1
|
Kim J, Menichella B, Lee H, Dayton PA, Pinton GF. A Rapid Prototyping Method for Sub-MHz Single-Element Piezoelectric Transducers by Using 3D-Printed Components. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010313. [PMID: 36616910 PMCID: PMC9823623 DOI: 10.3390/s23010313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/05/2023]
Abstract
We present a rapid prototyping method for sub-megahertz single-element piezoelectric transducers by using 3D-printed components. In most of the early research phases of applying new sonication ideas, the prototyping quickness is prioritized over the final packaging quality, since the quickness of preliminary demonstration is crucial for promptly determining specific aims and feasible research approaches. We aim to develop a rapid prototyping method for functional ultrasonic transducers to overcome the current long lead time (>a few weeks). Here, we used 3D-printed external housing parts considering a single matching layer and either air backing or epoxy-composite backing (acoustic impedance > 5 MRayl). By molding a single matching layer on the top surface of a piezoceramic in a 3D-printed housing, an entire packaging time was significantly reduced (<26 h) compared to the conventional methods with grinding, stacking, and bonding. We demonstrated this prototyping method for 590-kHz single-element, rectangular-aperture transducers for moderate pressure amplitudes (mechanical index > 1) at focus with temporal pulse controllability (maximum amplitude by <5-cycle burst). We adopted an air-backing design (Type A) for efficient pressure outputs, and bandwidth improvement was tested by a tungsten-composite-backing (Type B) design. The acoustic characterization results showed that the type A prototype provided 3.3 kPa/Vpp far-field transmitting sensitivity with 25.3% fractional bandwidth whereas the type B transducer showed 2.1 kPa/Vpp transmitting sensitivity with 43.3% fractional bandwidth. As this method provided discernable quickness and cost efficiency, this detailed rapid prototyping guideline can be useful for early-phase sonication projects, such as multi-element therapeutic ultrasound array and micro/nanomedicine testing benchtop device prototyping.
Collapse
|
2
|
Collins GC, Brumfiel TA, Bercu ZL, Desai JP, Lindsey BD. Dual-Resonance (16/32 MHz) Piezoelectric Transducer With a Single Electrical Connection for Forward-Viewing Robotic Guidewire. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1428-1441. [PMID: 35143395 PMCID: PMC9013008 DOI: 10.1109/tuffc.2022.3150746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral artery disease (PAD) affects more than 200 million people globally. Minimally invasive endovascular procedures can provide relief and salvage limbs while reducing injury rates and recovery times. Unfortunately, when a calcified chronic total occlusion is encountered, ~25% of endovascular procedures fail due to the inability to advance a guidewire using the view provided by fluoroscopy. To enable a sub-millimeter, robotically steerable guidewire to cross these occlusions, a novel single-element, dual-band transducer is developed that provides simultaneous multifrequency, forward-viewing imaging with high penetration depth and high spatial resolution while requiring only a single electrical connection. The design, fabrication, and acoustic characterization of this device are described, and proof-of-concept imaging is demonstrated in an ex vivo porcine artery after integration with a robotically steered guidewire. Measured center frequencies of the developed transducer were 16 and 32 MHz, with -6 dB fractional bandwidths of 73% and 23%, respectively. When imaging a 0.2-mm wire target at a depth of 5 mm, measured -6 dB target widths were 0.498 ± 0.02 and 0.268 ± 0.01 mm for images formed at 16 and 32 MHz, respectively. Measured SNR values were 33.3 and 21.3 dB, respectively. The 3-D images of the ex vivo artery demonstrate high penetration for visualizing vessel morphology at 16 MHz and ability to resolve small features close to the transducer at 32 MHz. Using images acquired simultaneously at both frequencies as part of an integrated forward-viewing, guidewire-based imaging system, an interventionalist could visualize the best path for advancing the guidewire to improve outcomes for patients with PAD.
