1
|
Annayev M, Minhaj TI, Adelegan OJ, Yamaner FY, Dayton PA, Oralkan O. Design and Fabrication of 1-D CMUT Arrays for Dual-Mode Dual-Frequency Acoustic Angiography Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:191-201. [PMID: 38090855 PMCID: PMC10832990 DOI: 10.1109/tuffc.2023.3342011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
When microbubble contrast agents are excited at low frequencies (less than 5 MHz), they resonate and produce higher-order harmonics due to their nonlinear behavior. We propose a novel scheme with a capacitive micromachined ultrasonic transducer (CMUT) array to receive high-frequency microbubble harmonics in collapse mode and to transmit a low-frequency high-pressure pulse by releasing the CMUT plate from collapse and pull it back to collapse again in the same transmit-receive cycle. By patterning and etching the substrate to create glass spacers in the device cavity we can reliably operate the CMUT in collapse mode and receive high-frequency signals. Previously, we demonstrated a single-element CMUT with spacers operating in the described fashion. In this article, we present the design and fabrication of a dual-mode, dual-frequency 1-D CMUT array with 256 elements. We present two different insulating glass spacer designs in rectangular cells for the collapse mode. For the device with torus-shaped spacers, the 3 dB receive bandwidth is from 8 to 17 MHz, and the transmitted maximum peak-to-peak pressure from 32 elements at 4 mm focal depth was 2.12 MPa with a 1.21 MPa peak negative pressure, which corresponds to a mechanical index (MI) of 0.58 at 4.3 MHz. For the device with line-shaped spacers, the 3-dB receive bandwidth at 150 V dc bias extends from 10.9 to 19.2 MHz. By increasing the bias voltage to 180 V, the 3 dB bandwidth shifts, and extends from 11.7 to 20.4 MHz. The transmitting maximum peak-to-peak pressure with 32 elements at 4 mm was 2.06 MPa with a peak negative pressure of 1.19 MPa, which corresponds to an MI of 0.62 at 3.7 MHz.
Collapse
|
2
|
Ghavami M, Sobhani MR, Zemp R. Transparent Dual-Frequency CMUT Arrays for Photoacoustic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1621-1630. [PMID: 37938953 DOI: 10.1109/tuffc.2023.3331356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The opaque ultrasound transducers used in conventional photoacoustic imaging systems necessitate oblique light delivery, which gives rise to some disadvantages such as inefficient target illumination and bulky system size. This work proposes a transparent capacitive micromachined ultrasound transducer (CMUT) linear array with dual-band operation for through-illumination photoacoustic imaging. Fabricated using an adhesive wafer bonding method, the array consists of optically transparent conductors [indium tin oxide (ITO)] as both top and bottom electrodes, a transparent polymer [bisbenzocyclobutene (BCB)] as the sidewall and adhesive material, and largely transparent silicon nitride as the membrane. The fabricated device had a maximum optical transparency of 76.8% in the visible range. Furthermore, to simultaneously maintain higher spatial resolution and deeper imaging depth, this dual-frequency array consists of low- and high-frequency channels with 4.2- and 9.3-MHz center frequencies, respectively, which are configured in an interlaced architecture to minimize the grating lobes in the receive point spread function (PSF). With a wider bandwidth compared to the single-frequency case, the fabricated transparent dual-frequency CMUT array was used in through-illumination photoacoustic imaging of wire targets demonstrating an improved spatial resolution and imaging depth.
Collapse
|
3
|
Herickhoff CD, van Schaijk R. cMUT technology developments. Z Med Phys 2023; 33:256-266. [PMID: 37316428 PMCID: PMC10517396 DOI: 10.1016/j.zemedi.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023]
Abstract
Capacitive micromachined ultrasonic transducer (cMUT) technology has steadily advanced since its advent in the mid-1990's. Though cMUTs have not supplanted piezoelectric transducers for medical ultrasound imaging to date, researchers and engineers are continuing to improve cMUTs and leverage unique cMUT characteristics toward new applications. While not intended to be an exhaustive review of every aspect of cMUT state-of-the-art, this article provides a brief overview of cMUT benefits, challenges, and opportunities, as well as recent progress in cMUT research and translation.
