1
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
2
|
Shinar H, Ilovitsh T. Volumetric Passive Acoustic Mapping and Cavitation Detection of Nanobubbles under Low-Frequency Insonation. ACS MATERIALS AU 2025; 5:159-169. [PMID: 39802150 PMCID: PMC11718533 DOI: 10.1021/acsmaterialsau.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 01/16/2025]
Abstract
Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals. We introduce a US-guided focused US system comprising a one-dimensional (1D) motorized rotating imaging transducer positioned within a low-frequency therapeutic transducer (center frequencies of 105 and 200 kHz), facilitating precise monitoring of NB cavitation activity in three-dimensional (3D) and comparison with MBs. Passive cavitation detection (PCD) revealed frequency-dependent responses, with NBs exhibiting significantly higher stable and inertial cavitation doses compared to MBs of the same gas volume when excited at a center frequency of 105 kHz and peak negative pressures ranging from 100 to 350 kPa. At 200 kHz, MBs showed higher cavitation doses than NBs. PCD showed that 105 kHz enhanced both NBs' and MBs' oscillations compared to 200 kHz. The system was further used for 3D passive acoustic mapping (PAM) to provide spatial resolution alongside PCD monitoring. Two-dimensional PAM was captured for each rotation angle and used to generate a complete 3D PAM reconstruction. Experimental results obtained from a tube phantom demonstrated consistent contrast PAM full-width half-maximum (FWHM) as a function of rotation angle, with similar FWHM between MBs and NBs. Frequency-selective PAM maps distinguished between stable and inertial cavitation via the harmonic, ultraharmonic and broadband content, offering insights into cavitation dynamics. These findings highlight NBs' superior performance at lower frequencies. The developed 3D-PAM technique with a 1D transducer presents a promising technology for real-time, noninvasive monitoring of cavitation-based US therapies.
Collapse
Affiliation(s)
- Hila Shinar
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol
School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Suarez Escudero D, Haworth KJ, Genstler C, Holland CK. Quantifying the Effect of Acoustic Parameters on Temporal and Spatial Cavitation Activity: Gauging Cavitation Dose. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2388-2397. [PMID: 37648590 PMCID: PMC10581030 DOI: 10.1016/j.ultrasmedbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Cavitation-enhanced delivery of therapeutic agents is under development for the treatment of cancer and neurodegenerative and cardiovascular diseases, including sonothrombolysis for deep vein thrombosis. The objective of this study was to quantify the spatial and temporal distribution of cavitation activity nucleated by Definity infused through the EKOS catheter over a range of acoustic parameters controlled by the EKOS endovascular system. METHODS Three insonation protocols were compared in an in vitro phantom mimicking venous flow to measure the effect of peak rarefactional pressure, pulse duration and pulse repetition frequency on cavitation activity energy, location and duration. Inertial and stable cavitation activity was quantified using passive cavitation imaging, and a metric of cavitation dose based on energy density was defined. RESULTS For all three insonation protocols, cavitation was sustained for the entire 30 min Definity infusion. The evolution of cavitation energy during each pulse duration was similar for all three protocols. For insonation protocols with higher peak rarefactional acoustic pressures, inertial and stable cavitation doses also increased. A complex relationship between the temporal behavior of cavitation energy within each pulse and the pulse repetition frequency affected the cavitation dose for the three insonation protocols. The relative predominance of stable or inertial cavitation dose varied according to insonation schemes. Passive cavitation images revealed the spatial distribution of cavitation activity. CONCLUSION Our cavitation dose metric based on energy density enabled the impact of different acoustic parameters on cavitation activity to be measured. Depending on the type of cavitation to be promoted or suppressed, particular pulsing schemes could be employed in future studies, for example, to correlate cavitation dose with sonothrombolytic efficacy.