Collapse
|
3
|
Jing B, Lindsey BD. Very Low Frequency Radial Modulation for Deep Penetration Contrast-Enhanced Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:530-545. [PMID: 34972572 DOI: 10.1016/j.ultrasmedbio.2021.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Contrast-enhanced ultrasound imaging allows vascular imaging in a variety of diseases. Radial modulation imaging is a contrast agent-specific imaging approach for improving microbubble detection at high imaging frequencies (≥7.5 MHz), with imaging depth limited to a few centimeters. To provide high-sensitivity contrast-enhanced ultrasound imaging at high penetration depths, a new radial modulation imaging strategy using a very low frequency (100 kHz) ultrasound modulation wave in combination with imaging pulses ≤5 MHz is proposed. Microbubbles driven at 100 kHz were imaged in 10 successive oscillation states by manipulating the pulse repetition frequency to unlock the frame rate from the number of oscillation states. Tissue background was suppressed using frequency domain radial modulation imaging (F-RMI) and singular value decomposition-based radial modulation imaging (S-RMI). One hundred-kilohertz modulation resulted in significantly higher microbubble signal magnitude (63-88 dB) at the modulation frequency relative to that without 100-kHz modulation (51-59 dB). F-RMI produced images with high contrast-to-tissue ratios (CTRs) of 15 to 22 dB in a stationary tissue phantom, while S-RMI further improved the CTR (19-26 dB). These CTR values were significantly higher than that of amplitude modulation pulse inversion images (11.9 dB). In the presence of tissue motion (1 and 10 mm/s), S-RMI produced high-contrast images with CTR up to 18 dB; however, F-RMI resulted in minimal contrast enhancement in the presence of tissue motion. Finally, in transcranial ultrasound imaging studies through a highly attenuating ex vivo cranial bone, CTR values with S-RMI were as high as 23 dB. The proposed technique demonstrates successful modulation of microbubble response at 100 kHz for the first time. The presented S-RMI low-frequency radial modulation imaging strategy represents the first demonstration of real-time (20 frames/s), high-penetration-depth radial modulation imaging for contrast-enhanced ultrasound imaging.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Choi BE, Lee HS, Sung JH, Jeong EY, Park CY, Jeong JS. Polarization Inverted Ultrasound Transducer Based on Composite Structure for Tissue Harmonic and Frequency Compound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:273-282. [PMID: 34464259 DOI: 10.1109/tuffc.2021.3109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultrasound transducer with polarization inversion technique (PIT) can provide dual-frequency feature for tissue harmonic imaging (THI) and frequency compound imaging (FCI). However, in the conventional PIT, the ultrasound intensity is reduced due to the multiple resonance characteristics of the combined piezoelectric element, and it is challenging to handle the thin piezoelectric layer required to make a PIT-based acoustic stack. In this study, an improved PIT using a piezo-composite layer was proposed to compensate for those problems simultaneously. The novel PIT-based acoustic stack also consists of two piezoelectric layers with opposite poling directions, in which the piezo-composite layer is located on the front side and the bulk-type piezoelectric layer is located on the back side. The thickness ratio between two piezoelectric layers is 0.5:0.5, but unlike a typical PIT model, it can generate dual-frequency spectrum. A finite element analysis (FEA) simulation was conducted, and subsequently, the prototype transducer was fabricated for performance demonstration. In the simulation and experiment, the intensity was increased by 56.76% and 30.88% compared to the conventional PIT model with the thickness ratio of 0.3:0.7. Thus, the proposed PIT-based transducer is expected to be useful in implementation of THI and FCI.
Collapse
|
5
|
Newsome IG, Kierski TM, Pang G, Yin J, Yang J, Cherin E, Foster FS, Carnevale CA, Demore CEM, Dayton PA. Implementation of a Novel 288-Element Dual-Frequency Array for Acoustic Angiography: In Vitro and In Vivo Characterization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2657-2666. [PMID: 33872146 PMCID: PMC8375591 DOI: 10.1109/tuffc.2021.3074025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Acoustic angiography is a superharmonic contrast-enhanced ultrasound imaging method that produces high-resolution, 3-D maps of the microvasculature. Previous acoustic angiography studies have used twoelement, annular,mechanicallyactuated transducers(called "wobblers") to image microvasculature in preclinical tumor models with high contrast-to-tissue ratio and resolution, but these earlywobbler transducerscould not achieve the depth and sensitivity required for clinical acoustic angiography. In this work, we present a system for performing acoustic angiography with a novel dual-frequency(DF) transducer-a coaxially stacked DF array (DFA). We evaluate the DFA system bothin vitro andin vivo and demonstrate improvements in sensitivity and imaging depth up to 13.1 dB and 10 mm, respectively, compared with previous wobbler probes.
