1
|
Gionso M, Herlin E, Uva L, Guidi F, Tortoli P, Durando G, Raspagliesi L, Corradino N, Percuoco V, DiMeco F, De Curtis M, Librizzi L, Prada F. Ultrasound guided blood brain barrier opening using a diagnostic probe in a whole brain model. Sci Rep 2025; 15:10674. [PMID: 40148460 PMCID: PMC11950381 DOI: 10.1038/s41598-025-94660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
The blood-brain barrier (BBB) poses a significant challenge to drug delivery to the brain. A promising approach involves low-frequency, low-intensity pulsed ultrasound (US) waves combined with intravenously injected microbubbles (MB) to temporarily and non-invasively open the BBB. However, current technologies cannot easily integrate this procedure with US imaging. Passive cavitation detection, tracing the harmonic emissions of MB during sonication, has been the preferred method for real-time monitoring of US-mediated BBB opening. We used an ultrasound advanced open platform (ULA-OP) to simultaneously perform US-mediated BBB opening and US imaging with a single linear-array probe. In vitro guinea pig brains were perfused with MB and sonicated with different plane-wave transmission patterns. The most effective US pattern was interleaved with B-mode imaging pulses, enabling the direct assessment of the MB distribution during treatment. The extent of BBB permeabilization was assessed by quantifying FITC-albumin extravasation into the brain via confocal microscopy. US-treated hemispheres displayed BBB permeabilization, while control hemispheres did not. B-mode imaging allowed direct evaluation of MB distribution and interaction with the US beam. Therefore, we achieved effective BBB opening and simultaneous MB imaging using the same diagnostic probe, paving the way for US-guided therapeutic ultrasound application in the clinical context.
Collapse
Affiliation(s)
- Matteo Gionso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Acoustic Neuroimaging and Therapy Laboratory (ANTY-Lab), Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133, Milan, Italy
| | - Erica Herlin
- Acoustic Neuroimaging and Therapy Laboratory (ANTY-Lab), Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Laura Uva
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Guidi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Giovanni Durando
- Ultrasound Laboratory, Istituto Nazionale di Ricerca Metrologica I.N.Ri.M., Turin, Italy
| | - Luca Raspagliesi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Acoustic Neuroimaging and Therapy Laboratory (ANTY-Lab), Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133, Milan, Italy
| | - Nicoletta Corradino
- Acoustic Neuroimaging and Therapy Laboratory (ANTY-Lab), Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Veronica Percuoco
- Acoustic Neuroimaging and Therapy Laboratory (ANTY-Lab), Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133, Milan, Italy
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Francesco DiMeco
- Department of Health Sciences, University of Milan, Milan, Italy
- Department of Neurological Surgery, Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133, Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Marco De Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Prada
- Acoustic Neuroimaging and Therapy Laboratory (ANTY-Lab), Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133, Milan, Italy.
- Department of Neurological Surgery, Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133, Milan, Italy.
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA.
- Focused Ultrasound Foundation, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Chinchilla L, Guillermin R, Franceschini E, Savoia AS. Study of the Impact of Probe Steering Capability on the Performance of Off-Axis Measurements of Backscattered Signals. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:251-262. [PMID: 40030739 DOI: 10.1109/tuffc.2024.3519194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
In the field of quantitative ultrasound (QUS), several studies have been conducted to parameterize tissue anisotropy by measuring the angular dependence of the backscatter coefficient (BSC). Early foundational studies utilized a single-element transducer, and more recent ones used ultrasound linear array probes. However, probe features such as directivity and crosstalk can strongly affect both, the transmission of an ultrasound beam and the measurements of the backscattered signals, independent of the imaging strategy used, either the focused beam steering or the plane wave imaging (PWI). In this work, we present a comparative analysis between a capacitive micromachined ultrasonic transducer (CMUT) probe and a commercial piezoelectric probe, in which the BSC is measured using the focused beam steering imaging strategy on isotropic and anisotropic tissue-mimicking phantoms along different insonification angles. The results show how the limited steering capabilities of linear probes can affect the measurement of BSC, and, in general, the anisotropic QUS parameters, bringing into discussion their consideration in the development of experimental strategies for the assessment of tissue anisotropy.
Collapse
|
3
|
Mento F, Perpenti M, Barcellona G, Perrone T, Demi L. Lung Ultrasound Spectroscopy Applied to the Differential Diagnosis of Pulmonary Diseases: An In Vivo Multicenter Clinical Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1217-1232. [PMID: 39236134 DOI: 10.1109/tuffc.2024.3454956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Lung ultrasound (LUS) is an important imaging modality to assess the state of the lung surface. However, current LUS approaches are based on subjective interpretation of imaging artifacts, which results in poor specificity as quantitative evaluation lacks. The latter could be improved by adopting LUS spectroscopy of vertical artifacts. Indeed, parameterizing these artifacts with native frequency, bandwidth, and total intensity ( [Formula: see text]) already showed potentials in differentiating pulmonary fibrosis (PF). In this study, we acquired radio frequency (RF) data from 114 patients. These data (representing the largest LUS RF dataset worldwide) were acquired by utilizing a multifrequency approach, implemented with an ULtrasound Advanced Open Platform (ULA-OP). Convex (CA631) and linear (LA533) probes (Esaote, Florence, Italy) were utilized to acquire RF data at three (2, 3, and 4 MHz), and four (3, 4, 5, and 6 MHz) imaging frequencies. A multifrequency analysis was conducted on vertical artifacts detected in patients having cardiogenic pulmonary edema (CPE), pneumonia, or PF. These artifacts were characterized by the three abovementioned parameters, and their mean values were used to project each patient into a feature space having up to three dimensions. Binary classifiers were used to evaluate the performance of these three mean features in differentiating patients affected by CPE, pneumonia, and PF. Acquisitions of multifrequency data performed with linear probe lead to accuracies up to 85.43% in the differential diagnosis of these diseases (convex probes' maximum accuracy was 74.51%). Moreover, the results showed high potentials of mean [Formula: see text] (by itself or combined with other features) in improving LUS specificity.
Collapse
|
4
|
Mento F, Perini M, Malacarne C, Demi L. Ultrasound multifrequency strategy to estimate the lung surface roughness, in silico and in vitro results. ULTRASONICS 2023; 135:107143. [PMID: 37647701 DOI: 10.1016/j.ultras.2023.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Lung ultrasound (LUS) is an important imaging modality to assess the state of the lung surface. Nevertheless, LUS is limited to the visual evaluation of imaging artifacts, especially the vertical ones. These artifacts are observed in pathologies characterized by a reduction of dimensions of air-spaces (alveoli). In contrast, there exist pathologies, such as chronic obstructive pulmonary disease (COPD), in which an enlargement of air-spaces can occur, which causes the lung surface to behave essentially as a perfect reflector, thus not allowing ultrasound penetration. This characteristic high reflectivity could be exploited to characterize the lung surface. Specifically, air-spaces of different sizes could cause the lung surface to have a different roughness, whose estimation could provide a way to assess the state of the lung surface. In this study, we present a quantitative multifrequency approach aiming at estimating the lung surface's roughness by measuring image intensity variations along the lung surface as a function of frequency. This approach was tested both in silico and in vitro, and it showed promising results. For the in vitro experiments, radiofrequency (RF) data were acquired from a novel experimental model. The results showed consistency between in silico and in vitro experiments.
Collapse
Affiliation(s)
- Federico Mento
- Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Matteo Perini
- Polo Meccatronica (ProM), Via Fortunato Zeni 8, 38068 Rovereto, Italy
| | - Ciro Malacarne
- Polo Meccatronica (ProM), Via Fortunato Zeni 8, 38068 Rovereto, Italy
| | - Libertario Demi
- Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
5
|
Micucci M, Iula A. Recognition Performance Analysis of a Multimodal Biometric System Based on the Fusion of 3D Ultrasound Hand-Geometry and Palmprint. SENSORS (BASEL, SWITZERLAND) 2023; 23:3653. [PMID: 37050711 PMCID: PMC10098567 DOI: 10.3390/s23073653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Multimodal biometric systems are often used in a wide variety of applications where high security is required. Such systems show several merits in terms of universality and recognition rate compared to unimodal systems. Among several acquisition technologies, ultrasound bears great potential in high secure access applications because it allows the acquisition of 3D information about the human body and is able to verify liveness of the sample. In this work, recognition performances of a multimodal system obtained by fusing palmprint and hand-geometry 3D features, which are extracted from the same collected volumetric image, are extensively evaluated. Several fusion techniques based on the weighted score sum rule and on a wide variety of possible combinations of palmprint and hand geometry scores are experimented with. Recognition performances of the various methods are evaluated and compared through verification and identification experiments carried out on a homemade database employed in previous works. Verification results demonstrated that the fusion, in most cases, produces a noticeable improvement compared to unimodal systems: an EER value of 0.06% is achieved in at least five cases against values of 1.18% and 0.63% obtained in the best case for unimodal palmprint and hand geometry, respectively. The analysis also revealed that the best fusion results do not include any combination between the best scores of unimodal characteristics. Identification experiments, carried out for the methods that provided the best verification results, consistently demonstrated an identification rate of 100%, against 98% and 91% obtained in the best case for unimodal palmprint and hand geometry, respectively.