Collapse
Affiliation(s)
- Daniel Suarez Escudero
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | | | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Kennedy SR, Lafond M, Haworth KJ, Escudero DS, Ionascu D, Frierson B, Huang S, Klegerman ME, Peng T, McPherson DD, Genstler C, Holland CK. Initiating and imaging cavitation from infused echo contrast agents through the EkoSonic catheter. Sci Rep 2023; 13:6191. [PMID: 37062767 PMCID: PMC10106464 DOI: 10.1038/s41598-023-33164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Ultrasound-enhanced delivery of therapeutic-loaded echogenic liposomes is under development for vascular applications using the EkoSonic Endovascular System. In this study, fibrin-targeted echogenic liposomes loaded with an anti-inflammatory agent were characterized before and after infusion through an EkoSonic catheter. Cavitation activity was nucleated by Definity or fibrin-targeted, drug-loaded echogenic liposomes infused and insonified with EkoSonic catheters. Passive cavitation imaging was used to quantify and map bubble activity in a flow phantom mimicking porcine arterial flow. Cavitation was sustained during 3-min infusions of Definity or echogenic liposomes along the distal 6 cm treatment zone of the catheter. Though the EkoSonic catheter was not designed specifically for cavitation nucleation, infusion of drug-loaded echogenic liposomes can be employed to trigger and sustain bubble activity for enhanced intravascular drug delivery.
Collapse
Affiliation(s)
- Sonya R Kennedy
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cardiovascular Center 3935, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Maxime Lafond
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cardiovascular Center 3935, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
- LabTAU, Inserm, Université Lyon 1, Lyon, France
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cardiovascular Center 3935, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel Suarez Escudero
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cardiovascular Center 3935, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
| | - Dan Ionascu
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Brion Frierson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shaoling Huang
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Melvin E Klegerman
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Peng
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David D McPherson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cardiovascular Center 3935, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA.
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Bhargava A, Huang S, McPherson DD, Bader KB. Assessment of bubble activity generated by histotripsy combined with echogenic liposomes. Phys Med Biol 2022; 67:215015. [PMID: 36220055 DOI: 10.1088/1361-6560/ac994f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Objective.Histotripsy is a form of focused ultrasound therapy that uses the mechanical activity of bubbles to ablate tissue. While histotripsy alone degrades the cellular content of tissue, recent studies have demonstrated it effectively disrupts the extracellular structure of pathologic conditions such as venous thrombosis when combined with a thrombolytic drug. Rather than relying on standard administration methods, associating thrombolytic drugs with an ultrasound-triggered echogenic liposome vesicle will enable targeted, systemic drug delivery. To date, histotripsy has primarily relied on nano-nuclei inherent to the medium for bubble cloud generation, and microbubbles associated with echogenic liposomes may alter the histotripsy bubble dynamics. The objective of this work was to investigate the interaction of histotripsy pulse with echogenic liposomes.Approach.Bubble clouds were generated using a focused source in anin vitromodel of venous flow. Acoustic emissions generated during the insonation were passively acquired to assess the mechanical activity of the bubble cloud. High frame rate, pulse inversion imaging was used to track the change in echogenicity of the liposomes following histotripsy exposure.Main results.For peak negative pressures less than 20 MPa, acoustic emissions indicative of stable and inertial bubble activity were observed. As the peak negative pressure of the histotripsy excitation increased, harmonics of the excitation were observed in OFP t-ELIP solutions and plasma alone. Additional observations with high frame rate imaging indicated a transition of bubble behavior as the pulse pressure transitioned to shock wave formation.Significance.These observations suggest that a complex interaction between histotripsy pulses and echogenic liposomes that may be exploited for combination treatment approaches.