Collapse
|
6
|
Strassle Rojas S, Collins GC, Tridandapani S, Lindsey BD. Ultrasound-gated computed tomography coronary angiography: Development of ultrasound transducers with improved computed tomography compatibility. Med Phys 2021; 48:4191-4204. [PMID: 34087004 DOI: 10.1002/mp.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Cardiovascular disease (CVD) is a leading cause of death worldwide, with coronary artery disease (CAD) accounting for nearly half of all CVD deaths. The current gold standard for CAD diagnosis is catheter coronary angiography (CCA), an invasive, expensive procedure. Computed tomography coronary angiography (CTCA) represents an attractive non-invasive alternative to CCA, however, CTCA requires gated acquisition of CT data during periods of minimal cardiac motion (quiescent periods) to avoid non-diagnostic scans. Current gating methods either expose patients to high levels of radiation (retrospective gating) or lead to high rates of non-diagnostic scans (prospective gating) due to the challenge of predicting cardiac quiescence based on ECG alone. Alternatively, ultrasound (US) imaging has been demonstrated as an effective indicator of cardiac quiescence, however, ultrasound transducers produce prominent streak artifacts that disrupt CTCA scans. In this study, a proof-of-concept array transducer with improved CT-compatibility was developed for utilization in an integrated US-CTCA system. METHODS Alternative materials were tested radiographically and acoustically to replace the radiopaque acoustic backings utilized in low frequency (1-4 MHz) cardiac US transducers. The results of this testing were used to develop alternative acoustic backings consisting of varying concentrations of aluminum oxide in an epoxy matrix via simulations. On the basis of these simulations, single element test transducers designed to operate at 2.5 MHz were fabricated, and the performance of these devices was characterized via acoustic and radiographic testing with micro-computed tomography (micro-CT). Finally, a first proof-of-concept cardiac phased array transducer was developed and its US imaging performance was evaluated. Micro-CT images of the developed US array with improved CT-compatibility were compared with those of a conventional array. RESULTS Materials testing with micro-CT identified an acoustic backing with a measured radiopacity of 1008 HU, more than an order of magnitude lower than that of the acoustic backing (24,000 HU) typically used in cardiac transducers operating in the 1-4 MHz range. When utilized in a simulated transducer design, this acoustic backing yielded a -6-dB fractional bandwidth of 57%, similar to the 54% bandwidth of the transducer with the radiopaque acoustic backing. The developed 2.5 MHz, single element transducer based on these simulations exhibited a fractional bandwidth of 51% and signal-to-noise ratio (SNR) of 14.7 dB. Finally, the array transducer developed with the acoustic backing having decreased radiopacity exhibited a 56% fractional bandwidth and 10.4 dB single channel SNR, with penetration depth >10 cm in phantom and in vivo imaging using the full array. CONCLUSIONS The first attempt at developing a CT-compatible ultrasound transducer is described. The developed CT-compatible transducer exhibits improved radiographic compatibility relative to conventional cardiac array transducers with similar SNR, bandwidth, and penetration depth for US imaging, according to phantom and in vivo cardiac imaging. A CT-compatible US transducer might be used to identify cardiac quiescence and prospectively gate CTCA acquisition, reducing challenges associated with current gating approaches, specifically relatively high rates of non-diagnostic scans for prospective ECG gating and high radiation dose for retrospective gating.