Collapse
|
6
|
Cigier A, Varray F, Garcia D. SIMUS: An open-source simulator for medical ultrasound imaging. Part II: Comparison with four simulators. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106774. [PMID: 35398580 DOI: 10.1016/j.cmpb.2022.106774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Computational ultrasound imaging has become a well-established methodology in the ultrasound community. In the accompanying paper (part I), we described a new ultrasound simulator (SIMUS) for MATLAB, which belongs to the Matlab UltraSound Toolbox (MUST). SIMUS can generate pressure fields and radiofrequency RF signals for simulations in medical ultrasound imaging. It works in a harmonic domain and uses far-field and paraxial linear equations. METHODS In this article (part II), we illustrate how SIMUS compares with other ultrasound simulators (Field II, k-Wave, FOCUS, and Verasonics) for a homogeneous medium. We designed different transmit sequences (focused, planar, and diverging wavefronts) and calculated the corresponding 2-D and 3-D (with elevation focusing) RMS pressure fields. RESULTS SIMUS produced pressure fields similar to those of Field II, FOCUS, and k-Wave. The acoustic fields provided by the Verasonics simulator were significantly different from those of SIMUS and k-Wave, although the overall appearance remained consistent. CONCLUSION Our simulations tend to demonstrate that SIMUS is reliable and can be used for realistic medical ultrasound simulations.
Collapse
Affiliation(s)
- Amanda Cigier
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France
| | - François Varray
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France.
| | - Damien Garcia
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France.
| |
Collapse
|
7
|
Xie HW, Guo H, Zhou GQ, Nguyen NQ, Prager RW. Improved ultrasound image quality with pixel-based beamforming using a Wiener-filter and a SNR-dependent coherence factor. ULTRASONICS 2022; 119:106594. [PMID: 34628298 DOI: 10.1016/j.ultras.2021.106594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Pixel-based beamforming generates focused data by assuming that the waveforms received on a linear transducer array are composed of spherical pulses. It does not take into account the spatiotemporal spread in the data from the length of the excitation pulse or from the transfer functions of the transducer elements. As a result, these beamformers primarily have impacts on lateral, rather than axial, resolution. This paper proposes an efficient method to improve the axial resolution for pixel-based beamforming. We extend our field pattern analysis and show that the received waveforms should be passed through a Wiener filter before being used in the coherent pixel-based beamformer. This filter is designed based on signals echoed from a single scatterer at the transmit focus. The beamformer output is then combined with a coherence factor, that is adaptive to the signal-to-noise ratio, to improve the image contrast and suppress artifacts that have arisen during the filtering process. We validate the proposed method and compare it with other beamforming strategies using a series of experiments, including simulation, phantom and in vivo studies. It is shown to offer significant improvements in axial resolution and contrast over coherent pixel-based beamforming, as well as other spatial filters derived from synthetic aperture imaging. The method also demonstrates robustness to modeling errors in the experimental data. Overall, the imaging results show that the proposed approach has the potential to be of value in clinical applications.
Collapse
Affiliation(s)
- Hui-Wen Xie
- The School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao Guo
- The School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Guang-Quan Zhou
- The School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Nghia Q Nguyen
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK; Cambridge University - Nanjing Centre of Technology and Innovation, Nanjing, China
| | - Richard W Prager
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK; Cambridge University - Nanjing Centre of Technology and Innovation, Nanjing, China
| |
Collapse
|
8
|
Open-Source FPGA Coprocessor for the Doppler Emulation of Moving Fluids. MICROMACHINES 2021; 12:mi12121549. [PMID: 34945399 PMCID: PMC8705441 DOI: 10.3390/mi12121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Embedded systems are nowadays employed in a wide range of application, and their capability to implement calculation-intensive algorithms is growing quickly and constantly. This result is obtained by the exploitation of powerful embedded processors that are often connected to coprocessors optimized for a particular application. This work presents an open-source coprocessor dedicated to the real-time generation of a synthetic signal that mimics the echoes produced by a moving fluid when investigated by ultrasounds. The coprocessor is implemented in a Field Programmable Gate Array (FPGA) device and integrated in an embedded system. The system can replace the complex and inaccurate flow-rigs employed in laboratorial tests of Doppler ultrasound systems and methods. This paper details the coprocessor and its standard interfaces, and shows how it can be integrated in the wider architecture of an embedded system. Experiments showed its capability to emulate a fluid flowing in a pipe when investigated by an echographic Doppler system.
Collapse
|
9
|
Mento F, Demi L. Dependence of lung ultrasound vertical artifacts on frequency, bandwidth, focus and angle of incidence: An in vitro study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4075. [PMID: 34972265 DOI: 10.1121/10.0007482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Lung ultrasound (LUS) is nowadays widely adopted by clinicians to evaluate the state of the lung surface. However, being mainly based on the evaluation of vertical artifacts, whose genesis is still unclear, LUS is affected by qualitative and subjective analyses. Even though semi-quantitative approaches supported by computer aided methods can reduce subjectivity, they do not consider the dependence of vertical artifacts on imaging parameters, and could not be classified as fully quantitative. They are indeed mainly based on scoring LUS images, reconstructed with standard clinical scanners, through the sole evaluation of visual patterns, whose visualization depends on imaging parameters. To develop quantitative techniques is therefore fundamental to understand which parameters influence the vertical artifacts' intensity. In this study, we quantitatively analyzed the dependence of nine vertical artifacts observed in a thorax phantom on four parameters, i.e., center frequency, focal point, bandwidth, and angle of incidence. The results showed how the vertical artifacts are significantly affected by these four parameters, and confirm that the center frequency is the most impactful parameter in artifacts' characterization. These parameters should hence be carefully considered when developing a LUS quantitative approach.
Collapse
Affiliation(s)
- Federico Mento
- Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Libertario Demi
- Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| |
Collapse
|
10
|
Portable Ultrasound Research System for Use in Automated Bladder Monitoring with Machine-Learning-Based Segmentation. SENSORS 2021; 21:s21196481. [PMID: 34640807 PMCID: PMC8512052 DOI: 10.3390/s21196481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
We developed a new mobile ultrasound device for long-term and automated bladder monitoring without user interaction consisting of 32 transmit and receive electronics as well as a 32-element phased array 3 MHz transducer. The device architecture is based on data digitization and rapid transfer to a consumer electronics device (e.g., a tablet) for signal reconstruction (e.g., by means of plane wave compounding algorithms) and further image processing. All reconstruction algorithms are implemented in the GPU, allowing real-time reconstruction and imaging. The system and the beamforming algorithms were evaluated with respect to the imaging performance on standard sonographical phantoms (CIRS multipurpose ultrasound phantom) by analyzing the resolution, the SNR and the CNR. Furthermore, ML-based segmentation algorithms were developed and assessed with respect to their ability to reliably segment human bladders with different filling levels. A corresponding CNN was trained with 253 B-mode data sets and 20 B-mode images were evaluated. The quantitative and qualitative results of the bladder segmentation are presented and compared to the ground truth obtained by manual segmentation.
Collapse
|
11
|
Guidi F, Demi L, Tortoli P. Experimental and simulation study of harmonic components generated by plane and focused waves. ULTRASONICS 2021; 116:106504. [PMID: 34216989 DOI: 10.1016/j.ultras.2021.106504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Although there is increasing interest in the use of plane waves (PW) in high-frame-rate imaging, not much experimental data is available about their behavior in terms of nonlinear propagation. This paper presents a detailed study of fundamental and harmonic components of the ultrasound beam associated to PW transmission from a linear array. Simulations and hydrophone measurements of PW propagation in water were performed and compared to the results obtained for focused waves (FWs) at various levels of peak negative pressure (PNP). Experimental results confirm that, at comparable PNP, the amplitudes of the harmonics reached by PWs are always higher, over extended regions, than those achieved with FW. For example, at MI = 0.2 the PW second harmonic turns out to be 9 dB higher at 25 mm depth (i.e. in the focal region), and 20 dB higher at 40 mm depth. Simulations additionally show that when ultrasound waves propagate through blood or muscle, the situation is in general reversed but, at low MI, the second harmonic amplitude can still be higher in PW than in FW. Furthermore, it is shown that increasing the array aperture size yields higher harmonic growth in PW compared to FW.