Collapse
Affiliation(s)
- Carl D Herickhoff
- Department of Biomedical Engineering, University of Memphis, TN, USA.
| | | |
Collapse
|
4
|
Fang Z, Gao F, Jin H, Liu S, Wang W, Zhang R, Zheng Z, Xiao X, Tang K, Lou L, Tang KT, Chen J, Zheng Y. A Review of Emerging Electromagnetic-Acoustic Sensing Techniques for Healthcare Monitoring. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1075-1094. [PMID: 36459601 DOI: 10.1109/tbcas.2022.3226290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Conventional electromagnetic (EM) sensing techniques such as radar and LiDAR are widely used for remote sensing, vehicle applications, weather monitoring, and clinical monitoring. Acoustic techniques such as sonar and ultrasound sensors are also used for consumer applications, such as ranging and in vivo medical/healthcare applications. It has been of long-term interest to doctors and clinical practitioners to realize continuous healthcare monitoring in hospitals and/or homes. Physiological and biopotential signals in real-time serve as important health indicators to predict and prevent serious illness. Emerging electromagnetic-acoustic (EMA) sensing techniques synergistically combine the merits of EM sensing with acoustic imaging to achieve comprehensive detection of physiological and biopotential signals. Further, EMA enables complementary fusion sensing for challenging healthcare settings, such as real-world long-term monitoring of treatment effects at home or in remote environments. This article reviews various examples of EMA sensing instruments, including implementation, performance, and application from the perspectives of circuits to systems. The novel and significant applications to healthcare are discussed. Three types of EMA sensors are presented: (1) Chip-based radar sensors for health status monitoring, (2) Thermo-acoustic sensing instruments for biomedical applications, and (3) Photoacoustic (PA) sensing and imaging systems, including dedicated reconstruction algorithms were reviewed from time-domain, frequency-domain, time-reversal, and model-based solutions. The future of EMA techniques for continuous healthcare with enhanced accuracy supported by artificial intelligence (AI) is also presented.
Collapse
|
5
|
Collins GC, Brumfiel TA, Bercu ZL, Desai JP, Lindsey BD. Dual-Resonance (16/32 MHz) Piezoelectric Transducer With a Single Electrical Connection for Forward-Viewing Robotic Guidewire. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1428-1441. [PMID: 35143395 PMCID: PMC9013008 DOI: 10.1109/tuffc.2022.3150746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral artery disease (PAD) affects more than 200 million people globally. Minimally invasive endovascular procedures can provide relief and salvage limbs while reducing injury rates and recovery times. Unfortunately, when a calcified chronic total occlusion is encountered, ~25% of endovascular procedures fail due to the inability to advance a guidewire using the view provided by fluoroscopy. To enable a sub-millimeter, robotically steerable guidewire to cross these occlusions, a novel single-element, dual-band transducer is developed that provides simultaneous multifrequency, forward-viewing imaging with high penetration depth and high spatial resolution while requiring only a single electrical connection. The design, fabrication, and acoustic characterization of this device are described, and proof-of-concept imaging is demonstrated in an ex vivo porcine artery after integration with a robotically steered guidewire. Measured center frequencies of the developed transducer were 16 and 32 MHz, with -6 dB fractional bandwidths of 73% and 23%, respectively. When imaging a 0.2-mm wire target at a depth of 5 mm, measured -6 dB target widths were 0.498 ± 0.02 and 0.268 ± 0.01 mm for images formed at 16 and 32 MHz, respectively. Measured SNR values were 33.3 and 21.3 dB, respectively. The 3-D images of the ex vivo artery demonstrate high penetration for visualizing vessel morphology at 16 MHz and ability to resolve small features close to the transducer at 32 MHz. Using images acquired simultaneously at both frequencies as part of an integrated forward-viewing, guidewire-based imaging system, an interventionalist could visualize the best path for advancing the guidewire to improve outcomes for patients with PAD.