Collapse
Affiliation(s)
- Aarushi Bhargava
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Shaoling Huang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Sciences Center-Houston, Houston, TX, United States of America
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Sciences Center-Houston, Houston, TX, United States of America
| | - Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
6
|
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers (Basel) 2022; 14:2577. [PMID: 35681557 PMCID: PMC9179649 DOI: 10.3390/cancers14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) diagnosis accompanies a somber prognosis for the patient, with dismal survival odds: 5% at 5 years. Despite extensive research, PDAC is expected to become the second leading cause of mortality by cancer by 2030. Ultrasound (US) has been used successfully in treating other types of cancer and evidence is flourishing that it could benefit PDAC patients. High-intensity focused US (HIFU) is currently used for pain management in palliative care. In addition, clinical work is being performed to use US to downstage borderline resectable tumors and increase the proportion of patients eligible for surgical ablation. Focused US (FUS) can also induce mechanical effects, which may elicit an anti-tumor response through disruption of the stroma and can be used for targeted drug delivery. More recently, sonodynamic therapy (akin to photodynamic therapy) and immunomodulation have brought new perspectives in treating PDAC. The aim of this review is to summarize the current state of those techniques and share our opinion on their future and challenges.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Thomas Lambin
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - Robert Andrew Drainville
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Aurélien Dupré
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Mathieu Pioche
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - David Melodelima
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Cyril Lafon
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| |
Collapse
|
7
|
Li M, Gu J, Vu T, Sankin G, Zhong P, Yao J, Jing Y. Time-Resolved Passive Cavitation Mapping Using the Transient Angular Spectrum Approach. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2361-2369. [PMID: 33635787 PMCID: PMC8269954 DOI: 10.1109/tuffc.2021.3062357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Passive cavitation mapping (PCM), which generates images using bubble acoustic emission signals, has been increasingly used for monitoring and guiding focused ultrasound surgery (FUS). PCM can be used as an adjunct to magnetic resonance imaging to provide crucial information on the safety and efficacy of FUS. The most widely used algorithm for PCM is delay-and-sum (DAS). One of the major limitations of DAS is its suboptimal computational efficiency. Although frequency-domain DAS can partially resolve this issue, such an algorithm is not suitable for imaging the evolution of bubble activity in real time and for cases in which cavitation events occur asynchronously. This study investigates a transient angular spectrum (AS) approach for PCM. The working principle of this approach is to backpropagate the received signal to the domain of interest and reconstruct the spatial-temporal wavefield encoded with the bubble location and collapse time. The transient AS approach is validated using an in silico model and water bath experiments. It is found that the transient AS approach yields similar results to DAS, but it is one order of magnitude faster. The results obtained by this study suggest that the transient AS approach is promising for fast and accurate PCM.
Collapse
|
8
|
Telichko AV, Lee T, Jakovljevic M, Dahl JJ. Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part I: Theory and Validation Through Simulations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1184-1197. [PMID: 33141665 PMCID: PMC8486001 DOI: 10.1109/tuffc.2020.3035696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Passive cavitation mapping (PCM) algorithms for diagnostic ultrasound arrays based on time exposure acoustics (TEA) exhibit poor axial resolution, which is in part due to the diffraction-limited point spread function of the imaging system and poor rejection by the delay-and-sum beamformer. In this article, we adapt a method for speed of sound estimation to be utilized as a cavitation source localization (CSL) approach. This method utilizes a hyperbolic fit to the arrival times of the cavitation signals in the aperture domain, and the coefficients of the fit are related to the position of the cavitation source. Wavefronts exhibiting poor fit to the hyperbolic function are corrected to yield improved source localization. We demonstrate through simulations that this method is capable of accurate estimation of the origin of coherent spherical waves radiating from cavitation/point sources. The average localization error from simulated microbubble sources was 0.12 ± 0.12mm ( 0.15 ± 0.14λ0 for a 1.78-MHz transmit frequency). In simulations of two simultaneous cavitation sources, the proposed technique had an average localization error of 0.2mm ( 0.23λ0 ), whereas conventional TEA had an average localization error of 0.81mm ( 0.97λ0 ). The reconstructed PCM-CSL image showed a significant improvement in resolution compared with the PCM-TEA approach.
