1
|
Kalayeh K, Fowlkes JB, Yeras S, Chen A, Daignault-Newton S, Schultz WW, Sack BS. A Comparative Study of Commercially Available Ultrasound Contrast Agents for Sub-harmonic-Aided Pressure Estimation (SHAPE) in a Bladder Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1494-1505. [PMID: 39054243 DOI: 10.1016/j.ultrasmedbio.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The goal of this study was to evaluate the performance of different commercial ultrasound contrast microbubbles (MBs) when measuring bladder phantom pressure with sub-harmonic-aided pressure estimation (SHAPE) methodology. We hypothesized that SHAPE performance is dependent on MB formulation. This study aimed to advance the SHAPE application for bladder pressure measurements in humans. METHODS Using a previously designed and built bladder phantom, we tested four different commercial agents: Definity, Lumason, Sonazoid and Optison. A standard clinical cystometrogram (CMG) system was used to infuse a MB-saline mixture into the bladder phantom to measure pressure. Ultrasound imaging was performed using the GE Healthcare LOGIQ E10 scanner. RESULTS All agents showed a predicted inverse linear relationship between change in pressure and SHAPE signal. However, they differ from each other in terms of stability, linear correlation, sensitivity to pressure and error. Generally, Definity and Lumason showed the highest performance during the SHAPE-based bladder phantom pressure assessments. CONCLUSION Our results show that the SHAPE signal decreases as bladder phantom pressures increases, regardless of the agent or CMG phase, suggesting the possibility of using SHAPE for measuring bladder pressure without a catheter. However, the efficacy of SHAPE in measuring pressure varies by MB formulation. These observations support using Lumason and Definity in a human subject feasibility study as we advance toward a catheter-free solution for measuring voiding bladder pressure via SHAPE.
Collapse
Affiliation(s)
- Kourosh Kalayeh
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sophia Yeras
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Amy Chen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - William W Schultz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Bryan S Sack
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Zhang L, Dong YF, Chen Y, Li XG, Wang YH, Wang Y, Ge ZT, Wang X, Cai S, Yang X, Zhu QL, Li JC. Impact of Microbubble Degradation and Flow Velocity on Subharmonic-aided Pressure Estimation (SHAPE): An Experimental Investigation. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1020-1027. [PMID: 38594125 DOI: 10.1016/j.ultrasmedbio.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE This study aimed to investigate the impact of microbubble degradation and flow velocity on Sub-Harmonic Aided Pressure Estimation (SHAPE), and to explore the correlation between subharmonic amplitude and pressure as a single factor. METHODS We develop an open-loop vascular phantom platform system and utilize a commercial ultrasound machine and microbubbles for subharmonic imaging. Subharmonic amplitude was measured continuously at constant pressure and flow velocity to assess the impact of microbubble degradation. Flow velocity was varied within a range of 4-14 cm/s at constant pressure to investigate its relationship to subharmonic amplitude. Furthermore, pressure was varied within a range of 10-110 mm Hg at constant flow velocity to assess its isolated effect on subharmonic amplitude. RESULTS Under constant pressure and flow velocity, subharmonic amplitude exhibited a continuous decrease at an average rate of 0.221 dB/min, signifying ongoing microbubble degradation during the experimental procedures. Subharmonic amplitude demonstrated a positive correlation with flow velocity, with a variation ratio of 0.423 dB/(cm/s). Under controlled conditions of microbubble degradation and flow velocity, a strong negative linear correlation was observed between pressure and subharmonic amplitude across different Mechanical Index (MI) settings (all R2 > 0.90). The sensitivity of SHAPE was determined to be 0.025 dB/mmHg at an MI of 0.04. CONCLUSION The assessment of SHAPE sensitivity is affected by microbubble degradation and flow velocity. Excluding the aforementioned influencing factors, a strong linear negative correlation between pressure and subharmonic amplitude was still evident, albeit with a sensitivity coefficient lower than previously reported values.
Collapse
Affiliation(s)
- Li Zhang
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi-Fan Dong
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yao Chen
- Department of Ultrasound, GE Healthcare Medical System (China), Shanghai, China
| | - Xiao-Gang Li
- Biobank Facility, National Infrastructures for Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ya-Hong Wang
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ying Wang
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhi-Tong Ge
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sheng Cai
- Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao Yang
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qing-Li Zhu
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jian-Chu Li
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Azami RH, Forsberg F, Eisenbrey JR, Sarkar K. Acoustic response and ambient pressure sensitivity characterization of SonoVue for noninvasive pressure estimation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2636-2645. [PMID: 38629883 PMCID: PMC11026112 DOI: 10.1121/10.0025690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
Subharmonic aided pressure estimation (SHAPE) is a noninvasive pressure measurement technique based on the pressure dependent subharmonic signal from contrast microbubbles. Here, SonoVue microbubble with a sulfur hexafluoride (SF6) core, was investigated for use in SHAPE. The study uses excitations of 25-700 kPa peak negative pressure (PNP) and 3 MHz frequency over eight pressurization cycles between atmospheric pressure and overpressures, ranging from 0 to 25 kPa (0 to 186 mm Hg). The SonoVue subharmonic response was characterized into two types. Unlike other microbubbles, SonoVue showed significant subharmonic signals at low excitations (PNPs, 25-400 kPa), denoted here as type I subharmonic. It linearly decreased with increasing overpressure (-0.52 dB/kPa at 100 kPa PNP). However, over multiple pressurization-depressurization cycles, type I subharmonic changed; its value at atmospheric pressure decreased over multiple cycles, and at later cycles, it recorded an increase in amplitude with overpressure (highest, +13 dB at 50 kPa PNP and 10 kPa overpressure). The subharmonic at higher excitations (PNP > 400 kPa), denoted here as type II subharmonic, showed a consistent decrease with the ambient pressure increase with strongest sensitivity of -0.4 dB/kPa at 500 kPa PNP.
Collapse
Affiliation(s)
- Roozbeh H Azami
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
4
|
Qiao X, Zhang R, Yu J, Yan Y, Bouakaz A, Su X, Liu J, Zong Y, Wan M. Noninvasive assessment of pressure distribution and fractional flow in middle cerebral artery using microbubbles and plane wave in vitro. ULTRASONICS 2024; 138:107244. [PMID: 38237398 DOI: 10.1016/j.ultras.2024.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2024]
Abstract
Fractional flow has been proposed for quantifying the degree of functional stenosis in cerebral arteries. Herein, subharmonic aided pressure estimation (SHAPE) combined with plane wave (PW) transmission was employed to noninvasively estimate the pressure distribution and fractional flow in the middle cerebral artery (MCA) in vitro. Consequently, the effects of incident sound pressure (peak negative pressures of 86-653 kPa), pulse repetition frequency (PRF), number of pulses, and blood flow rate on the subharmonic pressure relationship were investigated. The radio frequency data were stored and beamformed offline, and the subharmonic amplitude over a 0.4 MHz bandwidth was extracted using a 12-cycle PW at 4 MHz. The optimal incident sound pressure was 217 kPa without skull (sensitivity = 0.09 dB/mmHg; r2 = 0.997) and 410 kPa with skull (median sensitivity = 0.06 dB/mmHg; median r2 = 0.981). The optimal PRF was 500 Hz, as this value affords the highest sensitivity (0.09 dB/mmHg; r2 = 0.976) and temporal resolution. In addition, the blood flow rate exhibited a lesser effect on the subharmonic pressure relationship in our experimental setup. Using the optimized parameters, the blood pressure distribution and fractional flow (FFs) were measured. As such, the FFs value was in high agreement with the value measured using the pressure sensor (FFm). The mean ± standard deviations of the FF difference (FFm - FFs) were 0.03 ± 0.06 without skull and 0.01 ± 0.05 with skull.