Collapse
Affiliation(s)
- Francesco Guidi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Libertario Demi
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Starkhammar J, Reinhold I, Erlöv T, Sandsten M. Scaled reassigned spectrograms applied to linear transducer signals. JASA EXPRESS LETTERS 2021; 1:052001. [PMID: 36154114 DOI: 10.1121/10.0005000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study evaluates the applicability of scaled reassigned spectrograms (ReSTS) on ultrasound radio frequency data obtained with a clinical linear array ultrasound transducer. The ReSTS's ability to resolve axially closely spaced objects in a phantom is compared to the classical cross-correlation method with respect to the ability to resolve closely spaced objects as individual reflectors using ultrasound pulses with different lengths. The results show that the axial resolution achieved with the ReSTS was superior to the cross-correlation method when the reflected pulses from two objects overlap. A novel B-mode imaging method, facilitating higher image resolution for distinct reflectors, is proposed.
Collapse
Affiliation(s)
- Josefin Starkhammar
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Isabella Reinhold
- Mathematical Statistics, Centre for Mathematical Sciences, Lund University, Lund, Sweden , , ,
| | - Tobias Erlöv
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Maria Sandsten
- Mathematical Statistics, Centre for Mathematical Sciences, Lund University, Lund, Sweden , , ,
| |
Collapse
|
13
|
Iula A. Biometric recognition through 3D ultrasound hand geometry. ULTRASONICS 2021; 111:106326. [PMID: 33348233 DOI: 10.1016/j.ultras.2020.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Biometric recognition systems based on ultrasonic images have several advantages over other technologies, including the capability of capturing 3D images and detecting liveness. In this work, a recognition system based on hand geometry achieved through ultrasound images is proposed and experimentally evaluated. 3D images of human hand are acquired by performing parallel mechanical scans with a commercial ultrasound probe. Several 2D images are then extracted at increasing under-skin depths and, from each of them, up to 26 distances among key points of the hand are defined and computed to achieve a 2D template. A 3D template is then obtained by combining in several ways 2D templates of two or more images. A preliminary evaluation of the system is achieved by carrying out verification experiments on a home-made database. Results have shown a good recognition accuracy: the Equal Error Rate was 1.15% when a single 2D image is used and improved to 0.98% by using the 3D template. The possibility to upgrade the proposed system to a multimodal system, by extracting from the same volume other features like palmprint and hand veins, as well as possible improvements are finally discussed.
Collapse
|
14
|
Wang S, Noh Y, Brown J, Roujol S, Li Y, Wang S, Housden R, Ester MC, Al-Hamadani M, Rajani R, Rhode K. Development and Testing of an Ultrasound-Compatible Cardiac Phantom for Interventional Procedure Simulation Using Direct Three-Dimensional Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2020; 7:269-278. [PMID: 33409338 PMCID: PMC7774877 DOI: 10.1089/3dp.2019.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Organ phantoms are widely used for evaluating medical technologies, training clinical practitioners, as well as surgical planning. In the context of cardiovascular disease, a patient-specific cardiac phantom can play an important role for interventional cardiology procedures. However, phantoms with complicated structures are difficult to fabricate by conventional manufacturing methods. The emergence of three-dimensional (3D) printing with soft materials provides the opportunity to produce phantoms with complex geometries and realistic properties. In this work, the aim was to explore the use of a direct 3D printing technique to produce multimodal imaging cardiac phantoms and to test the physical properties of the new materials used, namely the Poro-Lay series and TangoPlus. The cardiac phantoms were first modeled using real data segmented from a patient chest computer tomography (CT) scan and then printed with the novel materials. They were then tested quantitatively in terms of stiffness and ultrasound (US) acoustic values and qualitatively with US, CT, and magnetic resonance imaging systems. From the stiffness measurements, Lay-fomm 40 had the closest Young's modulus to real myocardium with an error of 29-54%, while TangoPlus had the largest difference. From the US acoustics measurements, Lay-fomm 40 also demonstrated the closest soft tissue-mimicking properties with both the smallest attenuation and impedance differences. Furthermore, the imaging results show that the phantoms are compatible with multiple imaging modalities and thus have potential to be used for interventional procedure simulation and testing of novel interventional devices. In conclusion, direct 3D printing with Poro-Lay and TangoPlus is a promising method for manufacture of multimodal imaging phantoms with complicated structures, especially for soft patient-specific phantoms.
Collapse
Affiliation(s)
- Shu Wang
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
- Address correspondence to: Shu Wang, School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Yohan Noh
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Jemma Brown
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Ye Li
- British Heart Foundation Centre, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Shuangyi Wang
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Richard Housden
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Mar Casajuana Ester
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Maleha Al-Hamadani
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Ronak Rajani
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Kawal Rhode
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Mento F, Soldati G, Prediletto R, Demi M, Demi L. Quantitative Lung Ultrasound Spectroscopy Applied to the Diagnosis of Pulmonary Fibrosis: The First Clinical Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2265-2273. [PMID: 32746228 DOI: 10.1109/tuffc.2020.3012289] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The application of ultrasound imaging to the diagnosis of lung diseases is nowadays receiving growing interest. However, lung ultrasound (LUS) is mainly limited to the analysis of imaging artifacts, such as B-lines, which correlate with a wide variety of diseases. Therefore, the results of LUS investigations remain qualitative and subjective, and specificity is obviously suboptimal. Focusing on the development of a quantitative method dedicated to the lung, in this work, we present the first clinical results obtained with quantitative LUS spectroscopy when applied to the differentiation of pulmonary fibrosis. A previously developed specific multifrequency ultrasound imaging technique was utilized to acquire ultrasound images from 26 selected patients. The multifrequency imaging technique was implemented on the ULtrasound Advanced Open Platform (ULA-OP) platform and an LA533 (Esaote, Florence, Italy) linear-array probe was utilized. RF data obtained at different imaging frequencies (3, 4, 5, and 6 MHz) were acquired and processed in order to characterize B-lines based on their frequency content. In particular, B-line native frequencies (the frequency at which a B-line exhibits the highest intensity) and bandwidth (the range of frequencies over which a B-line shows intensities within -6 dB from its highest intensity), as well as B-line intensity, were analyzed. The results show how the analysis of these features allows (in this group of patients) the differentiation of fibrosis with a sensitivity and specificity equal to 92% and 92%, respectively. These promising results strongly motivate toward the extension of the clinical study, aiming at analyzing a larger cohort of patients and including a broader range of pathologies.
Collapse
|
16
|
Enhanced axillary assessment using intradermally injected microbubbles and contrast-enhanced ultrasound (CEUS) before neoadjuvant systemic therapy (NACT) identifies axillary disease missed by conventional B-mode ultrasound that may be clinically relevant. Breast Cancer Res Treat 2020; 185:413-422. [PMID: 33029707 DOI: 10.1007/s10549-020-05956-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The purpose of this study is to measure pre-treatment diagnostic yield of malignant lymph nodes (LN) using contrast-enhanced ultrasound (CEUS) in addition to B-mode axillary ultrasound and compare clinicopathological features, response to NACT and long-term outcomes of patients with malignant LN detected with B-mode ultrasound versus CEUS. METHODS Between August 2009 and October 2016, NACT patients were identified from a prospective database. Follow-up data were collected until May 2019. RESULTS 288 consecutive NACT patients were identified; 77 were excluded, 110 had malignant LN identified by B-mode ultrasound (Group A) and 101 patients with negative B-mode axillary ultrasound had CEUS with biopsy of sentinel lymph nodes (SLN). In two cases CEUS failed. Malignant SLN were identified in 35/99 (35%) of B-mode ultrasound-negative cases (Group B). Patients in Group A were similar to those in Group B in age, mean diagnostic tumour size, grade and oestrogen receptor status. More Group A patients had a ductal phenotype. In the breast, 34 (31%) Group A patients and 8 (23%) Group B patients achieved a pathological complete response (PCR). In the axilla, 41 (37%) and 13 (37%) Groups A and B patients, respectively, had LN PCR. The systemic relapse rate was not statistically different (5% and 16% for Groups A and B, respectively). CONCLUSIONS Enhanced assessment with CEUS before NACT identifies patients with axillary metastases missed by conventional B-mode ultrasound. Without CEUS, 22 (63%) of cases in Group B (negative B-mode ultrasound) may have been erroneously classed as progressive disease by surgical SLN excision after NACT.