Collapse
|
9
|
Polichetti M, Varray F, Gilles B, Bera JC, Nicolas B. Use of the Cross-Spectral Density Matrix for Enhanced Passive Ultrasound Imaging of Cavitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:910-925. [PMID: 33079648 DOI: 10.1109/tuffc.2020.3032345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Passive ultrasound imaging is of great interest for cavitation monitoring. Spatiotemporal monitoring of cavitation bubbles in therapeutic applications is possible using an ultrasound imaging probe to passively receive the acoustic signals from the bubbles. Fourier-domain (FD) beamformers have been proposed to process the signals received into maps of the spatial localization of cavitation activity, with reduced computing times with respect to the time-domain approach, and to take advantage of frequency selectivity for cavitation regime characterization. The approaches proposed have been mainly nonadaptive, and these have suffered from low resolution and contrast, due to the many reconstruction artifacts. Inspired by the array-processing literature and in the context of passive ultrasound imaging of cavitation, we propose here a robust estimation of the second-order statistics of data through spatial covariance matrices in the FD or cross-spectral density matrices (CSMs). The benefits of such formalism are illustrated using advanced reconstruction algorithms, such as the robust Capon beamformer, the Pisarenko class beamformer, and the multiple signal classification approach. Through both simulations and experiments in a water tank, we demonstrate that enhanced localization of cavitation activity (i.e., improved resolution and contrast with respect to nonadaptive approaches) is compatible with the rapid and frequency-selective approaches of the FD. Robust estimation of the CSM and the derived adaptive beamformers paves the way to the development of powerful passive ultrasound imaging tools.
Collapse
|
10
|
Bader KB, Hendley SA, Bollen V. Assessment of Collaborative Robot (Cobot)-Assisted Histotripsy for Venous Clot Ablation. IEEE Trans Biomed Eng 2021; 68:1220-1228. [PMID: 32915723 PMCID: PMC8018710 DOI: 10.1109/tbme.2020.3023630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The application of bubble-based ablation with the focus ultrasound therapy histotripsy is gaining traction for the treatment of venous thrombosis, among other pathologies. For extensive clot burden, the histotripsy source must be translated to ensure uniform bubble activity throughout the vascular obstruction. The purpose of this study was to evaluate the targeting accuracy of a histotripsy system comprised of a focused source, ultrasound image guidance, and a collaborative robot (cobot) positioner. The system was designed with a primary emphasis for treating deep vein thrombosis. METHODS Studies to test treatment planning and targeting bubble activity with the histotripsy-cobot system were conducted in an in vitro clot model. A tissue-mimicking phantom was also targeted with the system, and the predicted and actual areas of liquefaction were compared to gauge the spatial accuracy of ablation. RESULTS The system provided submillimeter accuracy for both tracking along an intended path (within 0.6 mm of a model vessel) and targeting bubble activity within the venous clot model (0.7 mm from the center of the clot). Good correlation was observed between the planned and actual liquefaction locations in the tissue phantom, with an average Dice similarity coefficient of 77.8%, and average Hausdorff distance of 1.6 mm. CONCLUSION Cobots provide an effective means to apply histotripsy pulses over a treatment volume, with the ablation precision contingent on the quality of image guidance. SIGNIFICANCE Overall, these results demonstrate cobots can be used to guide histotripsy ablation for targets that extend beyond the natural focus of the transducer.
Collapse
|
11
|
Lafond M, Salido NG, Haworth KJ, Hannah AS, Macke GP, Genstler C, Holland CK. Cavitation Emissions Nucleated by Definity Infused through an EkoSonic Catheter in a Flow Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:693-709. [PMID: 33349516 PMCID: PMC11537209 DOI: 10.1016/j.ultrasmedbio.2020.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
The EkoSonic endovascular system has been cleared by the U.S. Food and Drug Administration for the controlled and selective infusion of physician specified fluids, including thrombolytics, into the peripheral vasculature and the pulmonary arteries. The objective of this study was to explore whether this catheter technology could sustain cavitation nucleated by infused Definity, to support subsequent studies of ultrasound-mediated drug delivery to diseased arteries. The concentration and attenuation spectroscopy of Definity were assayed before and after infusion at 0.3, 2.0 and 4.0 mL/min through the EkoSonic catheter. PCI was used to map and quantify stable and inertial cavitation as a function of Definity concentration in a flow phantom mimicking the porcine femoral artery. The 2.0 mL/min infusion rate yielded the highest surviving Definity concentration and acoustic attenuation. Cavitation was sustained throughout each 15 ms ultrasound pulse, as well as throughout the 3 min infusion. These results demonstrate a potential pathway to use cavitation nucleation to promote drug delivery with the EkoSonic endovascular system.