Collapse
Affiliation(s)
- Xiaoyang Qiao
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Ruiyan Zhang
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Jianjun Yu
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Yadi Yan
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Xiao Su
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Jiacheng Liu
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China
| | - Yujin Zong
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China.
| | - Mingxi Wan
- Xi'an Jiaotong University, College of Life Science and Technology, Xi'an, China.
| |
Collapse
|
5
|
Esposito C, Machado P, McDonald ME, Savage MP, Fischman D, Mehrotra P, Cohen IS, Ruggiero N, Walinsky P, Vishnevsky A, Dickie K, Davis M, Forsberg F, Dave JK. Evaluation of Intracardiac Pressures Using Subharmonic-aided Pressure Estimation with Sonazoid Microbubbles. Radiol Cardiothorac Imaging 2024; 6:e230153. [PMID: 38358329 PMCID: PMC10912883 DOI: 10.1148/ryct.230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Purpose To investigate if the right ventricular (RV) systolic and left ventricular (LV) diastolic pressures can be obtained noninvasively using the subharmonic-aided pressure estimation (SHAPE) technique with Sonazoid microbubbles. Materials and Methods Individuals scheduled for a left and/or right heart catheterization were prospectively enrolled in this institutional review board-approved clinical trial from 2017 to 2020. A standard-of-care catheterization procedure was performed by advancing fluid-filled pressure catheters into the LV and aorta (n = 25) or RV (n = 22), and solid-state high-fidelity pressure catheters into the LV and aorta in a subset of participants (n = 18). Study participants received an infusion of Sonazoid microbubbles (GE HealthCare), and SHAPE data were acquired using a validated interface developed on a SonixTablet (BK Medical) US scanner, synchronously with the pressure catheter data. A conversion factor, derived using cuff-based pressure measurements with a SphygmoCor XCEL PWA (ATCOR) and subharmonic signal from the aorta, was used to convert the subharmonic signal into pressure values. Errors between the pressure measurements obtained using the SHAPE technique and pressure catheter were compared. Results The mean errors in pressure measurements obtained with the SHAPE technique relative to those of the fluid-filled pressure catheter were 1.6 mm Hg ± 1.5 [SD] (P = .85), 8.4 mm Hg ± 6.2 (P = .04), and 7.4 mm Hg ± 5.7 (P = .09) for RV systolic, LV minimum diastolic, and LV end-diastolic pressures, respectively. Relative to the measurements with the solid-state high-fidelity pressure catheter, the mean errors in LV minimum diastolic and LV end-diastolic pressures were 7.2 mm Hg ± 4.5 and 6.8 mm Hg ± 3.3 (P ≥ .44), respectively. Conclusion These results indicate that SHAPE with Sonazoid may have the potential to provide clinically relevant RV systolic and LV diastolic pressures. Keywords: Ultrasound-Contrast, Cardiac, Aorta, Left Ventricle, Right Ventricle ClinicalTrials.gov registration no.: NCT03245255 © RSNA, 2024.
Collapse
Affiliation(s)
- Cara Esposito
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Priscilla Machado
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Maureen E. McDonald
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Michael P. Savage
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - David Fischman
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Praveen Mehrotra
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Ira S. Cohen
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Nicholas Ruggiero
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Paul Walinsky
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Alec Vishnevsky
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Kristopher Dickie
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Marguerite Davis
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Flemming Forsberg
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| | - Jaydev K. Dave
- From the Departments of Radiology (C.E., P.M., F.F., J.K.D.), Medical
Imaging and Radiation Sciences (M.E.M.), and Medicine (M.P.S., D.F., P.M.,
I.S.C., N.R., P.W., A.V., M.D.), Thomas Jefferson University, Philadelphia, Pa;
Clarius Mobile Health, Vancouver, Canada (K.D.); and Department of Radiology,
Mayo Clinic, Rochester, Minn (J.K.D)
| |
Collapse
|
6
|
Azami RH, Forsberg F, Eisenbrey JR, Sarkar K. Ambient Pressure Sensitivity of the Subharmonic Response of Coated Microbubbles: Effects of Acoustic Excitation Parameters. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1550-1560. [PMID: 37100673 PMCID: PMC10306329 DOI: 10.1016/j.ultrasmedbio.2023.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE The sensitivity of the acoustic response of microbubbles, specifically a strong correlation between their subharmonic response and the ambient pressure, has motivated development of a non-invasive subharmonic-aided pressure estimation (SHAPE) method. However, this correlation has previously been found to vary depending on the microbubble type, the acoustic excitation and the hydrostatic pressure range. In this study, the ambient pressure sensitivity of microbubble response was investigated. METHODS The fundamental, subharmonic, second harmonic and ultraharmonic responses from an in-house lipid-coated microbubble were measured for excitations with peak negative pressures (PNPs) of 50-700 kPa and frequencies of 2, 3 and 4 MHz in the ambient overpressure range 0-25 kPa (0-187 mmHg) in an in vitro setup. RESULTS The subharmonic response typically has three stages-occurrence, growth and saturation-with increasing excitation PNP. We find distinct decreasing and increasing variations of the subharmonic signal with overpressure that are closely related to the threshold of subharmonic generation in a lipid-shelled microbubble. Above the excitation threshold, that is, in the growth-saturation phase, subharmonic signals decreased linearly with slopes as high as -0.56 dB/kPa with ambient pressure increase; below the threshold excitation (at atmospheric pressure), increasing overpressure triggers subharmonic generation, indicating a lowering of subharmonic threshold, and therefore leads to an increase in subharmonic with overpressure, the maximum enhancement being ∼11 dB for 15 kPa overpressure at 2 MHz and 100 kPa PNP. CONCLUSION This study indicates the possible development of novel and improved SHAPE methodologies.
Collapse
Affiliation(s)
- Roozbeh H Azami
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, USA.