Collapse
Affiliation(s)
- Stephan Strassle Rojas
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Graham C Collins
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Srini Tridandapani
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brooks D Lindsey
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
7
|
Collins GC, Sarma A, Bercu ZL, Desai JP, Lindsey BD. A Robotically Steerable Guidewire With Forward-Viewing Ultrasound: Development of Technology for Minimally-Invasive Imaging. IEEE Trans Biomed Eng 2021; 68:2222-2232. [PMID: 33264091 PMCID: PMC8279262 DOI: 10.1109/tbme.2020.3042115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The current standard of care for peripheral chronic total occlusions involves the manual routing of a guidewire under fluoroscopy. Despite significant improvements in recent decades, navigation remains clinically challenging with high rates of procedural failure and iatrogenic injury. To address this challenge, we present a proof-of-concept robotic guidewire system with forward-viewing ultrasound imaging to allow visualization and maneuverability through complex vasculature. METHODS A 0.035" guidewire-specific ultrasound transducer with matching layer and acoustic backing was designed, fabricated, and characterized. The effect of guidewire motion on signal decorrelation was assessed with simulations and experimentally, driving the development of a synthetic aperture beamforming approach to form images as the transducer is steered on the robotic guidewire. System performance was evaluated by imaging wire targets in water. Finally, proof-of-concept was demonstrated by imaging an ex vivo artery. RESULTS The designed custom transducer was fabricated with a center frequency of 15.7 MHz, 45.4% fractional bandwidth, and 31 dB SNR. In imaging 20 μm wire targets at a depth of 6 mm, the lateral -6 dB target width was 0.25 ± 0.03 mm. The 3D artery reconstruction allowed visualization of vessel wall structure and lumen. CONCLUSION Initial proof-of-concept for an ultrasound transducer-tipped steerable guidewire including 3D image formation without an additional sensor to determine guidewire position was demonstrated for a sub-mm system with an integrated ultrasound transducer and a robotically-steered guidewire. SIGNIFICANCE The developed forward-viewing, robotically-steered guidewire may enable navigation through occluded vascular regions that cannot be crossed with current methods.
Collapse
|
8
|
Zhang C, Li Y, Ma X, He W, Liu C, Liu Z. Functional micro/nanobubbles for ultrasound medicine and visualizable guidance. Sci China Chem 2021; 64:899-914. [PMID: 33679901 PMCID: PMC7921288 DOI: 10.1007/s11426-020-9945-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
Chemically functionalized gas-filled bubbles with a versatile micro/nano-sized scale have witnessed a long history of developments and emerging applications in disease diagnosis and treatments. In combination with ultrasound and image-guidance, micro/nanobubbles have been endowed with the capabilities of biomedical imaging, drug delivery, gene transfection and disease-oriented therapy. As an external stimulus, ultrasound (US)-mediated targeting treatments have been achieving unprecedented efficiency. Nowadays, US is playing a crucial role in visualizing biological/pathological changes in lives as a reliable imaging technique and a powerful therapeutic tool. This review retrospects the history of ultrasound, the chemistry of functionalized agents and summarizes recent advancements of functional micro/nanobubbles as US contrast agents in preclinical and transclinical research. Latest ultrasound-based treatment modalities in association with functional micro/nanobubbles have been highlighted as their great potentials for disease precision therapy. It is believed that these state-of-the-art micro/nanobubbles will become a booster for ultrasound medicine and visualizable guidance to serve future human healthcare in a more comprehensive and practical manner.
Collapse
Affiliation(s)
- Chen Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072 China
| | - Yihong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072 China
| | - Xinyong Ma
- Division of Academic & Cultural Activities, Academic Divisions of the Chinese Academy of Sciences, Beijing, 100190 China
| | - Wenxin He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072 China
| | - Chenxi Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072 China
| | - Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
9
|
Collins GC, Jing B, Lindsey BD. High contrast power Doppler imaging in side-viewing intravascular ultrasound imaging via angular compounding. ULTRASONICS 2020; 108:106200. [PMID: 32521337 PMCID: PMC7502537 DOI: 10.1016/j.ultras.2020.106200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 05/11/2023]
Abstract
The ability to assess likelihood of plaque rupture can determine the course of treatment in coronary artery disease. One indicator of plaque vulnerability is the development of blood vessels within the plaque, or intraplaque neovascularization. In order to visualize these vessels with increased sensitivity in the cardiac catheterization lab, a new approach for imaging blood flow in small vessels using side-viewing intravascular ultrasound (IVUS) is proposed. This approach based on compounding adjacent angular acquisitions was evaluated in tissue mimicking phantoms and ex vivo vessels. In phantom studies, the Doppler CNR increased from 3.3 ± 1.0 to 13 ± 2.6 (conventional clutter filtering) and from 1.9 ± 0.15 to 7.5 ± 1.1 (SVD filtering) as a result of applying angular compounding. When imaging flow at a rate of 5.6 mm/s in 200 µm tubes adjacent to the lumen of ex vivo porcine arteries, the Doppler CNR increased from 5.3 ± 0.95 to 7.2 ± 1.3 (conventional filtering) and from 23 ± 3.3 to 32 ± 6.7 (SVD filtering). Applying these strategies could allow increased sensitivity to slow flow in side-viewing intravascular ultrasound imaging.