Collapse
|
17
|
Mento F, Demi L. On the influence of imaging parameters on lung ultrasound B-line artifacts, in vitro study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:975. [PMID: 32873037 DOI: 10.1121/10.0001797] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/06/2020] [Indexed: 05/18/2023]
Abstract
The clinical relevance of lung ultrasonography (LUS) has been rapidly growing since the 1990s. However, LUS is mainly based on the evaluation of visual artifacts (also called B-lines), leading to subjective and qualitative diagnoses. The formation of B-lines remains unknown and, hence, researchers need to study their origin to allow clinicians to quantitatively evaluate the state of lungs. This paper investigates an ambiguity about the formation of B-lines, leading to the formulation of two main hypotheses. The first hypothesis states that the visualization of these artifacts is linked only to the dimension of the emitted beam, whereas the second associates their appearance to specific resonance phenomena. To verify these hypotheses, the frequency spectrum of B-lines was studied by using dedicated lung-phantoms. A research programmable platform connected to an LA533 linear array probe was exploited both to implement a multifrequency approach and to acquire raw radio frequency data. The strength of each artifact was measured as a function of frequency, focal point, and transmitting aperture by means of the artifact total intensity. The results show that the main parameter that influences the visualization of B-lines is the frequency rather than the focal point or the number of transmitting elements.
Collapse
Affiliation(s)
- Federico Mento
- Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Libertario Demi
- Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| |
Collapse
|
18
|
Supponen O, Upadhyay A, Lum J, Guidi F, Murray T, Vos HJ, Tortoli P, Borden M. The effect of size range on ultrasound-induced translations in microbubble populations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3236. [PMID: 32486824 PMCID: PMC7205472 DOI: 10.1121/10.0001172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Microbubble translations driven by ultrasound-induced radiation forces can be beneficial for applications in ultrasound molecular imaging and drug delivery. Here, the effect of size range in microbubble populations on their translations is investigated experimentally and theoretically. The displacements within five distinct size-isolated microbubble populations are driven by a standard ultrasound-imaging probe at frequencies ranging from 3 to 7 MHz, and measured using the multi-gate spectral Doppler approach. Peak microbubble displacements, reaching up to 10 μm per pulse, are found to describe transient phenomena from the resonant proportion of each bubble population. The overall trend of the statistical behavior of the bubble displacements, quantified by the total number of identified displacements, reveals significant differences between the bubble populations as a function of the transmission frequency. A good agreement is found between the experiments and theory that includes a model parameter fit, which is further supported by separate measurements of individual microbubbles to characterize the viscoelasticity of their stabilizing lipid shell. These findings may help to tune the microbubble size distribution and ultrasound transmission parameters to optimize the radiation-force translations. They also demonstrate a simple technique to characterize the microbubble shell viscosity, the fitted model parameter, from freely floating microbubble populations using a standard ultrasound-imaging probe.
Collapse
Affiliation(s)
- Outi Supponen
- Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Awaneesh Upadhyay
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| | - Jordan Lum
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| | - Francesco Guidi
- Department of Information Engineering, University of Florence, Via di S. Marta 3, 50139 Florence, Italy
| | - Todd Murray
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| | - Hendrik J. Vos
- Department of Biomedical Engineering, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, Via di S. Marta 3, 50139 Florence, Italy
| | - Mark Borden
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| |
Collapse
|
19
|
Kim P, Song JH, Song TK. A new frequency domain passive acoustic mapping method using passive Hilbert beamforming to reduce the computational complexity of fast Fourier transform. ULTRASONICS 2020; 102:106030. [PMID: 31785584 DOI: 10.1016/j.ultras.2019.106030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Passive acoustic mapping (PAM) is the current state-of-the-art imaging tool for monitoring cavitation activity during focused ultrasound therapy such as blood-brain barrier opening. However, PAM incurs huge computational complexity. To address this issue, frequency-domain PAM (FD-PAM) was proposed. Nevertheless, FD-PAM still requires a large number of fast Fourier transforms (FFTs) to produce the frequency components utilized for cavitation monitoring with PAM. Hence, in this paper, we proposes a frequency domain PAM method using passive Hilbert beamforming (PHB-PAM), which can significantly reduce the number of input samples for FFT by down-sampling the analytic signal of the received RF samples at each channel at a rate equal to the bandwidth of the frequency components of interest. The experimental results show that the proposed PHB-PAM provides comparable image quality to that of FD-PAM (correlation coefficient > 0.98). Additionally, the study experimentally verifies that the pre-processing block for generating the decimated analytic signal and FFT in PHB-PAM can be realized using lesser logic resources than FFT in FD-PAM when implemented in an FPGA. Especially, with 128-fold decimation, PHB-PAM reduces the amount of LUTs and DSP slices to implement the pre-processing block by 72.16% and 53.4%, respectively, compared to those of FD-PAM, which allows the 64-channel implementation of the pre-processing block in a low-cost single FPGA. Finally, a hardware-efficient architecture for the pre-processing block of PHB-PAM is described, which can be implemented by replacing the two lowpass filters of an off-the-shelf analog front-end component for ultrasound imaging with a pair of band-pass filters. If PHB-PAM is realized using such a component, it can truly minimize the computational complexity of FD-PAM.
Collapse
Affiliation(s)
- Pilsu Kim
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jae Hee Song
- Queensland Brain Institute, University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia.
| | - Tai-Kyong Song
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
20
|
Azizian Kalkhoran M, Varray F, Stuart Savoia A, Vray D. Sparse hand-held probe for optoacoustic ultrasound volumetric imaging: an experimental proof-of-concept study. OPTICS LETTERS 2020; 45:885-888. [PMID: 32058496 DOI: 10.1364/ol.384002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
We present an experimental proof-of-concept study on the performance of a sparse segmented annular array for optoacoustic imaging. A capacitive micromachined ultrasonic transducer was equipped with a negatively focused acoustic lens and scanned in an annular fashion to exploit the performance of the sparse array geometry proposed in our recent numerical studies [Biomed. Opt. Express10, 1545 (2019)BOEICL2156-708510.1364/BOE.10.001545; J. Biomed. Opt.23, 025004 (2018)JBOPFO1083-366810.1117/1.JBO.23.2.025004]. A dedicated water tank was made using a 3D printer for light delivery and mounting the sample. A phantom experiment was carried out to showcase the possibility of full-field optoacoustic ultrasound (OPUS) imaging and confirm the earlier numerical results. This proof of concept opens the door towards a prototype of OPUS imaging for (pre-) clinical studies.
Collapse
|
21
|
Yu J, Yoon H, Khalifa YM, Emelianov SY. Design of a Volumetric Imaging Sequence Using a Vantage-256 Ultrasound Research Platform Multiplexed With a 1024-Element Fully Sampled Matrix Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:248-257. [PMID: 31545718 PMCID: PMC7008949 DOI: 10.1109/tuffc.2019.2942557] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ultrasound imaging using a matrix array allows real-time multi-planar volumetric imaging. To enhance image quality, the matrix array should provide fast volumetric ultrasound imaging with spatially consistent focusing in the lateral and elevational directions. However, because of the significantly increased data size, dealing with massive and continuous data acquisition is a significant challenge. We have designed an imaging acquisition sequence that handles volumetric data efficiently using a single 256-channel Verasonics ultrasound research platform multiplexed with a 1024-element matrix array. The developed sequence has been applied for building an ultrasonic pupilometer. Our results demonstrate the capability of the developed approach for structural visualization of an ex vivo porcine eye and the temporal response of the modeled eye pupil with moving iris at the volume rate of 30 Hz. Our study provides a fundamental ground for researchers to establish their own volumetric ultrasound imaging platform and could stimulate the development of new volumetric ultrasound approaches and applications.