Collapse
|
6
|
Joseph J, Ma B, Khuri-Yakub BT. Applications of Capacitive Micromachined Ultrasonic Transducers: A Comprehensive Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:456-467. [PMID: 34520356 DOI: 10.1109/tuffc.2021.3112917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Capacitive micromachined ultrasonic transducer (CMUT) was introduced as an alternative to the piezoelectric thick-film-based transducers in medical imaging applications. Gradually, CMUTs have been investigated in almost all the applications in acoustics due to their superior transduction properties. CMOS compatible process flow and limitless possibilities of miniaturization made CMUT a preferred choice for the ultrasound industry. This article comprehensively reviews all the applications in which CMUT was used until now. Such a complete review of the practical applications of CMUT has not been reported elsewhere. A topicwise presentation approach is adopted, and wherever possible, the necessary details of the device properties and experimental niceties were briefly covered.
Collapse
|
7
|
Wang H, Yang H, Chen Z, Zheng Q, Jiang H, Feng PXL, Xie H. Development of Dual-Frequency PMUT Arrays Based on Thin Ceramic PZT for Endoscopic Photoacoustic Imaging. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2021; 30:770-782. [PMID: 35528228 PMCID: PMC9075345 DOI: 10.1109/jmems.2021.3096733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper presents a dual-frequency piezoelectric micromachined ultrasonic transducer (pMUT) array based on thin ceramic PZT for endoscopic photoacoustic imaging (PAI) applications. With a chip size of 7 × 7 mm2, the pMUT array consists of 256 elements, half of which have a lower resonant frequency of 1.2 MHz and the other half have a higher resonant frequency of 3.4 MHz. Ceramic PZT, with outstanding piezoelectric coefficients, has been successfully thinned down to a thickness of only 4 μ by using wafer bonding and chemical mechanical polishing (CMP) techniques and employed as the piezoelectric layer of the pMUT elements. The diaphragm diameters of the lower-frequency and higher-frequency elements are 220 μm and 120 μm, respectively. The design methodology, multiphysics modeling, fabrication process, and characterization of the pMUTs are presented in detail. The fabricated pMUT array has been fully characterized via electrical, mechanical, and acoustic measurements. The measured maximum responsivities of the lower- and higher- frequency elements reach 110 nm/V and 30 nm/V at their respective resonances. The measured cross-couplings of the lower-frequency elements and higher-frequency elements are about 9% and 5%, respectively. Furthermore, PAI experiments with pencil leads embedded into an agar phantom have been conducted, which clearly shows the advantages of using dual-frequency pMUT arrays to provide comprehensive photoacoustic images with high spatial resolution and large signal-to-noise ratio simultaneously.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Zhenfang Chen
- MEMS Engineering and Materials Inc., Sunnyvale, CA 94086, USA
| | - Qincheng Zheng
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Philip X-L Feng
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Huikai Xie
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Hybrid Cell Structure for Wideband CMUT: Design Method and Characteristic Analysis. MICROMACHINES 2021; 12:mi12101180. [PMID: 34683231 PMCID: PMC8540624 DOI: 10.3390/mi12101180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Capacitive micromachined ultrasonic transducer (CMUT) is an ultrasonic transducer based on the microelectromechanical system (MEMS). Wideband CMUT has good application prospects in ultrasonic imaging, ultrasonic identification, flow measurement, and nondestructive testing due to its excellent characteristics. This paper studies the method of increasing the bandwidth of the CMUT, proposes the structure of the wideband CMUT with a hybrid cell structure, and analyzes the design principles and characteristics of the wideband CMUT structure. By changing the cell spacing and the number of cells of different sizes composing the CMUT, we analyze the simulation of the effect of the spacing and number on the CMUT bandwidth, thereby optimizing the bandwidth characteristics of the CMUT. Next, the selection principle of the main structural parameters of the wideband CMUT is analyzed. According to the proposed principle, the CMUT in the air and water are designed and simulated. The results prove that both the air and water CMUT meet the design requirements. The design rules obtained in this paper can provide theoretical guidance for the selection of the main structural parameters of the wideband CMUT.
Collapse
|
9
|
Abstract
Photoacoustic imaging is a new type of noninvasive, nonradiation imaging modality that combines the deep penetration of ultrasonic imaging and high specificity of optical imaging. Photoacoustic imaging systems employing conventional ultrasonic sensors impose certain constraints such as obstructions in the optical path, bulky sensor size, complex system configurations, difficult optical and acoustic alignment, and degradation of signal-to-noise ratio. To overcome these drawbacks, an ultrasonic sensor in the optically transparent form has been introduced, as it enables direct delivery of excitation light through the sensors. In recent years, various types of optically transparent ultrasonic sensors have been developed for photoacoustic imaging applications, including optics-based ultrasonic sensors, piezoelectric-based ultrasonic sensors, and microelectromechanical system-based capacitive micromachined ultrasonic transducers. In this paper, the authors review representative transparent sensors for photoacoustic imaging applications. In addition, the potential challenges and future directions of the development of transparent sensors are discussed.
