1
|
Viana F, Peringathara SS, Rizvi A, Schroeder GN. Host manipulation by bacterial type III and type IV secretion system effector proteases. Cell Microbiol 2021; 23:e13384. [PMID: 34392594 PMCID: PMC11475232 DOI: 10.1111/cmi.13384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Proteases are powerful enzymes, which cleave peptide bonds, leading most of the time to irreversible fragmentation or degradation of their substrates. Therefore they control many critical cell fate decisions in eukaryotes. Bacterial pathogens exploit this power and deliver protease effectors through specialised secretion systems into host cells. Research over the past years revealed that the functions of protease effectors during infection are diverse, reflecting the lifestyles and adaptations to specific hosts; however, only a small number of peptidase families seem to have given rise to most of these protease virulence factors by the evolution of different substrate-binding specificities, intracellular activation and subcellular targeting mechanisms. Here, we review our current knowledge about the enzymology and function of protease effectors, which Gram-negative bacterial pathogens translocate via type III and IV secretion systems to irreversibly manipulate host processes. We highlight emerging concepts such as signalling by protease cleavage products and effector-triggered immunity, which host cells employ to detect and defend themselves against a protease attack. TAKE AWAY: Proteases irreversibly cleave proteins to control critical cell fate decisions. Gram-negative bacteria use type III and IV secretion systems to inject effectors. Protease effectors are integral weapons for the manipulation of host processes. Effectors evolved from few peptidase families to target diverse substrates. Effector-triggered immunity upon proteolytic attack emerges as host defence.
Collapse
Affiliation(s)
- Flávia Viana
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Shruthi Sachidanandan Peringathara
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Arshad Rizvi
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Gunnar N. Schroeder
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| |
Collapse
|
2
|
Mei L, Qiu X, Jiang C, Yang A. Host Delipidation Mediated by Bacterial Effectors. Trends Microbiol 2020; 29:238-250. [PMID: 33092951 DOI: 10.1016/j.tim.2020.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Protein lipidation, the covalent attachment of a lipid moiety to a target protein, plays a critical role in many cellular processes in eukaryotic cells. Bacterial pathogens secrete various effectors to subvert the host signaling pathway as a mechanism of microbial pathogenesis. An increasing number of effectors from diverse bacterial pathogens function as cysteine proteases to cause irreversible delipidation of host lipidated proteins. This in turn results in disruption of crucial lipidation-mediated host signal transduction, thereby enabling pathogen survival and replication. In this review, we discuss the role of the bacterial effectors in interactions with the host and highlight our knowledge of irreversible host delipidation, with a focus on the common concerted biochemical mechanisms of the bacterial effectors.
Collapse
Affiliation(s)
- Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaofeng Qiu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Ultrafast Transient Materials Science Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
3
|
Wood TE, Howard SA, Förster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology. Cell Rep 2020; 29:187-201.e7. [PMID: 31577948 PMCID: PMC6899460 DOI: 10.1016/j.celrep.2019.08.094] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 07/02/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023] Open
Abstract
The type VI secretion system (T6SS) is crucial in interbacterial competition and is a virulence determinant of many Gram-negative bacteria. Several T6SS effectors are covalently fused to secreted T6SS structural components such as the VgrG spike for delivery into target cells. In Pseudomonas aeruginosa, the VgrG2b effector was previously proposed to mediate bacterial internalization into eukaryotic cells. In this work, we find that the VgrG2b C-terminal domain (VgrG2bC-ter) elicits toxicity in the bacterial periplasm, counteracted by a cognate immunity protein. We resolve the structure of VgrG2bC-ter and confirm it is a member of the zinc-metallopeptidase family of enzymes. We show that this effector causes membrane blebbing at midcell, which suggests a distinct type of T6SS-mediated growth inhibition through interference with cell division, mimicking the impact of β-lactam antibiotics. Our study introduces a further effector family to the T6SS arsenal and demonstrates that VgrG2b can target both prokaryotic and eukaryotic cells. The structure of the VgrG2b C-terminal domain presents a metallopeptidase fold VgrG2b exerts antibacterial activity in the periplasmic space Toxicity of VgrG2b is counteracted by a cognate periplasmic immunity protein VgrG2bC-ter-intoxicated prey cells bleb at the midcell and lyse