Collapse
Affiliation(s)
- Maxime Lafond
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Nuria G Salido
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Gregory P Macke
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Gray MD, Elbes D, Paverd C, Lyka E, Coviello CM, Cleveland RO, Coussios CC. Dual-Array Passive Acoustic Mapping for Cavitation Imaging With Enhanced 2-D Resolution. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:647-663. [PMID: 32845836 DOI: 10.1109/tuffc.2020.3019573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Passive acoustic mapping (PAM) techniques have been developed for the purposes of detecting, localizing, and quantifying cavitation activity during therapeutic ultrasound procedures. Implementation with conventional diagnostic ultrasound arrays has allowed planar mapping of bubble acoustic emissions to be overlaid with B-mode anatomical images, with a variety of beamforming approaches providing enhanced resolution at the cost of extended computation times. However, no passive signal processing techniques implemented to date have overcome the fundamental physical limitation of the conventional diagnostic array aperture that results in point spread functions with axial/lateral beamwidth ratios of nearly an order of magnitude. To mitigate this problem, the use of a pair of orthogonally oriented diagnostic arrays was recently proposed, with potential benefits arising from the substantially expanded range of observation angles. This article presents experiments and simulations intended to demonstrate the performance and limitations of the dual-array system concept. The key finding of this study is that source pair resolution of better than 1 mm is now possible in both dimensions of the imaging plane using a pair of 7.5-MHz center frequency conventional arrays at a distance of 7.6cm. With an eye toward accelerating computations for real-time applications, channel count reductions of up to a factor of eight induce negligible performance losses. Modest sensitivities to sound speed and relative array position uncertainties were identified, but if these can be kept on the order of 1% and 1 mm, respectively, then the proposed methods offer the potential for a step improvement in cavitation monitoring capability.
Collapse
|
13
|
Kamimura HAS, Wu SY, Grondin J, Ji R, Aurup C, Zheng W, Heidmann M, Pouliopoulos AN, Konofagou EE. Real-Time Passive Acoustic Mapping Using Sparse Matrix Multiplication. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:164-177. [PMID: 32746182 PMCID: PMC7770101 DOI: 10.1109/tuffc.2020.3001848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Passive acoustic mapping enables the spatiotemporal monitoring of cavitation with circulating microbubbles during focused ultrasound (FUS)-mediated blood-brain barrier opening. However, the computational load for processing large data sets of cavitation maps or more complex algorithms limit the visualization in real-time for treatment monitoring and adjustment. In this study, we implemented a graphical processing unit (GPU)-accelerated sparse matrix-based beamforming and time exposure acoustics in a neuronavigation-guided ultrasound system for real-time spatiotemporal monitoring of cavitation. The system performance was tested in silico through benchmarking, in vitro using nonhuman primate (NHP) and human skull specimens, and demonstrated in vivo in NHPs. We demonstrated the stability of the cavitation map for integration times longer than 62.5 [Formula: see text]. A compromise between real-time displaying and cavitation map quality obtained from beamformed RF data sets with a size of 2000 ×128 ×30 (axial [Formula: see text]) was achieved for an integration time of [Formula: see text], which required a computational time of 0.27 s (frame rate of 3.7 Hz) and could be displayed in real-time between pulses at PRF = 2 Hz. Our benchmarking tests show that the GPU sparse-matrix algorithm processed the RF data set at a computational rate of [Formula: see text]/pixel/sample, which enables adjusting the frame rate and the integration time as needed. The neuronavigation system with real-time implementation of cavitation mapping facilitated the localization of the cavitation activity and helped to identify distortions due to FUS phase aberration. The in vivo test of the method demonstrated the feasibility of GPU-accelerated sparse matrix computing in a close to a clinical condition, where focus distortions exemplify problems during treatment. These experimental conditions show the need for spatiotemporal monitoring of cavitation with real-time capability that enables the operator to correct or halt the sonication in case substantial aberrations are observed.