Collapse
|
10
|
Maadi M, Ceroici C, Zemp RJ. Dual-Frequency CMUT Arrays for Multiband Ultrasound Imaging Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2532-2542. [PMID: 33625982 DOI: 10.1109/tuffc.2021.3062071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dual-frequency capacitive micromachined ultrasonic transducers (CMUTs) are introduced for multiscale imaging applications, where a single array transducer can be used for both deep low-resolution imaging and shallow high-resolution imaging. These transducers consist of low- and high-frequency membranes interlaced within each subarray element. They are fabricated using a modified sacrificial release process. Successful performance is demonstrated using wafer-level vibrometer testing, as well as acoustic testing on wirebonded dies consisting of arrays of 2- and 9-MHz elements of up to 64 elements for each subarray. The arrays are demonstrated to provide multiscale, multiresolution imaging using wire phantoms and can span frequencies from 2 MHz up to as high as 17 MHz. Peak transmit sensitivities of 27 and 7.5 kPa/V are achieved with the low- and high-frequency subarrays, respectively. At 16-mm imaging depth, lateral spatial resolution achieved is 0.84 and 0.33 mm for low- and high-frequency subarrays, respectively. The signal-to-noise ratio of the low-frequency subarray is significantly higher for deep targets compared to the high-frequency subarray. The array achieves multiband imaging capabilities difficult to achieve with current transducer technologies and may have applications to multipurpose probes and novel contrast agent imaging schemes.
Collapse
|
11
|
Tian C, Zhang C, Zhang H, Xie D, Jin Y. Spatial resolution in photoacoustic computed tomography. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:036701. [PMID: 33434890 DOI: 10.1088/1361-6633/abdab9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Photoacoustic computed tomography (PACT) is a novel biomedical imaging modality and has experienced fast developments in the past two decades. Spatial resolution is an important criterion to measure the imaging performance of a PACT system. Here we survey state-of-the-art literature on the spatial resolution of PACT and analyze resolution degradation models from signal generation, propagation, reception, to image reconstruction. Particularly, the impacts of laser pulse duration, acoustic attenuation, acoustic heterogeneity, detector bandwidth, detector aperture, detector view angle, signal sampling, and image reconstruction algorithms are reviewed and discussed. Analytical expressions of point spread functions related to these impacting factors are summarized based on rigorous mathematical formulas. State-of-the-art approaches devoted to enhancing spatial resolution are also reviewed. This work is expected to elucidate the concept of spatial resolution in PACT and inspire novel image quality enhancement techniques.
Collapse
Affiliation(s)
- Chao Tian
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chenxi Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Haoran Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dan Xie
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yi Jin
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
12
|
Mahmud MM, Wu X, Sanders JL, Biliroglu AO, Adelegan OJ, Newsome IG, Yamaner FY, Dayton PA, Oralkan O. An Improved CMUT Structure Enabling Release and Collapse of the Plate in the Same Tx/Rx Cycle for Dual-Frequency Acoustic Angiography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2291-2302. [PMID: 32746179 PMCID: PMC7951756 DOI: 10.1109/tuffc.2020.3001221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This study demonstrates, in detail, the potential of using capacitive micromachined ultrasonic transducers (CMUTs) for acoustic angiography of the microvasculature. It is known that when ultrasound contrast agents (microbubbles) are excited with moderate acoustic pressure around their resonance (2-4 MHz), they produce higher order harmonics (greater than third harmonic) due to their nonlinear behavior. To date, the fundamental challenge has been the availability of a transducer that can generate the transmit signals to excite the microbubbles at low frequencies and, in the same cycle, confocally detect harmonics in the higher frequencies. We present a novel device structure and dual-mode operation of a CMUT that operates with a center frequency of 4.3 MHz and 150% bandwidth in the conventional mode for transmitting and a center frequency of 9.8 MHz and a 125.5% bandwidth in collapse mode for receiving. Output pressure of 1.7 MPapp is achieved on the surface of a single unfocused transducer. The mechanical index at the transducer surface is 0.56. FEM simulations are performed first to show the functionality of the proposed device, and then, the device fabrication is described in detail. Finally, we experimentally demonstrate the ability to detect the microbubble signals with good contrast, and the background reflection is adequately suppressed, indicating the feasibility of the presented approach for acoustic angiography.