Collapse
Affiliation(s)
- Graham C Collins
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, United States.
| | - Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, United States
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, United States
| |
Collapse
|
10
|
Andersen KK, Frijlink ME, Johansen TF, Hoff L. A Dual-Frequency Coupled Resonator Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2119-2129. [PMID: 32746159 DOI: 10.1109/tuffc.2020.2995305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New ultrasound-mediated drug delivery systems, such as acoustic cluster therapy or combined imaging and therapy systems, require transducers that can operate beyond the bandwidth limitation (~100%) of conventional piezoceramic transducers. In this article, a dual-frequency coupled resonator transducer (CRT) comprised of a polymeric coupling layer with a low acoustic impedance (2-5 MRayl) sandwiched between two piezoceramic layers is investigated. Depending on the electrical configuration, the CRT exhibits two usable frequency bands. The resonance frequency of the high-frequency (HF) band can be tailored to be ~3-5 times higher than that of the low-frequency (LF) band using the stiffness in the coupling layer. The CRT's LF band was analyzed analytically, and we obtained the closed-form expressions for the LF resonance frequency. A dual-frequency CRT was designed, manufactured, and characterized acoustically, and comparisons with theory showed good agreement. The HF band exhibited a center frequency of 2.5 MHz with a -3-dB bandwidth of 70% and is suited to manipulate microbubbles or for diagnostic imaging applications. The LF band exhibited a center frequency of 0.5 MHz with a -3-dB bandwidth of 13% and is suited to induce biological effects in tissue, therein manipulation of microbubbles.
Collapse
|
11
|
Newsome IG, Dayton PA. Visualization of Microvascular Angiogenesis Using Dual-Frequency Contrast-Enhanced Acoustic Angiography: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2625-2635. [PMID: 32703659 PMCID: PMC7608693 DOI: 10.1016/j.ultrasmedbio.2020.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 05/07/2023]
Abstract
Cancerous tumor growth is associated with the development of tortuous, chaotic microvasculature, and this aberrant microvascular morphology can act as a biomarker of malignant disease. Acoustic angiography is a contrast-enhanced ultrasound technique that relies on superharmonic imaging to form high-resolution 3-D maps of the microvasculature. To date, acoustic angiography has been performed with dual-element transducers that can achieve high contrast-to-tissue ratio and resolution in pre-clinical small animal models. In this review, we first describe the development of acoustic angiography, including the principle, transducer design, and optimization of superharmonic imaging techniques. We then detail several preclinical applications of this microvascular imaging method, as well as the current and future development of acoustic angiography as a pre-clinical and clinical diagnostic tool.
