1
|
Shi Y, Wu W. Advances in transcranial focused ultrasound neuromodulation for mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025:111244. [PMID: 39756638 DOI: 10.1016/j.pnpbp.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Mental disorders are a major public health concern, affecting millions worldwide. Current treatments have limitations, highlighting the need for novel, effective, and safe interventions. Transcranial focused ultrasound (tFUS), a non-invasive neuromodulation technology, has emerged as a promising tool for treating mental disorders due to its high controllability, precision, and safety. This review summarizes the research progress of tFUS in several major mental disorders, including depression, anxiety, schizophrenia, and substance use disorders (SUDs). Animal studies have demonstrated the efficacy of tFUS in improving psychiatric symptoms and modulating neural circuits through various mechanisms, such as enhancing neuronal activity, synaptic plasticity, and neurotransmitter release. Preliminary clinical trials have also shown the potential of tFUS in alleviating symptoms in patients with treatment-resistant mental disorders. Safety evaluation studies across in vitro, animal, and human levels have supported the overall safety of tFUS under commonly used parameters. tFUS has shown broad application prospects in treating mental disorders, supported by its efficacy in animal models and preliminary clinical trials. By modulating neuronal activity, synaptic plasticity, neurotransmitters, and brain networks, tFUS could improve psychiatric symptoms and regulate neural circuits. However, current research on tFUS in mental disorders is still in its early stages, and further studies are needed to elucidate its mechanisms of action, expand its applications, and conduct large-sample, long-term clinical trials to systematically evaluate its efficacy, protocol optimization, and safety. As an innovative neuromodulation technology, tFUS has the potential to complement conventional therapies and provide new hope for addressing the global challenge of mental disorders.
Collapse
Affiliation(s)
- Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
2
|
Meng W, Lin Z, Bian T, Chen X, Meng L, Yuan T, Niu L, Zheng H. Ultrasound Deep Brain Stimulation Regulates Food Intake and Body Weight in Mice. IEEE Trans Neural Syst Rehabil Eng 2024; 32:366-377. [PMID: 38194393 DOI: 10.1109/tnsre.2024.3351312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Given the widespread occurrence of obesity, new strategies are urgently needed to prevent, halt and reverse this condition. We proposed a noninvasive neurostimulation tool, ultrasound deep brain stimulation (UDBS), which can specifically modulate the hypothalamus and effectively regulate food intake and body weight in mice. Fifteen-min UDBS of hypothalamus decreased 41.4% food intake within 2 hours. Prolonged 1-hour UDBS significantly decreased daily food intake lasting 4 days. UDBS also effectively restrained body weight gain in leptin-receptor knockout mice (Sham: 96.19%, UDBS: 58.61%). High-fat diet (HFD) mice treated with 4-week UDBS (15 min / 2 days) reduced 28.70% of the body weight compared to the Sham group. Meanwhile, UDBS significantly modulated glucose-lipid metabolism and decreased the body fat. The potential mechanism is that ultrasound actives pro-opiomelanocortin (POMC) neurons in the hypothalamus for reduction of food intake and body weight. These results provide a noninvasive tool for controlling food intake, enabling systematic treatment of obesity.
Collapse
|
3
|
Qin PP, Jin M, Xia AW, Li AS, Lin TT, Liu Y, Kan RL, Zhang BB, Kranz GS. The effectiveness and safety of low-intensity transcranial ultrasound stimulation: A systematic review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105501. [PMID: 38061596 DOI: 10.1016/j.neubiorev.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 12/02/2023] [Indexed: 12/26/2023]
Abstract
Low-intensity transcranial ultrasound stimulation (LITUS) is a novel non-invasive neuromodulation technique. We conducted a systematic review to evaluate current evidence on the efficacy and safety of LITUS neuromodulation. Five databases were searched from inception to May 31, 2023. Randomized controlled human trials and controlled animal studies were included. The neuromodulation effects of LITUS on clinical or pre-clinical, neurophysiological, neuroimaging, histological and biochemical outcomes, and adverse events were summarized. In total, 11 human studies and 44 animal studies were identified. LITUS demonstrated therapeutic efficacy in neurological disorders, psychiatric disorders, pain, sleep disorders and hypertension. LITUS-related changes in neuronal structure and cortical activity were found. From histological and biochemical perspectives, prominent findings included suppressing the inflammatory response and facilitating neurogenesis. No adverse effects were reported in controlled animal studies included in our review, while reversible headache, nausea, and vomiting were reported in a few human subjects. Overall, LITUS alleviates various symptoms and modulates associated brain circuits without major side effects. Future research needs to establish a solid therapeutic framework for LITUS.