Collapse
|
13
|
Wang H, Ma Y, Yang H, Jiang H, Ding Y, Xie H. MEMS Ultrasound Transducers for Endoscopic Photoacoustic Imaging Applications. MICROMACHINES 2020; 11:E928. [PMID: 33053796 PMCID: PMC7601211 DOI: 10.3390/mi11100928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) is drawing extensive attention and gaining rapid development as an emerging biomedical imaging technology because of its high spatial resolution, large imaging depth, and rich optical contrast. PAI has great potential applications in endoscopy, but the progress of endoscopic PAI was hindered by the challenges of manufacturing and assembling miniature imaging components. Over the last decade, microelectromechanical systems (MEMS) technology has greatly facilitated the development of photoacoustic endoscopes and extended the realm of applicability of the PAI. As the key component of photoacoustic endoscopes, micromachined ultrasound transducers (MUTs), including piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs), have been developed and explored for endoscopic PAI applications. In this article, the recent progress of pMUTs (thickness extension mode and flexural vibration mode) and cMUTs are reviewed and discussed with their applications in endoscopic PAI. Current PAI endoscopes based on pMUTs and cMUTs are also introduced and compared. Finally, the remaining challenges and future directions of MEMS ultrasound transducers for endoscopic PAI applications are given.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Yifei Ma
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; (Y.M.); (Y.D.)
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; (H.Y.); (H.J.)
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; (H.Y.); (H.J.)
| | - Yingtao Ding
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; (Y.M.); (Y.D.)
| | - Huikai Xie
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; (Y.M.); (Y.D.)
| |
Collapse
|
14
|
Ilkhechi AK, Ceroici C, Li Z, Zemp R. Transparent capacitive micromachined ultrasonic transducer (CMUT) arrays for real-time photoacoustic applications. OPTICS EXPRESS 2020; 28:13750-13760. [PMID: 32403843 DOI: 10.1364/oe.390612] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 05/26/2023]
Abstract
Photoacoustic imaging has shown great potential for non-invasive high-resolution deep-tissue imaging. Minimizing the optical and acoustic paths for excitation and detection could significantly increase the signal-to-noise ratio. This could be accomplished by transparent transducers permitting through-transducer illumination. However, most ultrasound transducers are not optically transparent. Capacitive micromachined ultrasound transducer (CMUT) technology has compelling properties compared to piezoelectric transducers such as wide bandwidth and high receive sensitivity. Here, we introduce transparent CMUT linear arrays with high transparency in the visible and near-infrared range. To fabricate the devices, we used an adhesive wafer bonding technique using photosensitive benzocyclobutene (BCB) as both a structural and adhesive layer with a glass-indium-tin-oxide (ITO) substrate. Silicon nitride is used as the membrane material ensuring hermiticity and optical transparency. Our fabricated transducer arrays consist of 64 and 128 elements with immersion operation frequency of 8 MHz, enabling high-resolution imaging. ITO, along with thin metal strips, are used as a conductive layer for the top electrodes with minimal impact on device transparency. Fabricated devices have shown average transparency of 70% in the visible wavelength range that goes up to 90% in the near-infrared range. Arrays are wire-bonded to interfacing electronics and connected to a research ultrasound platform for phantom imaging. Arrays exhibited signal-to-noise (SNR) of 40 dB with 30V bias voltage and laser fluence of 13.5 mJ/cm2. Arrays with 128 channels provided lateral and axial resolutions of 234 µm and 220 µm, respectively.