Collapse
|
14
|
Smith CAB, Coussios CC. Spatiotemporal Assessment of the Cellular Safety of Cavitation-Based Therapies by Passive Acoustic Mapping. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1235-1243. [PMID: 32111455 DOI: 10.1016/j.ultrasmedbio.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 05/09/2023]
Abstract
Many useful therapeutic bio-effects can be generated using ultrasound-induced cavitation. However, cavitation is also capable of causing unwanted cellular and vascular damage, which should be monitored to ensure treatment safety. In this work, the unique opportunity provided by passive acoustic mapping (PAM) to quantify cavitation dose across an entire volume of interest during therapy is utilised to provide setup-independent measures of spatially localised cavitation dose. This spatiotemporally quantifiable cavitation dose is then related to the level of cellular damage generated. The cavitation-mediated destruction of equine red blood cells mixed with one of two types of cavitation nuclei at a variety of concentrations is investigated. The blood is placed within a 0.5-MHz ultrasound field and exposed to a range of peak rarefactional pressures up to 2 MPa, with 50 to 50,000 cycle pulses maintaining a 5% duty cycle. Two co-planar linear arrays at 90° to each other are used to generate 400-µm-resolution frequency domain robust capon beamforming PAM maps, which are then used to generate estimates of cavitation dose. A relationship between this cavitation dose and the levels of haemolysis generated was found which was comparable regardless of the applied acoustic pressure, pulse length, cavitation agent type or concentration used. PAM was then used to monitor cellular damage in multiple locations within a tissue phantom simultaneously, with the damage-cavitation dose relationship being similar for the two experimental models tested. These results lay the groundwork for this method to be applied to other measures of safety, allowing for improved ultrasound monitoring of cavitation-based therapies.
Collapse
Affiliation(s)
- Cameron A B Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
15
|
Gray MD, Coussios CC. Compensation of array lens effects for improved co-registration of passive acoustic mapping and B-mode images for cavitation monitoring. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146. [PMID: 31370617 PMCID: PMC7080234 DOI: 10.1121/1.5118238#suppl] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Passive acoustic mapping (PAM) techniques offer a simple means of spatio-temporal cavitation monitoring during therapeutic ultrasound procedures. Implementation with a conventional diagnostic ultrasound system allows natural integration of PAM with B-mode imaging. However, the refracting properties of diagnostic array lenses may introduce PAM image registration errors that could lead to inaccuracies in treatment monitoring and guidance. To address these concerns, this paper presents lens characterization of two different array designs, analytical estimation of lens-induced source mapping errors in simple media, and experimental demonstration and correction of lens effects, reducing the depth-averaged image co-registration errors to no more than 0.52 mm.
Collapse
Affiliation(s)
- Michael D Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| |
Collapse
|
16
|
Gray MD, Coussios CC. Compensation of array lens effects for improved co-registration of passive acoustic mapping and B-mode images for cavitation monitoring. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:EL78. [PMID: 31370617 PMCID: PMC7080234 DOI: 10.1121/1.5118238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Passive acoustic mapping (PAM) techniques offer a simple means of spatio-temporal cavitation monitoring during therapeutic ultrasound procedures. Implementation with a conventional diagnostic ultrasound system allows natural integration of PAM with B-mode imaging. However, the refracting properties of diagnostic array lenses may introduce PAM image registration errors that could lead to inaccuracies in treatment monitoring and guidance. To address these concerns, this paper presents lens characterization of two different array designs, analytical estimation of lens-induced source mapping errors in simple media, and experimental demonstration and correction of lens effects, reducing the depth-averaged image co-registration errors to no more than 0.52 mm.