| |
Collapse
|
7
|
Kalayeh K, Fowlkes JB, Chen A, Yeras S, Fabiilli ML, Claflin J, Daignault-Newton S, Schultz WW, Sack BS. Pressure Measurement in a Bladder Phantom Using Contrast-Enhanced Ultrasonography-A Path to a Catheter-Free Voiding Cystometrogram. Invest Radiol 2023; 58:181-189. [PMID: 36070543 DOI: 10.1097/rli.0000000000000919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The long-term goal of this study is to investigate the efficacy of a novel, ultrasound-based technique called subharmonic-aided pressure estimation (SHAPE) to measure bladder pressure as a part of a cystometrogram (CMG) in a urodynamic test (ie, pressure-flow study). SHAPE is based on the principle that subharmonic emissions from ultrasound contrast microbubbles (MBs) decrease linearly with an increase in ambient pressure. We hypothesize that, using the SHAPE technique, we can measure voiding bladder pressure catheter-free. This is of importance because the CMG catheter, due to its space-occupying property and non-physiological effects, can undermine the reliability of the test during voiding and cause misdiagnosis. In this study, we tested this hypothesis and optimized the protocol in a controlled benchtop environment. MATERIALS AND METHODS A bladder phantom was designed and built, capable of simulating clinically relevant bladder pressures. Laboratory-made lipid-shelled MBs (similar in composition to the commercial agent, DEFINITY) was diluted in 0.9% normal saline and infused into the bladder phantom using the CMG infusion system. A typical simulated CMG consists of 1 filling and 4 post-filling events. During CMG events, the bladder phantom is pressurized multiple times at different clinically relevant levels (small, medium, and large) to simulate bladder pressures. Simultaneous with pressurization, MB subharmonic signal was acquired. For each event, the change in MB subharmonic amplitude was correlated linearly with the change in bladder phantom pressure, and the SHAPE conversion factor (slope of the linear fit) was determined. In doing so, a specific signal processing technique (based on a small temporal window) was used to account for time-decay of MB subharmonic signal during a simulated CMG. RESULTS A strong inverse linear relationship was found to exist between SHAPE and bladder phantom pressures for each of the CMG filling and post-filling events ( r2> 0.9, root mean square error < 0.3 dB, standard error <0.01 dB, and P < 0.001). SHAPE showed a transient behavior in measuring bladder phantom pressure. The SHAPE conversion factor (in dB/cm H 2 O) varied between filling and post-filling events, as well as by post-filling time. The magnitude of the SHAPE conversion factor tended to increase immediately after filling and then decreases with time. CONCLUSIONS Microbubble subharmonic emission is an excellent indicator of bladder phantom pressure variation. The strong correlation between SHAPE signal and bladder phantom pressure is indicative of the applicability of this method in measuring bladder pressure during a CMG. Our results suggest that different SHAPE conversion factors may be needed for different events during a CMG (ie, at different time points of a CMG). These findings will help us better protocolize this method for introduction into human subjects and allow us to take the next step toward developing a catheter-free voiding CMG using SHAPE.
Collapse
Affiliation(s)
| | | | - Amy Chen
- Department of Biomedical Engineering
| | | | | | | | | | - William W Schultz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
8
|
Porter TR. Getting in SHAPE to Noninvasively Measure Intracardiac Pressures: Is it Possible? JACC Cardiovasc Imaging 2023; 16:236-238. [PMID: 36752425 DOI: 10.1016/j.jcmg.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Thomas R Porter
- Department of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
9
|
Esposito C, Machado P, McDonald ME, Savage MP, Fischman D, Mehrotra P, Cohen IS, Ruggiero N, Walinsky P, Vishnevsky A, Dickie K, Davis M, Forsberg F, Dave JK. Noninvasive Evaluation of Cardiac Chamber Pressures Using Subharmonic-Aided Pressure Estimation With Definity Microbubbles. JACC Cardiovasc Imaging 2023; 16:224-235. [PMID: 36648035 DOI: 10.1016/j.jcmg.2022.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Noninvasive and accurate assessment of intracardiac pressures has remained an elusive goal of noninvasive cardiac imaging. OBJECTIVES The purpose of this study was to investigate if errors in intracardiac pressures obtained noninvasively using contrast microbubbles and the subharmonic-aided pressure estimation (SHAPE) technique are <5 mm Hg. METHODS In a nonrandomized institutional review board-approved clinical trial (NCT03243942), patients scheduled for a left-sided and/or right-sided heart catheterization procedure and providing written informed consent were included. A standard-of-care catheterization procedure was performed advancing clinically used pressure catheters into the left and/or right ventricles and/or the aorta. After pressure catheter placement, patients received an infusion of Definity microbubbles (n = 56; 2 vials diluted in 50 mL of saline; infusion rate: 4-10 mL/min) (Lantheus Medical Imaging). Then SHAPE data was acquired using a validated interface developed on a SonixTablet scanner (BK Medical Systems) synchronously with the pressure catheter data. A conversion factor (mm Hg/dB) was derived from SHAPE data and measurements with a SphygmoCor XCEL PWA device (ATCOR Medical) and was combined with SHAPE data from the left and/or the right ventricles to obtain clinically relevant systolic and diastolic ventricular pressures. RESULTS The mean value of absolute errors for left ventricular minimum and end diastolic pressures were 2.9 ± 2.0 and 1.7 ± 1.2 mm Hg (n = 26), respectively, and for right ventricular systolic pressures was 2.2 ± 1.5 mm Hg (n = 11). Two adverse events occurred during Definity infusion; both were resolved. CONCLUSIONS These results indicate that the SHAPE technique with Definity microbubbles is encouragingly efficacious for obtaining intracardiac pressures noninvasively and accurately. (Noninvasive, Subharmonic Intra-Cardiac Pressure Measurement; NCT03243942).
Collapse
Affiliation(s)
- Cara Esposito
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Priscilla Machado
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Maureen E McDonald
- Medical Imaging and Radiation Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael P Savage
- Cardiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David Fischman
- Cardiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Praveen Mehrotra
- Cardiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ira S Cohen
- Cardiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nicholas Ruggiero
- Cardiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paul Walinsky
- Cardiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alec Vishnevsky
- Cardiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Marguerite Davis
- Cardiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jaydev K Dave
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
10
|
Lu H, Xu G, Wang Y, Yang H, Li D, Huang L, Su M, Li C, Qiu W, Mao Y, Yu W, Li F. Correlation Between Portal Vein Pressure and Subharmonic Scattering Signals From SonoVue Microbubbles in Canines. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:203-211. [PMID: 36266141 DOI: 10.1016/j.ultrasmedbio.2022.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The current gold standard for the clinical diagnosis of portal hypertension (PH) is an invasive and indirect estimation of portal vein pressure (PVP). Therefore, the need for a non-invasive PVP measurement method is urgent. Subharmonic scattering of ultrasound contrast agent (UCA) microbubbles is under investigation in clinical research as a pressure indicator. However, the driving acoustic pressure must be optimized to improve the ambient pressure sensitivity of the subharmonic amplitude for different UCAs. In this study, for the first time, we obtained the relationship between the PVP and the amplitude of the subharmonic signal scattered from SonoVue microbubbles by using two canines to build the PH model. The results revealed a desirable linear correlation between the subharmonic amplitude and PVP (<20 mmHg) at the incident acoustic pressure of 453 kPa (r = -0.910, p < 0.005; sensitivity: -2.003 dB/mmHg); this was one order of magnitude higher in sensitivity than that of the in vitro case with a detectable pressure variation of approximately 1 mmHg. This indicates the feasibility of using UCA microbubbles to accurately measure low ambient pressures in vivo and further exhibits the potential of the method for non-invasive pressure estimation in clinical applications.
Collapse
Affiliation(s)
- Huimin Lu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Gang Xu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China; Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yun Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Deyu Li
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Laixin Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Su
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changcan Li
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China.
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
11
|
Kalayeh K, Fowlkes JB, Claflin J, Fabiilli ML, Schultz WW, Sack BS. Ultrasound Contrast Stability for Urinary Bladder Pressure Measurement. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:136-151. [PMID: 36244919 DOI: 10.1016/j.ultrasmedbio.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
The goal of this study was to evaluate ultrasound contrast microbubbles (MB) stability during a typical cystometrogram (CMG) for bladder pressure measurement application using the subharmonic-aided pressure estimation technique. A detailed study of MB stability was required given two unique characteristics of this application: first, bulk infusion of MBs into the bladder through the CMG infusion system, and second, duration of a typical CMG which may last up to 30 min. To do so, a series of size measurement and contrast-enhanced ultrasound imaging studies under different conditions were performed and the effects of variables that we hypothesized have an effect on MB stability, namely, i) IV bag air headspace, ii) MB dilution factor, and iii) CMG infusion system were investigated. The results verified that air volume in intravenous (IV) bag headspace was not enough to have a significant effect on MB stability during a CMG. We also showed that higher MB dosage results in a more stable condition. Finally, the results indicated that the CMG infusion system adversely affects MB stability. In summary, to ensure MB stability during the entire duration of a CMG, lower filling rates (limited by estimated bladder capacity in clinical applications) and/or higher MB dosage (limited by FDA regulations and shadowing artifact) and/or the consideration of alternative catheter design may be needed.