Collapse
|
15
|
Chan J, Zheng Z, Bell K, Le M, Reza PH, Yeow JTW. Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3617. [PMID: 31434241 PMCID: PMC6720758 DOI: 10.3390/s19163617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging technique that bridges the gap between pure optical and acoustic techniques to provide images with optical contrast at the acoustic penetration depth. The two key components that have allowed PAI to attain high-resolution images at deeper penetration depths are the photoacoustic signal generator, which is typically implemented as a pulsed laser and the detector to receive the generated acoustic signals. Many types of acoustic sensors have been explored as a detector for the PAI including Fabry-Perot interferometers (FPIs), micro ring resonators (MRRs), piezoelectric transducers, and capacitive micromachined ultrasound transducers (CMUTs). The fabrication technique of CMUTs has given it an edge over the other detectors. First, CMUTs can be easily fabricated into given shapes and sizes to fit the design specifications. Moreover, they can be made into an array to increase the imaging speed and reduce motion artifacts. With a fabrication technique that is similar to complementary metal-oxide-semiconductor (CMOS), CMUTs can be integrated with electronics to reduce the parasitic capacitance and improve the signal to noise ratio. The numerous benefits of CMUTs have enticed researchers to develop it for various PAI purposes such as photoacoustic computed tomography (PACT) and photoacoustic endoscopy applications. For PACT applications, the main areas of research are in designing two-dimensional array, transparent, and multi-frequency CMUTs. Moving from the table top approach to endoscopes, some of the different configurations that are being investigated are phased and ring arrays. In this paper, an overview of the development of CMUTs for PAI is presented.
Collapse
Affiliation(s)
- Jasmine Chan
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhou Zheng
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kevan Bell
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Martin Le
- Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Parsin Haji Reza
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - John T W Yeow
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
16
|
Maadi M, Zemp RJ. A Nonlinear Lumped Equivalent Circuit Model for a Single Uncollapsed Square CMUT Cell. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1340-1351. [PMID: 31059436 DOI: 10.1109/tuffc.2019.2914608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An accurate nonlinear lumped equivalent circuit model is used for modeling of capacitive micromachined ultrasonic transducers (CMUTs). Finite-element analysis (FEA) is a powerful tool for the analysis of CMUT arrays with a small number of cells while with the harmonic balance (HB) analysis of the lumped equivalent circuit model, the entire behavior of a large-scale arbitrary CMUT array can be modeled in a very short time. Recently, an accurate nonlinear equivalent circuit model for uncollapsed single circular CMUT cells has been developed. However, the need for an accurate large-signal circuit model for CMUT cells with square membranes motivated us to produce a new nonlinear large-signal equivalent circuit model for uncollapsed CMUT cells. In this paper, using analytical calculations and FEA as the tuning tool, a precise large signal equivalent circuit model of square CMUT dynamics was developed and showed excellent agreement with finite-element modeling (FEM) results. Then, different CMUT single cells with square and circular membranes were fabricated using a standard sacrificial release process. Model predictions of resonance frequencies and displacements closely matched experimental vibrometer measurements. The framework presented here may prove valuable for future design and modeling of CMUT arrays with square membranes for ultrasound imaging and therapy applications.
Collapse
|
17
|
Lee C, Kim JY, Kim C. Recent Progress on Photoacoustic Imaging Enhanced with Microelectromechanical Systems (MEMS) Technologies. MICROMACHINES 2018; 9:E584. [PMID: 30413091 PMCID: PMC6266184 DOI: 10.3390/mi9110584] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023]
Abstract
Photoacoustic imaging (PAI) is a new biomedical imaging technology currently in the spotlight providing a hybrid contrast mechanism and excellent spatial resolution in the biological tissues. It has been extensively studied for preclinical and clinical applications taking advantage of its ability to provide anatomical and functional information of live bodies noninvasively. Recently, microelectromechanical systems (MEMS) technologies, particularly actuators and sensors, have contributed to improving the PAI system performance, further expanding the research fields. This review introduces cutting-edge MEMS technologies for PAI and summarizes the recent advances of scanning mirrors and detectors in MEMS.