Collapse
|
22
|
Guidi F, Supponen O, Upadhyay A, Vos HJ, Borden MA, Tortoli P. Microbubble Radiation Force-Induced Translation in Plane-Wave Versus Focused Transmission Modes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1856-1865. [PMID: 31449011 PMCID: PMC6900931 DOI: 10.1109/tuffc.2019.2937158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the primary radiation force, microbubble displacement has been observed previously in the focal region of single-element and array ultrasound probes. This effect has been harnessed to increase the contact between the microbubbles and targeted endothelium for drug delivery and ultrasound molecular imaging. In this study, microbubble displacements associated with plane-wave (PW) transmission are thoroughly investigated and compared to those obtained in focused-wave (FW) transmission over a range of pulse repetition frequencies, burst lengths (BLs), peak negative pressures, and transmission frequencies. In PW mode, the displacements, depending upon the experimental conditions, are in some cases consistently higher (e.g., by 28%, when the longest BL was used at PRF = 4 kHz), and the axial displacements are spatially more uniform compared to FW mode. Statistical analysis on the measured displacements reveals a slightly different frequency dependence of statistical quantities compared to transient peak microbubble displacements, which may suggest the need to consider the size range within the tested microbubble population.
Collapse
Affiliation(s)
- Francesco Guidi
- Department of Information Engineering, University of Florence, Italy
| | - Outi Supponen
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Awaneesh Upadhyay
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Hendrik J. Vos
- Biomedical Engineering Thorax Center, Erasmus MC Rotterdam, The Netherlands
| | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, Italy
| |
Collapse
|
23
|
Experimental Validation of a Reliable Palmprint Recognition System Based on 2D Ultrasound Images. ELECTRONICS 2019. [DOI: 10.3390/electronics8121393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ultrasound has been trialed in biometric recognition systems for many years, and at present different types of ultrasound fingerprint readers are being produced and integrated in portable devices. An important merit of the ultrasound is its ability to image the internal structure of the hand, which can guarantee improved recognition rates and resistance to spoofing attacks. In addition, ambient noise like changes of illumination, humidity, or temperature, as well as oil or ink stains on the skin do not affect the ultrasound image. In this work, a palmprint recognition system based on ultrasound images is proposed and experimentally validated. The system uses a gel pad to obtain acoustic coupling between the ultrasound probe and the user’s hand. The collected volumetric image is processed to extract 2D palmprints at various under-skin depths. Features are extracted from one of these 2D palmprints using a line-based procedure. Recognition performances of the proposed system were evaluated by performing both verification and identification experiments on a home-made database containing 281 samples collected from 32 different volunteers. An equal error rate of 0.38% and an identification rate of 100% were achieved. These results are very satisfactory, even if obtained with a relatively small database. A discussion on the causes of bad acquisitions is also presented, and a possible solution to further optimize the acquisition system is suggested.
Collapse
|
24
|
Ultrasound Systems for Biometric Recognition. SENSORS 2019; 19:s19102317. [PMID: 31137504 PMCID: PMC6566381 DOI: 10.3390/s19102317] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 02/05/2023]
Abstract
Biometric recognition systems are finding applications in more and more civilian fields because they proved to be reliable and accurate. Among the other technologies, ultrasound has the main merit of acquiring 3D images, which allows it to provide more distinctive features and gives it a high resistance to spoof attacks. This work reviews main research activities devoted to the study and development of ultrasound sensors and systems for biometric recognition purposes. Several transducer technologies and different ultrasound techniques have been experimented on for imaging biometric characteristics like fingerprints, hand vein pattern, palmprint, and hand geometry. In the paper, basic concepts on ultrasound imaging techniques and technologies are briefly recalled and, subsequently, research studies are classified according to the kind of technique used for collecting the ultrasound image. Overall, the overview demonstrates that ultrasound may compete with other technologies in the expanding market of biometrics, as the different commercial fingerprint sensors integrated in portable electronic devices like smartphones or tablets demonstrate.
Collapse
|
25
|
Diagnosing and Managing the Malignant Axilla in Breast Cancer. CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-0299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Zhao F, Luo J. Diverging wave compounding with spatio-temporal encoding using orthogonal Golay pairs for high frame rate imaging. ULTRASONICS 2018; 89:155-165. [PMID: 29807304 DOI: 10.1016/j.ultras.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/06/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Golay coded excitation for diverging wave compounding (DWC) has been demonstrated to increase the signal-to-noise ratio (SNR) and contrast for high frame rate cardiac imaging. However, the complementary codes need to be transmitted in two consecutive firings for decoding, which reduces the frame rate by 2 folds. This paper proposes an orthogonal Golay pairs coded (OGPs-coded) DWC sequence to overcome this problem, which implements spatio-temporal encoding for DWC. Two diverging waves (DWs) at different steering angles coded by an orthogonal Golay pair are transmitted simultaneously, thus compensating the frame rate reduction caused by transmissions of complementary codes. The two DWs can be separated based on the orthogonality of Golay pairs. To test the feasibility of the proposed sequence, we performed simulations of point targets and tissue phantoms in both static and moving states. Compared with non-coded DWC at the same frame rate, OGPs-coded DWC obtains comparable resolution, SNR gains of 7.5-10 dB and contrast gains of 3-5 dB. The OGPs-coded DWC sequence was also tested experimentally on a tissue-mimicking phantom. Compared with non-coded DWC, OGPs-coded DWC achieves improvements in the SNR (3-6 dB) and contrast (1-2 dB). Preliminary in vivo results show brighter myocardium and larger penetration depth with the proposed method. The proposed OGPs-coded DWC sequence has potential for high frame rate and high quality cardiac imaging.
Collapse
Affiliation(s)
- Feifei Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Couture O, Hingot V, Heiles B, Muleki-Seya P, Tanter M. Ultrasound Localization Microscopy and Super-Resolution: A State of the Art. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1304-1320. [PMID: 29994673 DOI: 10.1109/tuffc.2018.2850811] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes.
Collapse
|
28
|
Boni E, Yu ACH, Freear S, Jensen JA, Tortoli P. Ultrasound Open Platforms for Next-Generation Imaging Technique Development. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1078-1092. [PMID: 29993364 PMCID: PMC6057541 DOI: 10.1109/tuffc.2018.2844560] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 05/22/2023]
Abstract
Open platform (OP) ultrasound systems are aimed primarily at the research community. They have been at the forefront of the development of synthetic aperture, plane wave, shear wave elastography, and vector flow imaging. Such platforms are driven by a need for broad flexibility of parameters that are normally preset or fixed within clinical scanners. OP ultrasound scanners are defined to have three key features including customization of the transmit waveform, access to the prebeamformed receive data, and the ability to implement real-time imaging. In this paper, a formative discussion is given on the development of OPs from both the research community and the commercial sector. Both software- and hardware-based architectures are considered, and their specifications are compared in terms of resources and programmability. Software-based platforms capable of real-time beamforming generally make use of scalable graphics processing unit architectures, whereas a common feature of hardware-based platforms is the use of field-programmable gate array and digital signal processor devices to provide additional on-board processing capacity. OPs with extended number of channels (>256) are also discussed in relation to their role in supporting 3-D imaging technique development. With the increasing maturity of OP ultrasound scanners, the pace of advancement in ultrasound imaging algorithms is poised to be accelerated.
Collapse
|
29
|
Benane YM, Bujoreanu D, Lavarello RJ, Varray F, Escoffre JM, Novell A, Cachard C, Basset O. Experimental Implementation of a Pulse Compression Technique Using Coherent Plane-Wave Compounding. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1025-1036. [PMID: 29856720 DOI: 10.1109/tuffc.2018.2820747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The axial resolution of an ultrasound imaging system is inversely proportional to the bandwidth of the emitted signal. When conventional pulsing (CP) is used, the impulse response of the transducer and the excitation signal determine together the shape of the emitted pulse and its bandwidth. A way to increase the ultrasound image resolution is to increase the transducer's limited passband. The resolution enhancement compression (REC) is a coding technique that boosts the signal energy in the transition frequency bands, where the energy transduction of the ultrasound probe is less efficient. Consequently, image quality metrics including axial resolution, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) can be improved. In this paper, the objective is to combine REC with coherent plane-wave compounding (CPWC) in order to achieve better image quality at an ultrafast acquisition rate. Promising results are obtained from both wire and cyst phantoms using an excitation signal designed to provide a 54% increase in bandwidth over the one obtained with a broadband pulse excitation at -6 dB. The experimental bandwidth measured from the backscattered echoes was improved by 49% for the wire phantom, when using the CPWC-REC technique compared to CPWC-CP. Furthermore, the axial resolution as derived from the modulation transfer function of the envelope of the wire target was enhanced by 29%. The CNR and SNR were improved up to 9 and up to 4 dB, respectively, in the cyst phantom. These results reveal that CPWC-REC is able to achieve higher spatial resolution, compared to CPWC-CP, with better SNR and CNR. Moreover, experimental results show that an effective implementation on a research scanner of REC using plane-wave imaging is possible. Consistent in vivo acquisition results on rabbit are presented and discussed.