Collapse
Affiliation(s)
- Kourosh Kalayeh
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jake Claflin
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - William W Schultz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Bryan S Sack
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Qiao X, Wen Y, Yu J, Bouakaz A, Zong Y, Wan M. Noninvasive Pressure Estimation Based on the Subharmonic Response of SonoVue: Application to Intracranial Blood Pressure Assessment. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:957-966. [PMID: 34941508 DOI: 10.1109/tuffc.2021.3138100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intracranial blood pressure can directly reflect the status of blood vessels in real time. However, it can only be estimated invasively using a microcatheter during craniotomy. Subharmonic-aided pressure estimation (SHAPE) is a promising technique for estimating cardiac pressures but mainly uses Sonazoid, whereas SHAPE using SonoVue is still in the early stages of development. The aim of this study was to optimize transcranial SHAPE using SonoVue by investigating the relationship between subharmonic signals and middle cerebral artery pressure (MCAP) (20-160 mmHg) in vitro. We examined the effect of acoustic output levels (peak negative pressures (PNPs) of 238, 346, and 454 kPa), time in suspension (time from reconstituting the suspension to extracting it: 0-30 min), and exposure to gas-equilibrated saline (3 min, 1 h, or original gas completely replaced by air) on the subharmonic-pressure relationship. A mean subharmonic amplitude over a 0.4 MHz bandwidth was extracted using a 5 MHz 12-cycle pulse. A PNP of 346 kPa elicited the best subharmonic sensitivity for assessing hydrostatic pressures up to 0.24 dB/mmHg, possibly because compression-only behavior no longer occurs at this pressure. Moreover, the expansion force is not large enough to offset the effects of hydrostatic pressure. A linear monotonic relationship between the subharmonic amplitude and hydrostatic pressure was only observed for just prepared SonoVue. Excessive exposure to gas-equilibrated saline also affected the subharmonic-pressure relationship. Therefore, just prepared SonoVue should be used, and the duration of the pressure estimation process should be strictly controlled.
Collapse
|
13
|
Xu G, Lu H, Yang H, Li D, Liu R, Su M, Jin B, Li C, Lv T, Du S, Yang J, Qiu W, Mao Y, Li F. Subharmonic Scattering of SonoVue Microbubbles Within 10-40-mmHg Overpressures In Vitro. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3583-3591. [PMID: 34329162 DOI: 10.1109/tuffc.2021.3101694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultrasound contrast agent microbubbles are considered promising sensors to measure portal vein pressure noninvasively. In this study, we investigated the subharmonic scattering power and optimal incident acoustic pressure of SonoVue microbubbles (concentration: [Formula: see text]/mL 0.9% NaCl solution) in the ambient pressure range of 10-40 mmHg with 10-mmHg increments at a temperature of 25 °C. The results demonstrated that the subharmonic response of the SonoVue microbubbles existed in three stages: the first growth stage (40-300 kPa), saturation (300-400 kPa), and the second growth stage (400-540 kPa). In the first growth stage, the subharmonic amplitude increased with ambient pressure. However, while the ambient pressure increased, the subharmonic amplitude decreased in the second growth stage. The best correlation of the subharmonic amplitudes with the ambient pressures was obtained at a high incident acoustic pressure of 520 kPa (sensitivity: 0.15 dB/mmHg, r2 = 0.99 , and root-mean-square error = 0.49 mmHg), which indicated that the subharmonic signals in the second growth stage might be suitable for estimating low ambient pressures. The results presented in our study may pave the way for portal vein pressure estimation using SonoVue microbubbles as sensors in clinical applications.
Collapse
|
14
|
Esposito C, Dickie K, Forsberg F, Dave JK. Developing an Interface and Investigating Optimal Parameters for Real-Time Intracardiac Subharmonic-Aided Pressure Estimation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:579-585. [PMID: 32784134 PMCID: PMC7983258 DOI: 10.1109/tuffc.2020.3016264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thisstudy focuses on evaluating the real-time functionality of a customized interface and investigating the optimal parameters for intracardiac subharmonic-aided pressure estimation (SHAPE) utilizing Definity (Lantheus Medical Imaging Inc., North Billerica, MA, USA) and Sonazoid (GE Healthcare, Oslo, Norway) microbubbles. Pressure measurements within the chambers of the heart yield critical information for managing cardiovascular diseases. An alternative to current, invasive, clinical cardiac catheterization procedures is utilizing ultrasound contrast agents and SHAPE to noninvasively estimate intracardiac pressures. Therefore, this work developed a customized interface (on a SonixTablet, BK Ultrasound, Peabody, MA, USA) for real-time intracardiac SHAPE. In vitro, a Doppler flow phantom was utilized to mimic the dynamic pressure changes within the heart. Definity (15.0- [Formula: see text] microspheres corresponding to 0.1-0.15 mL) and Sonazoid (GE Healthcare; 0.4- [Formula: see text] microspheres corresponding to 0.05-0.15 mL) microbubbles were used. Data were acquired for varying transmit frequencies (2.5-4.0 MHz), and pulse shaping options (square wave and chirp down) to determine optimal transmit parameters. Simultaneously obtained radio frequency data and ambient pressure data were compared. For Definity, the chirp down pulse at 3.0 MHz yielded the highest correlation ( r = - 0.77 ± 0.2 ) between SHAPE and pressure catheter data. For Sonazoid, the square wave pulse at 2.5 MHz yielded the highest correlation ( r = - 0.72 ± 0.2 ). In conclusion, the real-time functionality of the customized interface has been verified, and the optimal parameters for utilizing Definity and Sonazoid for intracardiac SHAPE have been determined.
Collapse
|
15
|
Lin HC, Wang SH. Window-Modulated Compounding Nakagami Parameter Ratio Approach for Assessing Muscle Perfusion with Contrast-Enhanced Ultrasound Imaging. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3584. [PMID: 32599928 PMCID: PMC7348981 DOI: 10.3390/s20123584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
Abstract
The assessment of microvascular perfusion is essential for the diagnosis of a specific muscle disease. In comparison with the current available medical modalities, the contrast-enhanced ultrasound imaging is the simplest and fastest means for probing the tissue perfusion. Specifically, the perfusion parameters estimated from the ultrasound time-intensity curve (TIC) and statistics-based time-Nakagami parameter curve (TNC) approaches were found able to quantify the perfusion. However, due to insufficient tolerance on tissue clutters and subresolvable effects, these approaches remain short of reproducibility and robustness. Consequently, the window-modulated compounding (WMC) Nakagami parameter ratio imaging was proposed to alleviate these effects, by taking the ratio of WMC Nakagami parameters corresponding to the incidence of two different acoustic pressures from an employed transducer. The time-Nakagami parameter ratio curve (TNRC) approach was also developed to estimate perfusion parameters. Measurements for the assessment of muscle perfusion were performed from the flow phantom and animal subjects administrated with a bolus of ultrasound contrast agents. The TNRC approach demonstrated better sensitivity and tolerance of tissue clutters than those of TIC and TNC. The fusion image with the WMC Nakagami parameter ratio and B-mode images indicated that both the tissue structures and perfusion properties of ultrasound contrast agents may be better discerned.