Collapse
Affiliation(s)
- Thomas E Wood
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sophie A Howard
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Andreas Förster
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Laura M Nolan
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Eleni Manoli
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Nathan P Bullen
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Hamish C L Yau
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Abderrahman Hachani
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Richard D Hayward
- Division of Microbiology and Parasitology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Paul S Freemont
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
4
|
Pha K, Navarro L. Yersinia type III effectors perturb host innate immune responses. World J Biol Chem 2016; 7:1-13. [PMID: 26981193 PMCID: PMC4768113 DOI: 10.4331/wjbc.v7.i1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
Collapse
|
5
|
Lemichez E, Aktories K. Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 2013; 319:2329-36. [PMID: 23648569 DOI: 10.1016/j.yexcr.2013.04.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 01/01/2023]
Abstract
Highly pathogenic bacteria, including Yersinia, Salmonella, E. coli and Clostridia, produce an amazing array of virulence factors that target Rho proteins. These pathogens exploit and/or impair many aspects of Rho protein activities by activating or inhibiting these key molecular switches. Here, we describe examples illustrating how modulation of Rho protein activity is the underlying molecular mechanism used by pathogens to disrupt host epithelial/endothelial barriers, paralyze immune cell migration and phagocytic functions, invade epithelial cells, replicate, and form reservoirs or disseminate in epithelia. Remarkably, emerging evidence points to the capacity of target cells to not only perceive the imbalance of Rho activity induced by virulence factors but also to respond by stimulating the production of anti-microbial responses that alert the host to the pathogenic threat. Furthermore, toxins that activate Rho proteins have been extremely useful in revealing the exquisite cellular regulations of these GTPases, notably by the ubiquitin and proteasome system. Finally, a number of studies indicate that toxins targeting Rho proteins have great potential in the development of new therapeutic tools.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- INSERM U1065, Equipe Labellisée Ligue Contre le Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M), Université de Nice-Sophia-Antipolis, 06204 Cedex 3 Nice, France.
| | | |
Collapse
|
6
|
Structural basis of eukaryotic cell targeting by type III secretion system (T3SS) effectors. Res Microbiol 2013; 164:605-19. [PMID: 23541478 DOI: 10.1016/j.resmic.2013.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
Abstract
Type III secretion systems (T3SS) are macromolecular complexes that translocate a wide number of effector proteins into eukaryotic host cells. Once within the cytoplasm, many T3SS effectors mimic the structure and/or function of eukaryotic proteins in order to manipulate signaling cascades, and thus play pivotal roles in colonization, invasion, survival and virulence. Structural biology techniques have played key roles in the unraveling of bacterial strategies employed for mimicry and targeting. This review provides an overall view of our current understanding of structure and function of T3SS effectors, as well as of the different classes of eukaryotic proteins that are targeted and the consequences for the infected cell.
Collapse
|
7
|
Schmohl M, Rimmele S, Gierschik P, Joos TO, Schneiderhan-Marra N. Functional analysis of Rho GTPase activation and inhibition in a bead-based miniaturized format. Methods Mol Biol 2012; 827:271-82. [PMID: 22144281 DOI: 10.1007/978-1-61779-442-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Extensive knowledge about protein-protein interactions is fundamental to fully understand signaling pathways and for the development of new drugs. Rho GTPases are key molecules in cellular signaling processes and their deregulation is implicated in the development of a variety of diseases such as neurofibromatosis type 2 and cancer. Here, we describe a bead-based protein-protein interaction assay for overexpressed HA-tagged Rho GTPases to study the GTPγS-dependent interaction with the regulatory protein RhoGDIα. This assay provides a useful tool for the analysis of both macromolecular and small molecule activators and inhibitors of the protein-protein interactions of Rho GTPases with their regulatory proteins in a multiplexed miniaturized format.