Collapse
Affiliation(s)
- Isabel G Newsome
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
12
|
Manwar R, Kratkiewicz K, Avanaki K. Overview of Ultrasound Detection Technologies for Photoacoustic Imaging. MICROMACHINES 2020; 11:E692. [PMID: 32708869 PMCID: PMC7407969 DOI: 10.3390/mi11070692] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Ultrasound detection is one of the major components of photoacoustic imaging systems. Advancement in ultrasound transducer technology has a significant impact on the translation of photoacoustic imaging to the clinic. Here, we present an overview on various ultrasound transducer technologies including conventional piezoelectric and micromachined transducers, as well as optical ultrasound detection technology. We explain the core components of each technology, their working principle, and describe their manufacturing process. We then quantitatively compare their performance when they are used in the receive mode of a photoacoustic imaging system.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
13
|
Kierski TM, Espindola D, Newsome IG, Cherin E, Yin J, Foster FS, Demore CEM, Pinton GF, Dayton PA. Superharmonic Ultrasound for Motion-Independent Localization Microscopy: Applications to Microvascular Imaging From Low to High Flow Rates. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:957-967. [PMID: 31940529 PMCID: PMC7297200 DOI: 10.1109/tuffc.2020.2965767] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Recent advances in high frame rate biomedical ultrasound have led to the development of ultrasound localization microscopy (ULM), a method of imaging microbubble (MB) contrast agents beyond the diffraction limit of conventional coherent imaging techniques. By localizing and tracking the positions of thousands of individual MBs, ultrahigh resolution vascular maps are generated which can be further analyzed to study disease. Isolating bubble echoes from tissue signal is a key requirement for super-resolution imaging which relies on the spatiotemporal separability and localization of the bubble signals. To date, this has been accomplished either during acquisition using contrast imaging sequences or post-beamforming by applying a spatiotemporal filter to the B-mode images. Superharmonic imaging (SHI) is another contrast imaging method that separates bubbles from tissue based on their strongly nonlinear acoustic properties. This approach is highly sensitive, and, unlike spatiotemporal filters, it does not require decorrelation of contrast agent signals. Since this superharmonic method does not rely on bubble velocity, it can detect completely stationary and moving bubbles alike. In this work, we apply SHI to ULM and demonstrate an average improvement in SNR of 10.3-dB in vitro when compared with the standard singular value decomposition filter approach and an increase in SNR at low flow ( [Formula: see text]/frame) from 5 to 16.5 dB. Additionally, we apply this method to imaging a rodent kidney in vivo and measure vessels as small as [Formula: see text] in diameter after motion correction.
Collapse
|
14
|
Chan J, Zheng Z, Bell K, Le M, Reza PH, Yeow JTW. Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3617. [PMID: 31434241 PMCID: PMC6720758 DOI: 10.3390/s19163617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging technique that bridges the gap between pure optical and acoustic techniques to provide images with optical contrast at the acoustic penetration depth. The two key components that have allowed PAI to attain high-resolution images at deeper penetration depths are the photoacoustic signal generator, which is typically implemented as a pulsed laser and the detector to receive the generated acoustic signals. Many types of acoustic sensors have been explored as a detector for the PAI including Fabry-Perot interferometers (FPIs), micro ring resonators (MRRs), piezoelectric transducers, and capacitive micromachined ultrasound transducers (CMUTs). The fabrication technique of CMUTs has given it an edge over the other detectors. First, CMUTs can be easily fabricated into given shapes and sizes to fit the design specifications. Moreover, they can be made into an array to increase the imaging speed and reduce motion artifacts. With a fabrication technique that is similar to complementary metal-oxide-semiconductor (CMOS), CMUTs can be integrated with electronics to reduce the parasitic capacitance and improve the signal to noise ratio. The numerous benefits of CMUTs have enticed researchers to develop it for various PAI purposes such as photoacoustic computed tomography (PACT) and photoacoustic endoscopy applications. For PACT applications, the main areas of research are in designing two-dimensional array, transparent, and multi-frequency CMUTs. Moving from the table top approach to endoscopes, some of the different configurations that are being investigated are phased and ring arrays. In this paper, an overview of the development of CMUTs for PAI is presented.
Collapse
Affiliation(s)
- Jasmine Chan
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhou Zheng
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kevan Bell
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Martin Le
- Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Parsin Haji Reza
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - John T W Yeow
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
15
|
Fix SM, Koppolu BP, Novell A, Hopkins J, Kierski TM, Zaharoff DA, Dayton PA, Papadopoulou V. Ultrasound-Stimulated Phase-Change Contrast Agents for Transepithelial Delivery of Macromolecules, Toward Gastrointestinal Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1762-1776. [PMID: 31003709 PMCID: PMC6701470 DOI: 10.1016/j.ultrasmedbio.2019.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 05/23/2023]
Abstract
The gastrointestinal (GI) tract presents a notoriously difficult barrier for macromolecular drug delivery, especially for biologics. Herein, we demonstrate that ultrasound-stimulated phase change contrast agents (PCCAs) can transiently disrupt confluent colorectal adenocarcinoma monolayers and improve the transepithelial transport of a macromolecular model drug. With ultrasound treatment in the presence of PCCAs, we achieved a maximum of 44 ± 15% transepithelial delivery of 70-kDa fluorescein isothiocyanate-dextran, compared with negligible delivery through sham control monolayers. Among all tested rarefactional pressures (300-600 kPa), dextran delivery efficiency was consistently greatest at 300 kPa. To explore this unexpected finding, we quantified stable and inertial cavitation energy generated by various ultrasound exposure conditions. In general, lower pressures resulted in more persistent cavitation activity during the 30-s ultrasound exposures, which may explain the enhanced dextran delivery efficiency. Thus, a unique advantage of using low boiling point PCCAs for this application is that the same low-pressure pulses can be used to induce vaporization and provide maximal delivery.