Collapse
Affiliation(s)
- Huang-Chen Lin
- Department of Computer Science and Information Engineering, Institute of Medical Informatics, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan;
| | - Shyh-Hau Wang
- Department of Computer Science and Information Engineering, Institute of Medical Informatics, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan;
- Intelligent Manufacturing Research Center, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| |
Collapse
|
16
|
Delaney LJ, Machado P, Torkzaban M, Lyshchik A, Wessner CE, Kim C, Rosenblum N, Richard S, Wallace K, Forsberg F. Characterization of Adnexal Masses Using Contrast-Enhanced Subharmonic Imaging: A Pilot Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:977-985. [PMID: 31769529 PMCID: PMC7174081 DOI: 10.1002/jum.15183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/31/2019] [Indexed: 05/28/2023]
Abstract
OBJECTIVES This pilot study evaluated whether contrast-enhanced subharmonic imaging (SHI) could be used to characterize adnexal masses before surgical intervention. METHODS Ten women (with 12 lesions) scheduled for surgery of an ovarian mass underwent an SHI examination of their adnexal region using a modified LOGIQ E9 scanner (GE Healthcare, Waukesha, WI) with an endocavitary transducer, in which digital clips were acquired by pulse destruction-replenishment SHI across the lesions. Time-intensity curves were created offline to quantitatively evaluate SHI parameters (fractional tumor perfusion, peak contrast intensity, time to peak contrast enhancement, and area under the time-intensity curve), which were compared to pathologic characterizations of the lesions. RESULTS Of the 12 masses, 8 were benign, and 4 were malignant. A qualitative analysis of the SHI images by an experienced radiologist resulted in diagnostic accuracy of 70%, compared to 56% without contrast, whereas an inexperienced radiologist improved from 50% to 58% accuracy, demonstrating the benefit of SHI. A quantitative analysis of SHI parameters produced diagnostic accuracy as high as 81%. Peak contrast intensity was significantly greater in malignant than benign masses (mean ± SD, 0.109 ± 0.088 versus 0.046 ± 0.030 arbitrary units; P = .046). Malignant masses also showed significantly greater perfusion than benign masses (24.79% ± 25.34% versus 7.62% ± 6.50%; P = .045). When the radiologist reads were combined with the most predictive quantitative SHI parameter (percent perfusion), diagnostic accuracy improved to 84% for the experienced radiologist and 96% for the novice radiologist. CONCLUSIONS Results indicate that SHI for presurgical characterization of adnexal masses may improve the determination of malignancy and diagnostic accuracy, albeit based on a small sample size.
Collapse
Affiliation(s)
- Lauren J Delaney
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Priscilla Machado
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mehnoosh Torkzaban
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Corinne E Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christine Kim
- Division of Gynecologic Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Norman Rosenblum
- Division of Gynecologic Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Scott Richard
- Division of Gynecologic Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Li F, Wang Y, Mo X, Deng Z, Yan F. Acoustic Characteristics of Biosynthetic Bubbles for Ultrasound Contrast Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10213-10222. [PMID: 31119938 DOI: 10.1021/acs.langmuir.9b01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biosynthetic bubbles produced by floating microorganisms, such as bacteria and algae, have recently attracted wide attention as novel ultrasound contrast agents owing to their significant potential in ultrasound imaging and acoustic reporter gene-based imaging. However, the acoustics properties of these bubbles are unclear. In this study, we developed a finite-element model to describe the oscillation of nonspherical biosynthetic bubbles composed of a gas core encapsulated in a protein shell. In this model, the elastic properties of the bubble shells were characterized in terms of the density, thickness, Young's modulus, and Poisson's ratio. Theoretical calculations were performed for a single bubble and an assembly of randomly oriented bubbles. Our results demonstrate that (1) there are many types of surface oscillation modes for nonspherical biosynthetic bubbles, and a systematic relationship exists between the surface modes and the resonance frequencies; (2) the bubble shell shape has a significant effect on the acoustic behavior; (3) the resonance frequency of an ellipsoidal bubble decreases with the decrease in its polar radius-to-equatorial axis ratio; and (4) the acoustic scattering of a randomly oriented suspension is isotropic at and below the first resonance frequency. Our findings provide physical insight into the biomedical applications of biosynthetic bubbles and can be used to optimize the acoustics properties of such bubbles.
Collapse
Affiliation(s)
- Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy , Shenzhen 518055 , China
| | - Yu Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- The Second School of Clinical Medicine , Southern Medical University , Guangzhou 510515 , China
- Guangdong Second Provincial General Hospital , Guangzhou 510317 , China
| | - Xinghai Mo
- Department of Ultrasound in Medicine, Shanghai East Hospital, School of Medicine , Tongji University , Shanghai 200120 , China
| | - Zhiting Deng
- Paul C. Lauterbur Research Center for Biomedical Imaging , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy , Shenzhen 518055 , China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy , Shenzhen 518055 , China
| |
Collapse
|
18
|
Gupta I, Eisenbrey JR, Machado P, Stanczak M, Wallace K, Forsberg F. On Factors Affecting Subharmonic-aided Pressure Estimation (SHAPE). ULTRASONIC IMAGING 2019; 41:35-48. [PMID: 30417745 PMCID: PMC6689132 DOI: 10.1177/0161734618812083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Subharmonic-aided pressure estimation (SHAPE) estimates hydrostatic pressure using the inverse relationship with subharmonic amplitude variations of ultrasound contrast agents (UCAs). We studied the impact of varying incident acoustic outputs (IAO), UCA concentration, and hematocrit on SHAPE. A Logiq 9 scanner with a 4C curvilinear probe (GE, Milwaukee, Wisconsin) was used with Sonazoid (GE Healthcare, Oslo, Norway) transmitting at 2.5 MHz and receiving at 1.25 MHz. An improved IAO selection algorithm provided improved correlations ( r from -0.85 to -0.95 vs. -0.39 to -0.98). There was no significant change in SHAPE gradient as the pressure increased from 10 to 40 mmHg and hematocrit concentration was tripled from 1.8 to 4.5 mL/L (Δ0.00-0.01 dB, p = 0.18), and as UCA concentration was increased from 0.2 to 1.2 mL/L (Δ0.02-0.05 dB, p = 0.75). The results for the correlation between the SHAPE gradient and hematocrit values for patients ( N = 100) in an ongoing clinical trial were also calculated showing a poor correlation value of 0.14. Overall, the SHAPE gradient is independent of hematocrit and UCA concentration. An improved algorithm for IAO selection will make SHAPE more accurate.
Collapse
Affiliation(s)
- Ipshita Gupta
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - John R. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Priscilla Machado
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
19
|
Improvement of Detection Sensitivity of Microbubbles as Sensors to Detect Ambient Pressure. SENSORS 2018; 18:s18124083. [PMID: 30469461 PMCID: PMC6308843 DOI: 10.3390/s18124083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023]
Abstract
Microbubbles are considered a promising tool for noninvasive estimation of local blood pressure. It is reported that the subharmonic scattering amplitude of microbubbles decreases by 9 to 12 dB when immersed in the media under an ambient pressure variation from 0 to 180 mmHg. However, the pressure sensitivity still needs to be improved to satisfy clinical diagnostic requirements. Here, we investigated the effects of acoustic parameters on the pressure sensitivity of microbubbles through measuring the acoustic attenuation and scattering properties of commercially available SonoVue microbubbles. Our results showed that the first harmonic, subharmonic, and ultraharmonic amplitudes of microbubbles were reduced by 6.6 dB, 10.9 dB, and 9.3 dB at 0.225 mechanical index (MI), 4.6 dB, 19.8 dB, and 12.3 dB at 0.25 MI, and 18.5 dB, 17.6 dB, and 12.6 dB at 0.3 MI, respectively, when the ambient pressure increased from 0 to 180 mmHg. Our finding revealed that a moderate MI (0.25–0.4) exciting microbubbles could significantly improve their sensitivities to detect ambient pressure.
