschler
- a 1 Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309-0427, USA
| | - Arianna Menciassi
- b 2 The BioRobotics Institute, Scuola Superiore Sant'Anna , 56025 Pontedera, Pisa, Italy
| |
Collapse
|
20
|
Affiliation(s)
- Hong Wang
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
21
|
Uncalibrated Visual Servo Control of Magnetically Actuated Microrobots in a Fluid Environment. MICROMACHINES 2014. [DOI: 10.3390/mi5040797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Bergeles C, Yang GZ. From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. IEEE Trans Biomed Eng 2013; 61:1565-76. [PMID: 24723622 DOI: 10.1109/tbme.2013.2293815] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Within only a few decades from its initial introduction, the field of surgical robotics has evolved into a dynamic and rapidly growing research area with increasing clinical uptake worldwide. Initially introduced for stereotaxic neurosurgery, surgical robots are now involved in an increasing number of procedures, demonstrating their practical clinical potential while propelling further advances in surgical innovations. Emerging platforms are also able to perform complex interventions through only a single-entry incision, and navigate through natural anatomical pathways in a tethered or wireless fashion. New devices facilitate superhuman dexterity and enable the performance of surgical steps that are otherwise impossible. They also allow seamless integration of microimaging techniques at the cellular level, significantly expanding the capabilities of surgeons. This paper provides an overview of the significant achievements in surgical robotics and identifies the current trends and future research directions of the field in making surgical robots safer, smaller, and smarter.
Collapse
|
23
|
Kim S, Qiu F, Kim S, Ghanbari A, Moon C, Zhang L, Nelson BJ, Choi H. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5863-8. [PMID: 23864519 PMCID: PMC4260689 DOI: 10.1002/adma.201301484] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/28/2013] [Indexed: 05/18/2023]
Abstract
Magnetically manipulated microrobots are demonstrated for targeted cell transportation. Full three-dimensional (3D) porous structures are fabricated with an SU-8 photoresist using a 3D laser lithography system. Nickel and titanium are deposited as a magnetic material and biocompatible material, respectively. The fabricated microrobots are controlled in the fluid by external magnetic fields. Human embryonic kidney 239 (HEK 239) cells are cultivated in the microrobot to show the possibility for targeted cell transportation.
Collapse
Affiliation(s)
- Sangwon Kim
- Robotics Engineering Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST)711-873, Daegu, South Korea
- Brain Science Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST)711-873, Daegu, South Korea
| | - Famin Qiu
- Institute of Robotics and Intelligent Systems, ETH ZurichZurich, CH-8092, Switzerland
| | - Samhwan Kim
- Robotics Engineering Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST)711-873, Daegu, South Korea
- Brain Science Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST)711-873, Daegu, South Korea
| | - Ali Ghanbari
- Robotics Engineering Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST)711-873, Daegu, South Korea
| | - Cheil Moon
- Brain Science Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST)711-873, Daegu, South Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong KongHong Kong SAR, China
| | - Bradley J Nelson
- Robotics Engineering Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST)711-873, Daegu, South Korea
- Institute of Robotics and Intelligent Systems, ETH ZurichZurich, CH-8092, Switzerland
- E-mail: ,
| | - Hongsoo Choi
- Robotics Engineering Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST)711-873, Daegu, South Korea
- E-mail: ,
| |
Collapse
|
24
|
Zhang Z, Long F, Menq CH. Three-Dimensional Visual Servo Control of a Magnetically Propelled Microscopic Bead. IEEE T ROBOT 2013. [DOI: 10.1109/tro.2012.2229671] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Peyer KE, Zhang L, Nelson BJ. Bio-inspired magnetic swimming microrobots for biomedical applications. NANOSCALE 2013; 5:1259-72. [PMID: 23165991 DOI: 10.1039/c2nr32554c] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Microrobots have been proposed for future biomedical applications in which they are able to navigate in viscous fluidic environments. Nature has inspired numerous microrobotic locomotion designs, which are suitable for propulsion generation at low Reynolds numbers. This article reviews the various swimming methods with particular focus on helical propulsion inspired by E. coli bacteria. There are various magnetic actuation methods for biomimetic and non-biomimetic microrobots, such as rotating fields, oscillating fields, or field gradients. They can be categorized into force-driven or torque-driven actuation methods. Both approaches are reviewed and a previous publication has shown that torque-driven actuation scales better to the micro- and nano-scale than force-driven actuation. Finally, the implementation of swarm or multi-agent control is discussed. The use of multiple microrobots may be beneficial for in vivo as well as in vitro applications. Thus, the frequency-dependent behavior of helical microrobots is discussed and preliminary experimental results are presented showing the decoupling of an individual agent within a group of three microrobots.
Collapse
Affiliation(s)
- Kathrin E Peyer
- Institute of Robotics and Intelligent Systems, ETH Zurich, Switzerland
| | | | | |
Collapse
|