Collapse
|
30
|
Iterative 2D Tissue Motion Tracking in Ultrafast Ultrasound Imaging. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Chakraborty B, Liu Z, Heyde B, Luo J, D'hooge J. 2D myocardial deformation imaging based on RF-based non-rigid image registration. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1037-1047. [PMID: 29993654 DOI: 10.1109/tuffc.2018.2821902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myocardial deformation imaging is a well-established echocardiographic technique for the assessment of myocardial function. Although some solutions make use of speckle tracking of the reconstructed B-mode images, others apply block matching on the underlying radio-frequency (RF) data in order to increase sensitivity to small inter-frame motion and deformation. However, for both approaches, lateral motion estimation remains a challenge due to the relatively poor lateral resolution of the ultrasound image in combination with the lack of phase information in this direction. Hereto, non-rigid image registration (NRIR) of B-mode images has previously been proposed as an attractive solution. However, hereby, the advantages of RF-based tracking were lost. The aim of this study was therefore to develop an NRIR motion estimator adopted to RF data sets. The accuracy of this estimator was quantified using synthetic data and was contrasted against a state of the art block matching solution. The results show that RF-based NRIR outperforms BM in terms of tracking accuracy particularly, as hypothesized, in the lateral direction. Finally, this RF-based NRIR algorithm was applied clinically, illustrating its ability to estimate both in-plane velocity components in-vivo.
Collapse
|
32
|
Riding the Plane Wave: Considerations for In Vivo Study Designs Employing High Frame Rate Ultrasound. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Fast Volumetric Ultrasound B-Mode and Doppler Imaging with a New High-Channels Density Platform for Advanced 4D Cardiac Imaging/Therapy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020200] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Zurakhov G, Tong L, Ramalli A, Tortoli P, Drhooge J, Friedman Z, Adam D. Multi Line Transmit Beamforming Combined With Adaptive Apodization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:535-545. [PMID: 29994746 DOI: 10.1109/tuffc.2018.2794219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Increased frame rate is of high importance to cardiac diagnostic imaging as it enables examination of fast events during the cardiac cycle and improved quantitative analysis, such as speckle tracking. Multi-line transmission (MLT) is one of the methods proposed for this purpose. In contrast to the single-line transmission (SLT), where one focused beam is sent in each direction, MLT beams are simultaneously transmitted and focused in several (2,4,6..) directions improving the framerate accordingly. The simultaneous transmission is known to cause cross-talk artifacts due to the interference between the main-lobes and the side-lobes of the transmitted and received beams. Usually, the artifacts are attenuated using a Tukey window apodization, but the lateral resolution is degraded. Several other methods, such as minimum variance beamforming and filtered delay multiply and sum beamforming were proposed to deal with these artifacts.The assumption examined in this study is that a receive apodization can be chosen adaptively from a number of apodization windows in order to provide better artifact rejection and to increase the spatial resolution. The entire study was performed on experimental MLT dataset including wire and tissue mimicking phantoms, as well as in vivo cardiac data. The results demonstrate that application of a predefined apodization bank outperforms Tukey windowing alone, in terms of both resolution and receive crosstalk artifact rejection. Moreover, the achieved spatial resolution is superior to the non-apodized SLT, as measured from wire phantoms. The proposed method can also be combined with wider transmit beams, suitable for multi line acquisition.
Collapse
|
35
|
Marzo A, Corkett T, Drinkwater BW. Ultraino: An Open Phased-Array System for Narrowband Airborne Ultrasound Transmission. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:102-111. [PMID: 29283352 DOI: 10.1109/tuffc.2017.2769399] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Modern ultrasonic phased-array controllers are electronic systems capable of delaying the transmitted or received signals of multiple transducers. Configurable transmit-receive array systems, capable of electronic steering and shaping of the beam in near real-time, are available commercially, for example, for medical imaging. However, emerging applications, such as ultrasonic haptics, parametric audio, or ultrasonic levitation, require only a small subset of the capabilities provided by the existing controllers. To meet this need, we present Ultraino, a modular, inexpensive, and open platform that provides hardware, software, and example applications specifically aimed at controlling the transmission of narrowband airborne ultrasound. Our system is composed of software, driver boards, and arrays that enable users to quickly and efficiently perform research in various emerging applications. The software can be used to define array geometries, simulate the acoustic field in real time, and control the connected driver boards. The driver board design is based on an Arduino Mega and can control 64 channels with a square wave of up to 17 Vpp and /5 phase resolution. Multiple boards can be chained together to increase the number of channels. The 40-kHz arrays with flat and spherical geometries are demonstrated for parametric audio generation, acoustic levitation, and haptic feedback.
Collapse
|
36
|
Christensen-Jeffries K, Brown J, Aljabar P, Tang M, Dunsby C, Eckersley RJ. 3-D In Vitro Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1478-1486. [PMID: 28767367 DOI: 10.1109/tuffc.2017.2731664] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Standard clinical ultrasound (US) imaging frequencies are unable to resolve microvascular structures due to the fundamental diffraction limit of US waves. Recent demonstrations of 2-D super-resolution both in vitro and in vivo have demonstrated that fine vascular structures can be visualized using acoustic single bubble localization. Visualization of more complex and disordered 3-D vasculature, such as that of a tumor, requires an acquisition strategy which can additionally localize bubbles in the elevational plane with high precision in order to generate super-resolution in all three dimensions. Furthermore, a particular challenge lies in the need to provide this level of visualization with minimal acquisition time. In this paper, we develop a fast, coherent US imaging tool for microbubble localization in 3-D using a pair of US transducers positioned at 90°. This allowed detection of point scatterer signals in 3-D with average precisions equal to [Formula: see text] in axial and elevational planes, and [Formula: see text] in the lateral plane, compared to the diffraction limited point spread function full-widths at half-maximum of 488, 1188, and [Formula: see text] of the original imaging system with a single transducer. Visualization and velocity mapping of 3-D in vitro structures was demonstrated far beyond the diffraction limit. The capability to measure the complete flow pattern of blood vessels associated with disease at depth would ultimately enable analysis of in vivo microvascular morphology, blood flow dynamics, and occlusions resulting from disease states.
Collapse
|
37
|
Albinsson J, Ahlgren ÅR, Jansson T, Cinthio M. A combination of parabolic and grid slope interpolation for 2D tissue displacement estimations. Med Biol Eng Comput 2017; 55:1327-1338. [PMID: 27837312 PMCID: PMC5544786 DOI: 10.1007/s11517-016-1593-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022]
Abstract
Parabolic sub-sample interpolation for 2D block-matching motion estimation is computationally efficient. However, it is well known that the parabolic interpolation gives a biased motion estimate for displacements greater than |y.2| samples (y = 0, 1, …). Grid slope sub-sample interpolation is less biased, but it shows large variability for displacements close to y.0. We therefore propose to combine these sub-sample methods into one method (GS15PI) using a threshold to determine when to use which method. The proposed method was evaluated on simulated, phantom, and in vivo ultrasound cine loops and was compared to three sub-sample interpolation methods. On average, GS15PI reduced the absolute sub-sample estimation errors in the simulated and phantom cine loops by 14, 8, and 24% compared to sub-sample interpolation of the image, parabolic sub-sample interpolation, and grid slope sub-sample interpolation, respectively. The limited in vivo evaluation of estimations of the longitudinal movement of the common carotid artery using parabolic and grid slope sub-sample interpolation and GS15PI resulted in coefficient of variation (CV) values of 6.9, 7.5, and 6.8%, respectively. The proposed method is computationally efficient and has low bias and variance. The method is another step toward a fast and reliable method for clinical investigations of longitudinal movement of the arterial wall.