Collapse
|
20
|
Jiménez-Fernández J. Dependence of the subharmonic signal from contrast agent microbubbles on ambient pressure: A theoretical analysis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:169. [PMID: 29390731 DOI: 10.1121/1.5020811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper investigates the dependence of the subharmonic response in a signal scattered by contrast agent microbubbles on ambient pressure to provide quantitative estimations of local blood pressure. The problem is formulated by assuming a gas bubble encapsulated by a shell of finite thickness with dynamic behavior modeled by a nonlinear viscoelastic constitutive equation. For ambient overpressure compatible with the clinical range, the acoustic pressure intervals where the subharmonic signal may be detected (above the threshold for the onset and below the limit value for the first chaotic transition) are determined. The analysis shows that as the overpressure is increased, all harmonic components are displaced to higher frequencies. This displacement is significant for the subharmonic of order 1/2 and explains the increase or decrease in the subharmonic amplitude with ambient pressure described in previous works. Thus, some questions related to the monotonic dependence of the subharmonic amplitude on ambient pressure are clarified. For different acoustic pressures, quantitative conditions for determining the intervals where the subharmonic amplitude is a monotonic or non-monotonic function of the ambient pressure are provided. Finally, the influence of the ambient pressure on the subharmonic resonance frequency is analyzed.
Collapse
Affiliation(s)
- J Jiménez-Fernández
- Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 2 28006 Madrid, Spain
| |
Collapse
|
21
|
Dave JK, Kulkarni SV, Pangaonkar PP, Stanczak M, McDonald ME, Cohen IS, Mehrotra P, Savage MP, Walinsky P, Ruggiero NJ, Fischman DL, Ogilby D, VanWhy C, Lombardi M, Forsberg F. Non-Invasive Intra-cardiac Pressure Measurements Using Subharmonic-Aided Pressure Estimation: Proof of Concept in Humans. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2718-2724. [PMID: 28807449 PMCID: PMC5605408 DOI: 10.1016/j.ultrasmedbio.2017.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 05/04/2023]
Abstract
This study evaluated the feasibility of employing non-invasive intra-cardiac pressure estimation using subharmonic signals from ultrasound contrast agents in humans. This institutional review board-approved proof-of-concept study included 15 consenting patients scheduled for left and right heart catheterization. During the catheterization procedure, Definity was infused intra-venously at 4-10 mL/min. Ultrasound scanning was performed with a Sonix RP using pulse inversion, three incident acoustic output levels and 2.5-MHz transmit frequency. Radiofrequency data were processed and subharmonic amplitudes were compared with the pressure catheter data. The correlation coefficient between subharmonic signals and pressure catheter data ranged from -0.3 to -0.9. For acquisitions with optimum acoustic output, pressure errors between the subharmonic technique and catheter were as low as 2.6 mmHg. However, automatically determining optimum acoustic output during scanning for each patient remains to be addressed before clinical applicability can be decided.
Collapse
Affiliation(s)
- Jaydev K Dave
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Sushmita V Kulkarni
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; College of Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Purva P Pangaonkar
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Maureen E McDonald
- Department of Radiologic Sciences, Jefferson College of Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ira S Cohen
- Division of Cardiology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Praveen Mehrotra
- Division of Cardiology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael P Savage
- Division of Cardiology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paul Walinsky
- Division of Cardiology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nicholas J Ruggiero
- Division of Cardiology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David L Fischman
- Division of Cardiology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David Ogilby
- Division of Cardiology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Carolyn VanWhy
- Division of Cardiology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Matthew Lombardi
- Division of Cardiology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Gupta I, Eisenbrey J, Stanczak M, Sridharan A, Dave JK, Liu JB, Hazard C, Wang X, Wang P, Li H, Wallace K, Forsberg F. Effect of Pulse Shaping on Subharmonic Aided Pressure Estimation In Vitro and In Vivo. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:3-11. [PMID: 27943411 PMCID: PMC5191985 DOI: 10.7863/ultra.15.11106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/15/2016] [Indexed: 05/10/2023]
Abstract
OBJECTIVES Subharmonic imaging (SHI) is a technique that uses the nonlinear oscillations of microbubbles when exposed to ultrasound at high pressures transmitting at the fundamental frequency ie, fo and receiving at half the transmit frequency (ie, fo /2). Subharmonic aided pressure estimation (SHAPE) is based on the inverse relationship between the subharmonic amplitude of the microbubbles and the ambient pressure change. METHODS Eight waveforms with different envelopes were optimized with respect to acoustic power at which the SHAPE study is most sensitive. The study was run with four input transmit cycles, first in vitro and then in vivo in three canines to select the waveform that achieved the best sensitivity for detecting changes in portal pressures using SHAPE. A Logiq 9 scanner with a 4C curvi-linear array was used to acquire 2.5 MHz radio-frequency data. Scanning was performed in dual imaging mode with B-mode imaging at 4 MHz and a SHI contrast mode transmitting at 2.5 MHz and receiving at 1.25 MHz. Sonazoid, which is a lipid stabilized gas filled bubble of perfluorobutane, was used as the contrast agent in this study. RESULTS A linear decrease in subharmonic amplitude with increased pressure was observed for all waveforms (r from -0.77 to -0.93; P < .001) in vitro. There was a significantly higher correlation of the SHAPE gradient with changing pressures for the broadband pulses as compared to the narrowband pulses in both in vitro and in vivo results. The highest correlation was achieved with a Gaussian windowed binomial filtered square wave with an r-value of -0.95. One of the three canines was eliminated for technical reasons, while the other two produced very similar results to those obtained in vitro (r from -0.72 to -0.98; P <.01). The most consistent in vivo results were achieved with the Gaussian windowed binomial filtered square wave (r = -0.95 and -0.96). CONCLUSIONS Using this waveform is an improvement to the existing SHAPE technique (where a square wave was used) and should make SHAPE more sensitive for noninvasively determining portal hypertension.
Collapse
Affiliation(s)
- Ipshita Gupta
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - John Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anush Sridharan
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Jaydev K. Dave
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Xinghua Wang
- Department of Ultrasound, The 2nd Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ping Wang
- Department of Ultrasound, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Huiwen Li
- Department of Ultrasound, Erdos Center Hospital, Erdos, Inner Mongolia 017000, China
| | | | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Paul S, Nahire R, Mallik S, Sarkar K. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery. COMPUTATIONAL MECHANICS 2014; 53:413-435. [PMID: 26097272 PMCID: PMC4470369 DOI: 10.1007/s00466-013-0962-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Micron- to nanometer-sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes, are being developed for diagnostic imaging and ultrasound mediated drug/gene delivery. This review provides an overview of the current state of the art of the mathematical models of the acoustic behavior of ultrasound contrast microbubbles. We also present a review of the in vitro experimental characterization of the acoustic properties of microbubble based contrast agents undertaken in our laboratory. The hierarchical two-pronged approach of modeling contrast agents we developed is demonstrated for a lipid coated (Sonazoid™) and a polymer shelled (poly D-L-lactic acid) contrast microbubbles. The acoustic and drug release properties of the newly developed echogenic liposomes are discussed for their use as simultaneous imaging and drug/gene delivery agents. Although echogenicity is conclusively demonstrated in experiments, its physical mechanisms remain uncertain. Addressing questions raised here will accelerate further development and eventual clinical approval of these novel technologies.