Collapse
Affiliation(s)
- Changho Lee
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, Hwasun 58128, Korea.
| | - Jin Young Kim
- Departments of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Chulhong Kim
- Departments of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
- Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| |
Collapse
|
18
|
Pun SH, Yu Y, Zhang J, Wang J, Cheng CH, Lei KF, Yuan Z, Mak PU. Monolithic Multiband CMUTs for Photoacoustic Computed Tomography With In Vivo Biological Tissue Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:465-475. [PMID: 29505413 DOI: 10.1109/tuffc.2018.2792784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Among the biomedical imaging modalities, photoacoustic computed tomography (PACT) was one of the emerging hybrid techniques in recent years. In designing the PACT imaging system, a finite-bandwidth transducer is one of the limited factors for the overall performance. As the target size is inversely proportional to the dominant frequency components of the generated photoacoustic (PA) signal, a broad bandwidth transducer is desired for different scales' imaging. In this paper, a monolithic multiband capacitive micromachined ultrasonic transducer (CMUT) array was designed and fabricated for the reception of the wideband PA signals so as to provide high-resolution images with high-frequency CMUT arrays and present the high signal-to-noise-ratio major structure with low-frequency CMUT arrays. To demonstrate its performance, a phantom experiment was conducted to show and evaluate the various qualities of multiresolution images. In addition, an in vivo mouse model experiment was also carried out for revealing the multiscale PA imaging capability with the multiband CMUTs on biological tissues. From the obtained results, the images from different CMUT arrays could show the structures of the mouse brain in different scales. In addition, the images from the high-frequency CMUT arrays were able to reveal the major blood vasculatures, whereas the images from low-frequency CMUT arrays showed the gross macroscopic anatomy of the brain with higher contrast.
Collapse
|
19
|
Sun C, Jiang S, Liu Y. Numerical Study and Optimisation of a Novel Single-Element Dual-Frequency Ultrasound Transducer. SENSORS 2018; 18:s18030703. [PMID: 29495438 PMCID: PMC5877122 DOI: 10.3390/s18030703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
Abstract
A dual-frequency ultrasound transducer (DFUT) is usually preferred for its numerous advantageous applications, especially in biomedical imaging and sensing. However, most of DFUTs are based on the combination of fundamental and harmonic operations, or integration of multiple different single-frequency ultrasound transducers, hindering perfect beam alignment and acoustic impedance matching. A novel single-element DFUT has been proposed in this paper. A small piezoelectric membrane is used as the high-frequency ultrasound transducer, which is stacked on a large non-piezoelectric elastic membrane with a groove used as the low-frequency capacitive ultrasound transducer. Such a capacitive-piezoelectric hybrid structure is theoretically analysed in details, based on the electrostatic attraction force and converse piezoelectric effect. Both the low and high resonance frequencies are independently derived, with a maximum deviation of less than 4% from the finite element simulations. Besides, a lumped-parameter equivalent circuit model of combining both the capacitive and piezoelectric ultrasound transducers was also described. Based on our dual-frequency structure design, a high-to-low frequency ratio of about 2 to more than 20 could be achieved, with easy and independent controllability of two frequencies, and the high-frequency operation shows at least an order-of-magnitude displacement sensitivity improvement compared with the conventional harmonic operations.
Collapse
Affiliation(s)
- Changhe Sun
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chonqing 400044, China.
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Senlin Jiang
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chonqing 400044, China.
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chonqing 400044, China.
- Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
20
|
Zhang J, Pun SH, Yu Y, Gao D, Wang J, Mak PU, Lei KF, Cheng CH, Yuan Z. Development of a multi-band photoacoustic tomography imaging system based on a capacitive micromachined ultrasonic transducer array. APPLIED OPTICS 2017; 56:4012-4018. [PMID: 29047533 DOI: 10.1364/ao.56.004012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photoacoustic tomography (PAT) as a hybrid technology combines the high optical contrast and high acoustic resolution in a single imaging modality. However, most of the available PAT systems cannot comprehensively or accurately characterize biological systems at multiple length scales due to the use of narrow bandwidth commercial ultrasonic transducers. In this study, we fabricated a novel multi-band capacitive micromachined ultrasonic transducer (CMUT) array, and first developed a CMUT-based multi-band photoacoustic tomography (MBPAT) imaging system. The MBPAT imaging system was examined by the phantom experiment, and then was successfully applied to image the zebrafish in vivo. The imaging results indicated that CMUT-array-based MBPAT can provide a more comprehensive and accurate characterization of biological tissues, which exhibit the potential of MBPAT/CMUT in various areas of biomedical imaging.
Collapse
|