Collapse
Affiliation(s)
- Penny Ping Qin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Minxia Jin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Adam Weili Xia
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Ami Sinman Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Tim Tianze Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yuchen Liu
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Laidi Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Bella Bingbing Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Zhao J, Song Q, Wu Y, Yang L. Advances in neural circuits of innate fear defense behavior. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:653-661. [PMID: 37899403 PMCID: PMC10630063 DOI: 10.3724/zdxbyxb-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Fear, a negative emotion triggered by dangerous stimuli, can lead to psychiatric disorders such as phobias, anxiety disorders, and depression. Investigating the neural circuitry underlying congenital fear can offer insights into the pathophysiological mechanisms of related psychiatric conditions. Research on innate fear primarily centers on the response mechanisms to various sensory signals, including olfactory, visual and auditory stimuli. Different types of fear signal inputs are regulated by distinct neural circuits. The neural circuits of the main and accessory olfactory systems receive and process olfactory stimuli, mediating defensive responses like freezing. Escape behaviors elicited by visual stimuli are primarily regulated through the superior colliculus and hypothalamic projection circuits. Auditory stimuli-induced responses, including escape, are mainly mediated through auditory cortex projection circuits. In this article, we review the research progress on neural circuits of innate fear defensive behaviors in animals. We further discuss the different sensory systems, especially the projection circuits of olfactory, visual and auditory systems, to provide references for the mechanistic study of related mental disorders.
Collapse
Affiliation(s)
- Jiajia Zhao
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| | - Qi Song
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Yongye Wu
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Liping Yang
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Li Z, Chen R, Liu D, Wang X, Yuan W. Effect of low-intensity transcranial ultrasound stimulation on theta and gamma oscillations in the mouse hippocampal CA1. Front Psychiatry 2023; 14:1151351. [PMID: 37151980 PMCID: PMC10157252 DOI: 10.3389/fpsyt.2023.1151351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Previous studies have demonstrated that low-intensity transcranial ultrasound stimulation (TUS) can eliminate hippocampal neural activity. However, until now, it has remained unclear how ultrasound modulates theta and gamma oscillations in the hippocampus under different behavioral states. In this study, we used ultrasound to stimulate the CA1 in mice in anesthesia, awake and running states, and we simultaneously recorded the local field potential of the stimulation location. We analyzed the power spectrum, phase-amplitude coupling (PAC) of theta and gamma oscillations, and their relationship with ultrasound intensity. The results showed that (i) TUS significantly enhanced the absolute power of theta and gamma oscillations under anesthesia and in the awake state. (ii) The PAC strength between theta and gamma oscillations is significantly enhanced under the anesthesia and awake states but is weakened under the running state with TUS. (iii) Under anesthesia, the relative power of theta decreases and that of gamma increases as ultrasound intensity increases, and the result under the awake state is opposite that under the anesthesia state. (iv) The PAC index between theta and gamma increases as ultrasound intensity increases under the anesthesia and awake states. The above results demonstrate that TUS can modulate theta and gamma oscillations in the CA1 and that the modulation effect depends on behavioral states. Our study provides guidance for the application of ultrasound in modulating hippocampal function.
Collapse
Affiliation(s)
- Zhen Li
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dachuan Liu
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xizhe Wang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Yuan
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Kirk PA, Holmes AJ, Robinson OJ. Threat vigilance and intrinsic amygdala connectivity. Hum Brain Mapp 2022; 43:3283-3292. [PMID: 35362645 PMCID: PMC9188965 DOI: 10.1002/hbm.25851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
A well-documented amygdala-dorsomedial prefrontal circuit is theorized to promote attention to threat ("threat vigilance"). Prior research has implicated a relationship between individual differences in trait anxiety/vigilance, engagement of this circuitry, and anxiogenic features of the environment (e.g., through threat-of-shock and movie-watching). In the present study, we predicted that-for those scoring high in self-reported anxiety and a behavioral measure of threat vigilance-this circuitry is chronically engaged, even in the absence of anxiogenic stimuli. Our analyses of resting-state fMRI data (N = 639) did not, however, provide evidence for such a relationship. Nevertheless, in our planned exploratory analyses, we saw a relationship between threat vigilance behavior (but not self-reported anxiety) and intrinsic amygdala-periaqueductal gray connectivity. Here, we suggest this subcortical circuitry may be chronically engaged in hypervigilant individuals, but that amygdala-prefrontal circuitry may only be engaged in response to anxiogenic stimuli.