Collapse
Affiliation(s)
- Samantha M Fix
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bhanu P Koppolu
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Anthony Novell
- IR4M, Université Paris-Saclay, CNRS UMR 8081, 91401 Orsay, France
| | - Jared Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Thomas M Kierski
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A Dayton
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Liu X, Colli-Menchi AI, Sanchez-Sinencio E. Ultrasonic Electric Scalpels Based on a Sliding-Mode Controller With an Auxiliary PLL Frequency Discriminator. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1226-1235. [PMID: 29293420 DOI: 10.1109/tbcas.2017.2773618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The first monolithic state-of-the-art controller was proposed and implemented for an electric scalpel system. A piezoelectric transducer (PT) is driven in ultrasonic resonant frequency to generate electromechanical power for thermal sealing and cold dissection operations. The band-pass filter based oscillator was developed to automatically track the PT's optimal longitudinal resonance. However, under heavy loading conditions, the PT will lock to other unwanted transverse resonant modes and deliver no usable power to the surgical tip. To prevent this abnormal operation, a phase-locked loop based frequency discriminator with intervention and release logic was developed to ensure that the PT always operates at the proper frequency of 55.5 kHz. Another crucial challenge is that the changing of loading conditions induces a motional current sensing mismatch and a pole-zero pair, consequently causing instability and poor response time. Therefore, a sliding mode control method with reduced-order sensing was proposed to handle the extreme load changes and provide a fast power build-up time of 9.2 ms, which is 8% faster than previously reported designs and 49% faster than the best commercial product. Sealing and dissection surgical operations are realized with 17.5 W maximum power.
Collapse
|
17
|
Shelton SE, Lindsey BD, Dayton PA, Lee YZ. First-in-Human Study of Acoustic Angiography in the Breast and Peripheral Vasculature. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2939-2946. [PMID: 28982628 PMCID: PMC6267932 DOI: 10.1016/j.ultrasmedbio.2017.08.1881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 05/07/2023]
Abstract
Screening with mammography has been found to increase breast cancer survival rates by about 20%. However, the current system in which mammography is used to direct patients toward biopsy or surgical excision also results in relatively high rates of unnecessary biopsy, as 66.8% of biopsies are benign. A non-ionizing radiation imaging approach with increased specificity might reduce the rate of unnecessary biopsies. Quantifying the vascular characteristics within and surrounding lesions represents one potential target for assessing likelihood of malignancy via imaging. In this clinical note, we describe the translation of a contrast-enhanced ultrasound technique, acoustic angiography, to human imaging. We illustrate the feasibility of this technique with initial studies in imaging the hand, wrist and breast using Definity microbubble contrast agent and a mechanically steered prototype dual-frequency transducer in healthy volunteers. Finally, this approach was used to image pre-biopsy Breast Imaging Reporting and Data System (BI-RADS) 4 and 5 lesions <2 cm in depth in 11 patients. Results indicate that sensitivity and spatial resolution are sufficient to image vessels as small as 0.2 mm in diameter at depths of ~15 mm in the human breast. Challenges observed include motion artifacts, as well as limited depth of field and sensitivity, which could be improved by correction algorithms and improved transducer technologies.
Collapse
Affiliation(s)
- Sarah E Shelton
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA; Biomedical Research Imaging Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Yueh Z Lee
- Biomedical Research Imaging Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA; Department of Radiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Lindsey BD, Shelton SE, Martin KH, Ozgun KA, Rojas JD, Foster FS, Dayton PA. High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography. Ann Biomed Eng 2016; 45:939-948. [PMID: 27832421 DOI: 10.1007/s10439-016-1753-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Sarah E Shelton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Kathryn A Ozgun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | | | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA. .,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|