Collapse
Affiliation(s)
- Shirshendu Paul
- Department of Mechanical Engineering, University of Delaware, Newark DE 19716, USA
| | - Rahul Nahire
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo ND 58108, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo ND 58108, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
24
|
Harput S, Arif M, McLaughlan J, Cowell DMJ, Freear S. The effect of amplitude modulation on subharmonic imaging with chirp excitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:2532-2544. [PMID: 24297019 DOI: 10.1109/tuffc.2013.2852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Subharmonic generation from ultrasound contrast agents depends on the spectral and temporal properties of the excitation signal. The subharmonic response can be improved by using wideband and long-duration signals. However, for sinusoidal tone-burst excitation, the effective bandwidth of the signal is inversely proportional to the signal duration. Linear frequency-modulated (LFM) and nonlinear frequency-modulated (NLFM) chirp excitations allow independent control over the signal bandwidth and duration; therefore, in this study LFM and NLFM signals were used for the insonation of microbubble populations. The amplitude modulation of the excitation waveform was achieved by applying different window functions. A customized window was designed for the NLFM chirp excitation by focusing on reducing the spectral leakage at the subharmonic frequency and increasing the subharmonic generation from microbubbles. Subharmonic scattering from a microbubble population was measured for various excitation signals and window functions. At a peak negative pressure of 600 kPa, the generated subharmonic energy by ultrasound contrast agents was 15.4 dB more for NLFM chirp excitation with 40% fractional bandwidth when compared with tone-burst excitation. For this reason, the NLFM chirp with a customized window was used as an excitation signal to perform subharmonic imaging in an ultrasound flow phantom. Results showed that the NLFM waveform with a customized window improved the subharmonic contrast by 4.35 ± 0.42 dB on average over a Hann-windowed LFM excitation.
Collapse
|
25
|
Dave JK, Halldorsdottir VG, Eisenbrey JR, Merton DA, Liu JB, Machado P, Zhao H, Park S, Dianis S, Chalek CL, Thomenius KE, Brown DB, Forsberg F. On the implementation of an automated acoustic output optimization algorithm for subharmonic aided pressure estimation. ULTRASONICS 2013; 53:880-8. [PMID: 23347593 PMCID: PMC3595343 DOI: 10.1016/j.ultras.2012.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 05/04/2023]
Abstract
Incident acoustic output (IAO) dependent subharmonic signal amplitudes from ultrasound contrast agents can be categorized into occurrence, growth or saturation stages. Subharmonic aided pressure estimation (SHAPE) is a technique that utilizes growth stage subharmonic signal amplitudes for hydrostatic pressure estimation. In this study, we developed an automated IAO optimization algorithm to identify the IAO level eliciting growth stage subharmonic signals and also studied the effect of pulse length on SHAPE. This approach may help eliminate the problems of acquiring and analyzing the data offline at all IAO levels as was done in previous studies and thus, pave the way for real-time clinical pressure monitoring applications. The IAO optimization algorithm was implemented on a Logiq 9 (GE Healthcare, Milwaukee, WI) scanner interfaced with a computer. The optimization algorithm stepped the ultrasound scanner from 0% to 100% IAO. A logistic equation fitting function was applied with the criterion of minimum least squared error between the fitted subharmonic amplitudes and the measured subharmonic amplitudes as a function of the IAO levels and the optimum IAO level was chosen corresponding to the inflection point calculated from the fitted data. The efficacy of the optimum IAO level was investigated for in vivo SHAPE to monitor portal vein (PV) pressures in 5 canines and was compared with the performance of IAO levels, below and above the optimum IAO level, for 4, 8 and 16 transmit cycles. The canines received a continuous infusion of Sonazoid microbubbles (1.5 μl/kg/min; GE Healthcare, Oslo, Norway). PV pressures were obtained using a surgically introduced pressure catheter (Millar Instruments, Inc., Houston, TX) and were recorded before and after increasing PV pressures. The experiments showed that optimum IAO levels for SHAPE in the canines ranged from 6% to 40%. The best correlation between changes in PV pressures and in subharmonic amplitudes (r=-0.76; p=0.24), and between the absolute PV pressures and the subharmonic amplitudes (r=-0.89; p<0.01) were obtained for the optimized IAO and 4 transmit cycles. Only for the optimized IAO and 4 transmit cycles did the subharmonic amplitudes differ significantly (p<0.01) before and after increasing PV pressures. A new algorithm to identify optimum IAO levels for SHAPE has been developed and validated with the best results being obtained for 4 transmit cycles. The work presented in this study may pave the way for real-time clinical applications of estimating pressures using the subharmonic signals from ultrasound contrast agents.
Collapse
Affiliation(s)
- J K Dave
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Eisenbrey JR, Dave JK, Halldorsdottir VG, Merton DA, Miller C, Gonzalez JM, Machado P, Park S, Dianis S, Chalek CL, Kim CE, Baliff JP, Thomenius KE, Brown DB, Navarro V, Forsberg F. Chronic liver disease: noninvasive subharmonic aided pressure estimation of hepatic venous pressure gradient. Radiology 2013; 268:581-8. [PMID: 23525208 DOI: 10.1148/radiol.13121769] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To compare subharmonic aided pressure estimation (SHAPE) with pressure catheter-based measurements in human patients with chronic liver disease undergoing transjugular liver biopsy. MATERIALS AND METHODS This HIPAA-compliant study had U.S. Food and Drug Administration and institutional review board approval, and written informed consent was obtained from all participants. Forty-five patients completed this study between December 2010 and December 2011. A clinical ultrasonography (US) scanner was modified to obtain SHAPE data. After transjugular liver biopsy with pressure measurements as part of the standard of care, 45 patients received an infusion of a microbubble US contrast agent and saline. During infusion, SHAPE data were collected from a portal and hepatic vein and were compared with invasive measurements. Correlations between data sets were determined by using the Pearson correlation coefficient, and statistical significance between groups was determined by using the Student t test. RESULTS The 45 study patients included 27 men and 18 women (age range, 19-71 years; average age, 55.8 years). The SHAPE gradient between the portal and hepatic veins was in good overall agreement with the hepatic venous pressure gradient (HVPG) (R = 0.82). Patients at increased risk for variceal hemorrhage (HVPG ≥ 12 mm Hg) had a significantly higher mean subharmonic gradient than patients with lower HVPGs (1.93 dB ± 0.61 [standard deviation] vs -1.47 dB ± 0.29, P < .001), with a sensitivity of 100% and a specificity of 81%, indicating that SHAPE may be a useful tool for the diagnosis of clinically important portal hypertension. CONCLUSION Preliminary results show SHAPE to be an accurate noninvasive technique for estimating portal hypertension.