Collapse
Affiliation(s)
- Peter A. Kirk
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- Experimental PsychologyUniversity College LondonLondonUK
- Departments of Psychology and PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Avram J. Holmes
- Departments of Psychology and PsychiatryYale UniversityNew HavenConnecticutUSA
- Wu Tsai InstituteYale UniversityNew HavenConnecticutUSA
| | - Oliver J. Robinson
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- Clinical, Educational and Health PsychologyUniversity College LondonLondonUK
| |
Collapse
|
7
|
Guerra A, Bologna M. Low-Intensity Transcranial Ultrasound Stimulation: Mechanisms of Action and Rationale for Future Applications in Movement Disorders. Brain Sci 2022; 12:brainsci12050611. [PMID: 35624998 PMCID: PMC9139935 DOI: 10.3390/brainsci12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique that uses acoustic energy to induce changes in neuronal activity. However, although low-intensity TUS is a promising neuromodulation tool, it has been poorly studied as compared to other methods, i.e., transcranial magnetic and electrical stimulation. In this article, we first focus on experimental studies in animals and humans aimed at explaining its mechanisms of action. We then highlight possible applications of TUS in movement disorders, particularly in patients with parkinsonism, dystonia, and tremor. Finally, we highlight the knowledge gaps and possible limitations that currently limit potential TUS applications in movement disorders. Clarifying the potential role of TUS in movement disorders may further promote studies with therapeutic perspectives in this field.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
8
|
Kim T, Park C, Chhatbar PY, Feld J, Mac Grory B, Nam CS, Wang P, Chen M, Jiang X, Feng W. Effect of Low Intensity Transcranial Ultrasound Stimulation on Neuromodulation in Animals and Humans: An Updated Systematic Review. Front Neurosci 2021; 15:620863. [PMID: 33935626 PMCID: PMC8079725 DOI: 10.3389/fnins.2021.620863] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/15/2021] [Indexed: 12/09/2022] Open
Abstract
Background: Although low-intensity transcranial ultrasound stimulation (LI-TUS) has received more recognition for its neuromodulation potential, there remains a crucial knowledge gap regarding the neuromodulatory effects of LI-TUS and its potential for translation as a therapeutic tool in humans. Objective: In this review, we summarized the findings reported by recently published studies regarding the effect of LI-TUS on neuromodulation in both animals and humans. We also aim to identify challenges and opportunities for the translation process. Methods: A literature search of PubMed, Medline, EMBASE, and Web of Science was performed from January 2019 to June 2020 with the following keywords and Boolean operators: [transcranial ultrasound OR transcranial focused ultrasound OR ultrasound stimulation] AND [neuromodulation]. The methodological quality of the animal studies was assessed by the SYRCLE's risk of bias tool, and the quality of human studies was evaluated by the PEDro score and the NIH quality assessment tool. Results: After applying the inclusion and exclusion criteria, a total of 26 manuscripts (24 animal studies and two human studies) out of 508 reports were included in this systematic review. Although both inhibitory (10 studies) and excitatory (16 studies) effects of LI-TUS were observed in animal studies, only inhibitory effects have been reported in primates (five studies) and human subjects (two studies). The ultrasonic parameters used in animal and human studies are different. The SYRCLE quality score ranged from 25 to 43%, with a majority of the low scores related to performance and detection bias. The two human studies received high PEDro scores (9/10). Conclusion: LI-TUS appears to be capable of targeting both superficial and deep cerebral structures to modulate cognitive or motor behavior in both animals and humans. Further human studies are needed to more precisely define the effective modulation parameters and thereby translate this brain modulatory tool into the clinic.
Collapse
Affiliation(s)
- Taewon Kim
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Christine Park
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Jody Feld
- Physical Therapy Division, Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Brian Mac Grory
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Chang S Nam
- Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, United States
| | - Pu Wang
- Department of Rehabilitation Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shengzhen, China
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
9
|
Zhou H, Meng L, Xia X, Lin Z, Zhou W, Pang N, Bian T, Yuan T, Niu L, Zheng H. Transcranial Ultrasound Stimulation Suppresses Neuroinflammation in a Chronic Mouse Model of Parkinson's Disease. IEEE Trans Biomed Eng 2021; 68:3375-3387. [PMID: 33830916 DOI: 10.1109/tbme.2021.3071807] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neuroinflammation contributes to the development and progression of Parkinson's disease (PD). The aim of this study was to examine whether ultrasound (US) stimulation of the subthalamic nucleus (STN) could suppress the neuroinflammation in a chronic PD mouse model induced by 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). METHODS A chronic PD mouse model was built by injections of 20mg/kg MPTP and 250 mg/kg probenecid at 3.5-day intervals for 5 weeks. Mice were randomized into control+sham, MPTP+sham and MPTP+STN+US group. For MPTP+STN+US group, ultrasound wave (3.8 MHz, 50% duty cycle, 1 kHz pulse repetition frequency, 30 min/day) was delivered to the STN the day after MPTP and probenecid injection (the early stage of PD progression). The rotarod test and pole test were performed to evaluate the behavioral changes after ultrasound treatment. Then, the activity of microglia and astrocyte were measured to evaluate the inflammation level in the brain. RESULTS Ultrasound stimulation improved the latency to falls in the rotarod test (p = 0.033) and decreased the climbing time in the pole test (p = 0.016) compared with MPTP+sham group. Moreover, ultrasound stimulation reduced the chronic inflammation response as shown in microglia (p = 0.007) and astrocyte (p = 0.032) activation. In addition, HE, Nissl and Tunel staining showed that no brain tissue injury was induced by US. CONCLUSION These findings demonstrated that ultrasound stimulation could suppress neuroinflammation in PD mice. SIGNIFICANCE Transcranial ultrasound neuromodulation offers a novel approach for Parkinson's disease intervention, potentially through its anti-neuroinflammation functions.
Collapse
|