Collapse
Affiliation(s)
- John Albinsson
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Ole Römers väg 3, 221 00, Lund, Sweden.
| | - Åsa Rydén Ahlgren
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Tomas Jansson
- Clinical Sciences Lund, Biomedical Engineering, Lund University, Lund, Sweden
- Medical Services, Skåne University Hospital, Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Ole Römers väg 3, 221 00, Lund, Sweden
| |
Collapse
|
38
|
Perrot V, Meier S, Bel-Brunon A, Walter-Le Berre H, Bou-Saïd B, Chaudet P, Detti V, Vray D, Liebgott H. Biofidelic Abdominal Aorta Phantom: Cross-Over Preliminary Study Using UltraSound and Digital Image Stereo-Correlation. Ing Rech Biomed 2017. [DOI: 10.1016/j.irbm.2017.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Nguyen NQ, Prager RW, Insana MF. Improvements to ultrasonic beamformer design and implementation derived from the task-based analytical framework. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4427. [PMID: 28679242 DOI: 10.1121/1.4985187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The task-based framework, previously developed for beamformer comparison [Nguyen, Prager, and Insana, J. Acoust. Soc. Am. 140, 1048-1059 (2016)], is extended to design a new beamformer with potential applications in breast cancer diagnosis. The beamformer is based on a better approximation of the Bayesian strategy. It is a combination of the Wiener-filtered beamformer and an iterative process that adapts the generated image to specific features of the object. Through numerical studies, the new method is shown to outperform other beamformers drawn from the framework, but at an increase in computational cost. It requires a preprocessing step where the scattering field is segmented into regions with distinct statistical properties. Segmentation errors become a major limitation to the beamformer performance. All the beamformers under investigation are tested using data obtained from an instrumented ultrasound machine. They are implemented using a new time delay calculation, recently developed in the pixel-based beamforming studies presented here, which helps to overcome the challenge posed by the shift-variant nature of the imaging system. The efficacy of each beamformer is evaluated based on the quality of generated images in the context of the task-based framework. The in vitro results confirm the conclusions drawn from the simulations.
Collapse
Affiliation(s)
- Nghia Q Nguyen
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Richard W Prager
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Michael F Insana
- Department of Bioengineering and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
40
|
Nguyen NQ, Prager RW. Ultrasound Pixel-Based Beamforming With Phase Alignments of Focused Beams. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:937-946. [PMID: 28358679 DOI: 10.1109/tuffc.2017.2685198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We previously developed unified pixel-based (PB) beamforming to generate high-resolution sonograms, based on field pattern analysis. In this framework, we found that the transmit waveshape away from the focus could be characterized by two spherical pulses. These correspond to the maximal and minimal distances from the imaging point to the active aperture. The beamformer uses this model to select the highest energy signals from backscattered data. A spatiotemporal interpolation formula is used to provide a smooth transition in regions near the focal depth where there is no dominant reflected pulse. In this paper, we show that the unified PB approach is less robust at lower center frequencies. The interpolated data is suboptimal for a longer transmit waveshape. As a result, the spatial resolution at the focal depth is lower than that in other regions. By further exploring the field pattern, we propose a beamformer that is more robust to variations in beamwidth. The new method, named coherent PB beamforming, aligns and compounds the pulse data directly in the transition regions. In simulation and phantom studies, the coherent PB approach is shown to outperform the unified PB approach in spatial resolution. It helps regain optimal resolution at the focal depth while still maintaining good image quality in other regions. We also demonstrate the new method on in vivo data where its improvements over the unified PB method are demonstrated on scanned objects with a more complicated structure.
Collapse
|
41
|
Assef AA, Maia JM, Tavares Costa E. Initial experiments of a 128-channel FPGA and PC-based ultrasound imaging system for teaching and research activities. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5172-5175. [PMID: 28269430 DOI: 10.1109/embc.2016.7591892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although widely employed in medical diagnostic applications, most of the available commercial ultrasound (US) scanners do not always fit the needs of research users. Access to raw US data, portability, flexibility and advanced user control are essential features to explore alternative biomedical signal and imaging processing algorithms. In this paper, we present the initial results of a reconfigurable, cost-effective and modular 128-channel FPGA and PC-based US system, specifically designed for teaching and medical imaging research. The proposed system exploits the advantages of the MD2131 (Microchip Technology Inc.) beamformer source driver to generate arbitrary waveforms and the analog front-end AFE5805 (Texas Instruments Inc.) to obtain the maximum flexibility and wide data access to the various US data streams. Two applications involving plane wave excitation and delay-and-sum (DAS) beamforming are discussed. The results show that the open platform can help biomedical students and researchers to develop and evaluate different imaging strategies for medical US imaging and nondestructive testing (NDT) techniques, among other applications.
Collapse
|
42
|
Matrone G, Savoia AS, Caliano G, Magenes G. Depth-of-field enhancement in Filtered-Delay Multiply and Sum beamformed images using Synthetic Aperture Focusing. ULTRASONICS 2017; 75:216-225. [PMID: 28011340 DOI: 10.1016/j.ultras.2016.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 11/22/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
The Synthetic Aperture Focusing (SAF) technique makes it possible to achieve a higher and more uniform quality of ultrasound images throughout depth, as if both transmit and receive dynamic focusing were applied. In this work we combine a particular implementation of SAF, called Synthetic Transmit Aperture (STA) technique, in which a single element in turn transmits and all the array elements receive the ultrasound wave, with the Filtered-Delay Multiply and Sum (F-DMAS) non-linear beamforming algorithm that we presented in a previous paper. We show that using F-DMAS, which is based on a measure of backscattered signal spatial correlation, B-mode images have a higher contrast resolution but suffer from a loss of brightness away from the transmit focus, when a classical scan with receive-only dynamic focusing is performed. On the other hand, when synthetic transmit focusing is achieved by implementing STA, such a loss is compensated for and a higher depth of field is obtained, as signal coherence improves. A drawback of SAF/STA however is the reduced signal-to-noise ratio, due to single-element transmission; in the paper we also analyze how this influences F-DMAS images. Finally, a preliminary investigation on the use of the classical monostatic SAF technique with F-DMAS beamforming is also carried out to evaluate its potential performances.
Collapse
Affiliation(s)
- Giulia Matrone
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy.
| | | | - Giosuè Caliano
- Dipartimento di Ingegneria, Università degli Studi Roma Tre, Rome, Italy
| | - Giovanni Magenes
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
43
|
Zhao F, Tong L, He Q, Luo J. Coded excitation for diverging wave cardiac imaging: a feasibility study. Phys Med Biol 2017; 62:1565-1584. [PMID: 28076337 DOI: 10.1088/1361-6560/aa58d7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diverging wave (DW) based cardiac imaging has gained increasing interest in recent years given its capacity to achieve ultrahigh frame rate. However, the signal-to-noise ratio (SNR), contrast, and penetration depth of the resulting B-mode images are typically low as DWs spread energy over a large region. Coded excitation is known to be capable of increasing the SNR and penetration for ultrasound imaging. The aim of this study was therefore to test the feasibility of applying coded excitation in DW imaging to improve the corresponding SNR, contrast and penetration depth. To this end, two types of codes, i.e. a linear frequency modulated chirp code and a set of complementary Golay codes were tested in three different DW imaging schemes, i.e. 1 angle DW transmit without compounding, 3 and 5 angles DW transmits with coherent compounding. The performances (SNR, contrast ratio (CR), contrast-to-noise ratio (CNR), and penetration) of different imaging schemes were investigated by means of simulations and in vitro experiments. As for benchmark, corresponding DW imaging schemes with regular pulsed excitation as well as the conventional focused imaging scheme were also included. The results showed that the SNR was improved by about 10 dB using coded excitation while the penetration depth was increased by 2.5 cm and 1.8 cm using chirp code and Golay codes, respectively. The CNR and CR gains varied with the depth for different DW schemes using coded excitations. Specifically, for non-compounded DW imaging schemes, the gain in the CR was about 5 dB and 3 dB while the gain in the CNR was about 4.5 dB and 3.5 dB at larger depths using chirp code and Golay codes, respectively. For compounded imaging schemes, using coded excitation, the gain in the penetration and contrast were relatively smaller compared to non-compounded ones. Overall, these findings indicated the feasibility of coded excitation in improving the image quality of DW imaging. Preliminary in vivo cardiac images of a healthy volunteer were presented finally, and higher SNR and deeper penetration depth can be achieved by coded schemes.