Collapse
Affiliation(s)
- Michael D Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| |
Collapse
|
17
|
Paverd C, Lyka E, Elbes D, Coussios C. Passive acoustic mapping of extravasation following ultrasound-enhanced drug delivery. ACTA ACUST UNITED AC 2019; 64:045006. [DOI: 10.1088/1361-6560/aafcc1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Lyka E, Coviello CM, Paverd C, Gray MD, Coussios CC. Passive Acoustic Mapping Using Data-Adaptive Beamforming Based on Higher Order Statistics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2582-2592. [PMID: 29994701 DOI: 10.1109/tmi.2018.2843291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sources of nonlinear acoustic emissions, particularly those associated with cavitation activity, play a key role in the safety and efficacy of current and emerging therapeutic ultrasound applications, such as oncological drug delivery, blood-brain barrier opening, and histotripsy. Passive acoustic mapping (PAM) is the first technique to enable real-time and non-invasive imaging of cavitation activity during therapeutic ultrasound exposure, through the recording and passive beamforming of broadband acoustic emissions using an array of ultrasound detectors. Initial limitations in PAM spatial resolution led to the adoption of optimal data-adaptive beamforming algorithms, such as the robust capon beamformer (RCB), that provide improved interference suppression and calibration error mitigation compared to non-adaptive beamformers. However, such approaches are restricted by the assumption that the recorded signals have a Gaussian distribution. To overcome this limitation and further improve the source resolvability of PAM, we propose a new beamforming approach termed robust beamforming by linear programming (RLPB). Along with the variance, this optimization-based method uses higher-order-statistics of the recorded signals, making no prior assumption on the statistical distribution of the acoustic signals. The RLPB is found via numerical simulations to improve resolvability over time exposure acoustics and RCB. In vitro experimentation yielded improved resolvability with respect to the source-to-array distance on the order of 22% axially and 13% transversely relative to RCB, whilst successfully accounting for array calibration errors. The improved resolution and decreased dependence on accurate calibration of RLPB is expected to facilitate the clinical translation of PAM for diagnostic, including super-resolution, and therapeutic ultrasound applications.
Collapse
|
19
|
Rich KT, Holland CK, Rao MB, Mast TD. Characterization of cavitation-radiated acoustic power using diffraction correction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:3563. [PMID: 30599638 PMCID: PMC6308017 DOI: 10.1121/1.5083831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A method is developed for compensating absolute pressure measurements made by a calibrated passive cavitation detector (PCD) to estimate the average acoustic power radiated from a region of interest (ROI) defined to encompass all cavitating bubbles. A diffraction correction factor for conversion of PCD-measured pressures to cavitation-radiated acoustic power per unit area or volume is derived as a simple analytic expression, accounting for position- and frequency-dependent PCD sensitivity. This approach can be applied to measurements made by any PCD without precise knowledge of the number, spatial, or temporal distribution of cavitating bubbles. The diffraction correction factor is validated in simulation for a wide range of ROI dimensions and frequencies. The correction factor is also applied to emission measurements obtained during in vitro ultrasound-enhanced sonophoresis experiments, allowing comparison of stable cavitation levels between therapeutic configurations with different source center frequencies. Results incorporating sonication at both 0.41 and 2.0 MHz indicate that increases in skin permeability correlate strongly with the acoustic power of subharmonic emissions radiated per unit skin area.
Collapse
Affiliation(s)
- Kyle T Rich
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Christy K Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Marepalli B Rao
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - T Douglas Mast
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
20
|
Gray MD, Coussios CC. Broadband Ultrasonic Attenuation Estimation and Compensation With Passive Acoustic Mapping. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1997-2011. [PMID: 30130184 DOI: 10.1109/tuffc.2018.2866171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Several active and passive techniques have been developed to detect, localize, and quantify cavitation activity during therapeutic ultrasound procedures. Much of the prior cavitation monitoring research has been conducted using lossless in vitro systems or small animal models in which path attenuation effects were minimal. However, the performance of these techniques may be substantially degraded by attenuation between the internal therapeutic target and the external monitoring system. As a further step toward clinical application of passive acoustic mapping (PAM), this paper presents methods for attenuation estimation and compensation based on broadband cavitation data measured with a linear ultrasound array. Soft tissue phantom experiment results are used to illustrate: 1) the impact of realistic attenuation on PAM; 2) the possibility of estimating attenuation from cavitation data; 3) cavitation source energy estimation following attenuation compensation; and 4) the impact of sound speed uncertainty on PAM-related processing. Cavitation-based estimates of attenuation were within 1.5%-6.2% of the values found from conventional through-transmission measurements. Tissue phantom attenuation reduced the PAM energy estimate by an order of magnitude, but array data compensation using the cavitation-based attenuation spectrum enabled recovery of the PAM energy estimate to within 2.9%-5.9% of the values computed in the absence of the phantom. Sound speed uncertainties were found to modestly impact attenuation-compensated PAM energies, inducing errors no larger than 28% for a 40-m/s path-averaged speed error. Together, the results indicate the potential to significantly enhance the quantitative capabilities of PAM for ensuring therapeutic safety and efficacy.
Collapse
|