Collapse
Affiliation(s)
- John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, 7 Main, Suite 763, 132 S 10th St, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bader KB, Holland CK. Gauging the likelihood of stable cavitation from ultrasound contrast agents. Phys Med Biol 2012; 58:127-44. [PMID: 23221109 DOI: 10.1088/0031-9155/58/1/127] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form I(CAV) = P(r)/f (where P(r) is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|
28
|
Katiyar A, Sarkar K. Effects of encapsulation damping on the excitation threshold for subharmonic generation from contrast microbubbles. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:3576-85. [PMID: 23145637 PMCID: PMC3505217 DOI: 10.1121/1.4757099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A recent study [Katiyar and Sarkar (2011). J. Acoust. Soc. Am. 130, 3137-3147] showed that in contrast to the analytical result for free bubbles, the minimum threshold for subharmonic generation for contrast microbubbles does not necessarily occur at twice the resonance frequency. Here increased damping-either due to the small radius or the encapsulation-is shown to shift the minimum threshold away from twice the resonance frequency. Free bubbles as well as four models of the contrast agent encapsulation are investigated varying the surface dilatational viscosity. Encapsulation properties are determined using measured attenuation data for a commercial contrast agent. For sufficiently small damping, models predict two minima for the threshold curve-one at twice the resonance frequency being lower than the other at resonance frequency-in accord with the classical analytical result. However, increased damping damps the bubble response more at twice the resonance than at resonance, leading to a flattening of the threshold curve and a gradual shift of the absolute minimum from twice the resonance frequency toward the resonance frequency. The deviation from the classical result stems from the fact that the perturbation analysis employed to obtain it assumes small damping, not always applicable for contrast microbubbles.
Collapse
Affiliation(s)
- Amit Katiyar
- Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, Delaware 19716, USA
| | | |
Collapse
|
29
|
Dave JK, Halldorsdottir VG, Eisenbrey JR, Merton DA, Liu JB, Zhou JH, Wang HK, Park S, Dianis S, Chalek CL, Lin F, Thomenius KE, Brown DB, Forsberg F. Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1784-98. [PMID: 22920550 PMCID: PMC3576693 DOI: 10.1016/j.ultrasmedbio.2012.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/19/2012] [Accepted: 06/29/2012] [Indexed: 05/14/2023]
Abstract
The efficacy of using subharmonic emissions from Sonazoid microbubbles (GE Healthcare, Oslo, Norway) to track portal vein pressures and pressure changes was investigated in 14 canines using either slow- or high-flow models of portal hypertension (PH). A modified Logiq 9 scanner (GE Healthcare, Milwaukee, WI, USA) operating in subharmonic mode (f(transmit): 2.5 MHz, f(receive): 1.25 MHz) was used to collect radiofrequency data at 10-40% incident acoustic power levels with 2-4 transmit cycles (in triplicate) before and after inducing PH. A pressure catheter (Millar Instruments, Inc., Houston, TX, USA) provided reference portal vein pressures. At optimum insonification, subharmonic signal amplitude changes correlated with portal vein pressure changes; r ranged from -0.82 to -0.94 and from -0.70 to -0.73 for PH models considered separately or together, respectively. The subharmonic signal amplitudes correlated with absolute portal vein pressures (r: -0.71 to -0.79). Statistically significant differences between subharmonic amplitudes, before and after inducing PH, were noted (p ≤ 0.01). Portal vein pressures estimated using subharmonic aided pressure estimation did not reveal significant differences (p > 0.05) with respect to the pressures obtained using the Millar pressure catheter. Subharmonic-aided pressure estimation may be useful clinically for portal vein pressure monitoring.
Collapse
Affiliation(s)
- Jaydev K. Dave
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Valgerdur G. Halldorsdottir
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - John R. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel A. Merton
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jian-Hua Zhou
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hsin-Kai Wang
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | - Feng Lin
- GE Global Research, Niskayuna NY 12309, USA
| | | | - Daniel B. Brown
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
30
|
Dave JK, Halldorsdottir VG, Eisenbrey JR, Forsberg F. Processing of subharmonic signals from ultrasound contrast agents to determine ambient pressures. ULTRASONIC IMAGING 2012; 34:81-92. [PMID: 22724314 DOI: 10.1177/016173461203400202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Subharmonic-aided pressure estimation (SHAPE) is a technique that utilizes the subharmonic emissions, occurring at half the insonation frequency, from ultrasound contrast agents to estimate ambient pressures. The purpose of this work was to compare the performance of different processing techniques for the raw radiofrequency (rf) data acquired for SHAPE. A closed loop flow system was implemented circulating reconstituted Sonazoid (GE Healthcare, Oslo, Norway; 0.2 ml for 750 ml diluent) and the beam-formed unprocessed rf data were obtained from a 4 mm diameter lumen of a Doppler flow phantom (ATS Laboratories, Inc., Bridgeport, CT) using a SonixRP scanner (Ultrasonix, Richmond, BC, Canada). The transmit frequency and incident acoustic pressures were set to 2.5 MHz and 0.22 MPa, respectively, in order to elicit Sonazoid subharmonic emissions that are ambient-pressure sensitive. The time-varying ambient pressures within the flow phantom were recorded by a Millar pressure catheter. Four techniques for extracting the subharmonic amplitude from the rf data were tested along with two noise filtering techniques to process this data. Five filter orders were tested for the noise removing filters. The performance was evaluated based on the least root-mean-square errors reported after linear least-square regression analyses of the subharmonic data and the pressure catheter data and compared using a repeated ANOVA. When the subharmonic amplitudes were extracted as the mean value within a 0.2 MHz bandwidth about 1.25 MHz and when the resulting temporally-varying subharmonic signal was median filtered with an order of 500, the filtered subharmonic signal significantly predicted the ambient pressures (r2 = 0.90; p < 0.001) with the least error. The resulting root mean square and mean absolute errors were 8.16 +/- 0.26 mmHg and 6.70 +/- 0.17 mmHg, respectively. Thus, median processing the subharmonic data extracted as the mean value within a 0.2 MHz bandwidth about the theoretical subharmonic frequency turned out to be the best technique to process acoustic data for SHAPE. The implementation of this technique on ultrasound scanners may permit real-time SHAPE applications.
Collapse
Affiliation(s)
- Jaydev K Dave
- Department of Radiology, Thomas Jefferson University, 132 South 10th St., Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
31
|
Li F, Wang L, Fan Y, Li D. Simulation of noninvasive blood pressure estimation using ultrasound contrast agent microbubbles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:715-726. [PMID: 22547282 DOI: 10.1109/tuffc.2012.2249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The microbubble ultrasound contrast agent (UCA) has been widely recognized as a potential noninvasive tool for blood pressure measurement. However, UCA indices such as the shift in the resonance frequency and echo amplitude have problems of low resolution, nonlinear relationship with blood pressure, etc. In this paper, a novel UCA index, the shift in the subharmonic optimal driving frequency (SSODF) of microbubbles, is proposed. The effectiveness of the index for estimating blood pressure was evaluated by performing a microbubble acoustic response simulation. The behavior of commercial UCA microbubbles was investigated as a function of the driving acoustic pressure (in kilopascals) and ambient overpressure (in millimeters of mercury). Simulation results showed that for a 1.6-μm-diameter microbubble, SSODF increased linearly with the overpressure in a range of 0 to 200 mmHg and was maximum (2.07 MHz) at 380 kPa. Changes of the overpressure as small as 5 mmHg can be detected using SSODF. For a population of microbubbles with a Gaussian size distribution (mean diameter: 1.6 μm, standard deviation: 0.2 μm), SSODF was 1.7 MHz at 280 kPa. With further experimental validation, the proposed method may be developed as a novel noninvasive technique for accurate blood pressure measurement.
Collapse
Affiliation(s)
- Fei Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | | | | | | |
Collapse
|