Collapse
Affiliation(s)
- Feifei Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Nguyen NQ, Prager RW. Minimum Variance Approaches to Ultrasound Pixel-Based Beamforming. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:374-384. [PMID: 27654321 DOI: 10.1109/tmi.2016.2609889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We analyze the principles underlying minimum variance distortionless response (MVDR) beamforming in order to integrate it into a pixel-based algorithm. There is a challenge posed by the low echo signal-to-noise ratio (eSNR) when calculating beamformer contributions at pixels far away from the beam centreline. Together with the well-known scarcity of samples for covariance matrix estimation, this reduces the beamformer performance and degrades the image quality. To address this challenge, we implement the MVDR algorithm in two different ways. First, we develop the conventional minimum variance pixel-based (MVPB) beamformer that performs the MVDR after the pixel-based superposition step. This involves a combination of methods in the literature, extended over multiple transmits to increase the eSNR. Then we propose the coherent MVPB beamformer, where the MVDR is applied to data within individual transmits. Based on pressure field analysis, we develop new algorithms to improve the data alignment and matrix estimation, and hence overcome the low-eSNR issue. The methods are demonstrated on data acquired with an ultrasound open platform. The results show the coherent MVPB beamformer substantially outperforms the conventional MVPB in a series of experiments, including phantom and in vivo studies. Compared to the unified pixel-based beamformer, the newest delay-and-sum algorithm in [1], the coherent MVPB performs well on regions that conform to the diffuse scattering assumptions on which the minimum variance principles are based. It produces less good results for parts of the image that are dominated by specular reflections.
Collapse
|
45
|
Caliano G, Matrone G, Savoia AS. Biasing of Capacitive Micromachined Ultrasonic Transducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:402-413. [PMID: 27810808 DOI: 10.1109/tuffc.2016.2623221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays. Being capacitive transducers, CMUTs require a high bias voltage to be properly operated in pulse-echo imaging applications. The typical bias supply residual ripple of high-quality high-voltage (HV) generators is in the millivolt range, which is comparable with the amplitude of the received echo signals, and it is particularly difficult to minimize. The aim of this paper is to analyze the classical CMUT biasing circuits, highlighting the features of each one, and to propose two novel HV generator architectures optimized for CMUT biasing applications. The first circuit proposed is an ultralow-residual ripple (<5 [Formula: see text]) HV generator that uses an extremely stable sinusoidal power oscillator topology. The second circuit employs a commercially available integrated step-up converter characterized by a particularly efficient switching topology. The circuit is used to bias the CMUT by charging a buffer capacitor synchronously with the pulsing sequence, thus reducing the impact of the switching noise on the received echo signals. The small area of the circuit (about 1.5 cm2) makes it possible to generate the bias voltage inside the probe, very close to the CMUT, making the proposed solution attractive for portable applications. Measurements and experiments are shown to demonstrate the effectiveness of the new approaches presented.
Collapse
|
46
|
Sassaroli E, Scorza A, Crake C, Sciuto SA, Park MA. Breast Ultrasound Technology and Performance Evaluation of Ultrasound Equipment: B-Mode. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:192-205. [PMID: 27831870 DOI: 10.1109/tuffc.2016.2619622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrasound (US) has become increasingly important in imaging and image-guided interventional procedures. In order to ensure that the imaging equipment performs to the highest level achievable and thus provides reliable clinical results, a number of quality control (QC) methods have been developed. Such QC is increasingly required by accrediting agencies and professional organizations; however, these requirements typically do not include detailed procedures for how the tests should be performed. In this paper, a detailed overview of QC methods for general and breast US imaging using computer-based objective methods is described. The application of QC is then discussed within the context of a common clinical application (US-guided needle biopsy) as well as for research applications, where QC may not be mandated, and thus is rarely discussed. The implementation of these methods will help in finding early stage equipment faults and in optimizing image quality, which could lead to better detection and classification of suspicious findings in clinical applications, as well as improving the robustness of research studies.
Collapse
|
47
|
Jensen JA, Nikolov SI, Yu ACH, Garcia D. Ultrasound Vector Flow Imaging-Part II: Parallel Systems. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1722-1732. [PMID: 27824556 DOI: 10.1109/tuffc.2016.2598180] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper gives a review of the current state-of-the-art in ultrasound parallel acquisition systems for flow imaging using spherical and plane waves emissions. The imaging methods are explained along with the advantages of using these very fast and sensitive velocity estimators. These experimental systems are capable of acquiring thousands of images per second for fast moving flow as well as yielding the estimates of low velocity flow. These emerging techniques allow the vector flow systems to assess highly complex flow with transitory vortices and moving tissue, and they can also be used in functional ultrasound imaging for studying brain function in animals. This paper explains the underlying acquisition and estimation methods for fast 2-D and 3-D velocity imaging and gives a number of examples. Future challenges and the potentials of parallel acquisition systems for flow imaging are also discussed.
Collapse
|
48
|
Matrone G, Savoia AS, Caliano G, Magenes G. Ultrasound Synthetic Aperture Focusing with the Delay Multiply and sum beamforming algorithm. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:137-40. [PMID: 26736219 DOI: 10.1109/embc.2015.7318319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Delay Multiply and Sum (DMAS) beamforming algorithm was originally conceived for microwave imaging of breast cancer. In a previous work, we demonstrated that, by properly modifying and improving the algorithm processing steps, DMAS can be successfully applied to ultrasound signals for B-mode image formation and that it outperforms standard Delay and Sum (DAS) beamforming in terms of contrast resolution. As previously pointed out, however, DMAS-beamformed B-mode images, in which fixed and dynamic focusing are applied respectively during transmit and receive operations, show an intensity drop away from the transmit focal depth compared to DAS images. This could be due to the fact that DMAS beamforming is based on a measure of backscattered signal coherence, which reaches its maximum only at the transmit focus, where signals are perfectly realigned. The preliminary results presented in this work show that, by employing Synthetic Aperture Focusing (SAF), which allows to achieve dynamic focusing both on transmission and reception, this intensity loss is compensated, as DAS and DMAS images have almost the same maximum amplitude level at all depths.
Collapse
|
49
|
Erlöv T, Jansson T, Persson HW, Cinthio M. Scatterer size estimation using the center frequency assessed from ultrasound time domain data. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2352. [PMID: 27794324 DOI: 10.1121/1.4964107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Scatterer size estimation is useful when characterizing tissue using ultrasound. In all previous studies on scatterer size, the estimations are performed in the frequency domain and are thus subjected to a trade off in time-frequency resolution. This study focused on the feasibility of estimating scatterer size in the time domain using only the ultrasound center frequency, assuming a Gaussian-shaped pulse. A model for frequency normalization was derived and the frequency-dependent attenuation was compensated. Five phantoms with well-defined sizes of spherical glass beads were made and scanned with two different linear array transducers with variable center frequencies. A strong correlation (r = 0.99, p < 10-19) between the backscattered center frequency and the product between the wave number and scatterer radius was demonstrated. On average the scatterer diameter was underestimated by 6% ± 24%. These results suggest that estimation of scatterer size is possible using only the center frequency assessed in the time domain.
Collapse
Affiliation(s)
- Tobias Erlöv
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Ole Römers väg 3, SE-223 63 Lund, Sweden
| | - Tomas Jansson
- Department of Clinical Sciences Lund, Biomedical Engineering, Lund University, Lasarettsgatan 37, SE-221 85 Lund, Sweden
| | - Hans W Persson
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Ole Römers väg 3, SE-223 63 Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Ole Römers väg 3, SE-223 63 Lund, Sweden
| |
Collapse
|
50
|
Nguyen NQ, Prager RW, Insana MF. A task-based analytical framework for ultrasonic beamformer comparison. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1048. [PMID: 27586736 DOI: 10.1121/1.4960607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A task-based approach is employed to develop an analytical framework for ultrasound beamformer design and evaluation. In this approach, a Bayesian ideal-observer provides an idealized starting point and a way to measure information loss in practical beamformer designs. Different approximations of this ideal strategy are shown to lead to popular beamformers in the literature, including the matched filter, minimum variance (MV), and Wiener filter (WF) beamformers. Analysis of the approximations indicates that the WF beamformer should outperform the MV approach, especially in low echo signal-to-noise conditions. The beamformers are applied to five typical tasks from the BIRADS lexicon. Their performance is evaluated based on ability to discriminate idealized malignant and benign features. The numerical results show the advantages of the WF over the MV technique in general; although performance varies predictably in some contrast-limited tasks because of the model modifications required for the MV algorithm to avoid ill-conditioning.
Collapse
Affiliation(s)
- Nghia Q Nguyen
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Richard W Prager
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Michael F Insana
- Department of Bioengineering and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|