Collapse
Affiliation(s)
- Michael Schmohl
- Department of Biochemistry, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | | | | | | |
Collapse
|
8
|
Schmidt G. Yersinia enterocolitica outer protein T (YopT). Eur J Cell Biol 2011; 90:955-8. [DOI: 10.1016/j.ejcb.2010.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 12/23/2010] [Accepted: 12/23/2010] [Indexed: 01/18/2023] Open
|
9
|
Wölke S, Ackermann N, Heesemann J. The Yersinia enterocolitica type 3 secretion system (T3SS) as toolbox for studying the cell biological effects of bacterial Rho GTPase modulating T3SS effector proteins. Cell Microbiol 2011; 13:1339-57. [PMID: 21718421 DOI: 10.1111/j.1462-5822.2011.01623.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bacterial effector proteins IpgB(1) and IpgB(2) of Shigella and Map of Escherichia coli activate the Rho GTPases Rac1, RhoA and Cdc42, respectively, whereas YopE and YopT of Yersinia inhibit these Rho family GTPases. We established a Yersinia toolbox which allows to study the cellular effects of these effectors in different combinations in the context of Yersinia type 3 secretion system (Ysc)-T3SS-mediated injection into HeLa cells. For this purpose hybrid proteins were constructed by fusion of YopE with the effector protein of interest. As expected, injected hybrid proteins induced membrane ruffles and Yersinia uptake for IpgB(1) , stress fibres for IpgB(2) and microspikes for Map. By co-infection experiments we could demonstrate (i) IpgB(2) -mediated and ROCK-dependent inhibition of IpgB(1) -mediated Rac1 effects, (ii) YopT-mediated suppression of IpgB(1) -induced Yersinia invasion and (iii) failure of YopE-mediated suppression of IpgB(1) -induced Yersinia invasion, presumably due to preferential inhibition of RhoG by YopE GAP function. By infecting polarized MDCK cells we could demonstrate that Map or IpgB(1) but not IpgB(2) affects cell monolayer integrity. In summary, the Yersinia toolbox is suitable to study cellular effects of effector proteins of diverse bacterial species separately or in combination in the context of bacterial T3SS-mediated injection.
Collapse
Affiliation(s)
- Stefan Wölke
- Max von Pettenkofer Institut, LMU Munich, Pettenkofer Straße 9A, 80336 Munich, Germany
| | | | | |
Collapse
|
10
|
Rimmele S, Gierschik P, Joos TO, Schneiderhan-Marra N. Bead-based protein-protein interaction assays for the analysis of Rho GTPase signaling. J Mol Recognit 2010; 23:543-50. [DOI: 10.1002/jmr.1051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Abstract
Small GTPases of the Rho protein family are master regulators of the actin cytoskeleton and are targeted by potent virulence factors of several pathogenic bacteria. Their dysfunctional regulation can lead to severe human pathologies. Both host and bacterial factors can activate or inactivate Rho proteins by direct post-translational modifications: such as deamidation and transglutamination for activation, or ADP-ribosylation, glucosylation, adenylylation and phosphorylation for inactivation. We review and compare these unconventional ways in which both host cells and bacterial pathogens regulate Rho proteins.
Collapse
|
12
|
Kinch LN, Yarbrough ML, Orth K, Grishin NV. Fido, a novel AMPylation domain common to fic, doc, and AvrB. PLoS One 2009; 4:e5818. [PMID: 19503829 PMCID: PMC2686095 DOI: 10.1371/journal.pone.0005818] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/07/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Vibrio parahaemolyticus type III secreted effector VopS contains a fic domain that covalently modifies Rho GTPase threonine with AMP to inhibit downstream signaling events in host cells. The VopS fic domain includes a conserved sequence motif (HPFx[D/E]GN[G/K]R) that contributes to AMPylation. Fic domains are found in a variety of species, including bacteria, a few archaea, and metazoan eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS We show that the AMPylation activity extends to a eukaryotic fic domain in Drosophila melanogaster CG9523, and use sequence and structure based computational methods to identify related domains in doc toxins and the type III effector AvrB. The conserved sequence motif that contributes to AMPylation unites fic with doc. Although AvrB lacks this motif, its structure reveals a similar topology to the fic and doc folds. AvrB binds to a peptide fragment of its host virulence target in a similar manner as fic binds peptide substrate. AvrB also orients a phosphate group from a bound ADP ligand near the peptide-binding site and in a similar position as a bound fic phosphate. CONCLUSIONS/SIGNIFICANCE The demonstrated eukaryotic fic domain AMPylation activity suggests that the VopS effector has exploited a novel host posttranslational modification. Fic domain-related structures give insight to the AMPylation active site and to the VopS fic domain interaction with its host GTPase target. These results suggest that fic, doc, and AvrB stem from a common ancestor that has evolved to AMPylate protein substrates.
Collapse
Affiliation(s)
- Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
| | | | | | | |
Collapse
|
13
|
Fueller F, Kubatzky KF. The small GTPase RhoH is an atypical regulator of haematopoietic cells. Cell Commun Signal 2008; 6:6. [PMID: 18823547 PMCID: PMC2565660 DOI: 10.1186/1478-811x-6-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/29/2008] [Indexed: 01/25/2023] Open
Abstract
Rho GTPases are a distinct subfamily of the superfamily of Ras GTPases. The best-characterised members are RhoA, Rac and Cdc42 that regulate many diverse actions such as actin cytoskeleton reorganisation, adhesion, motility as well as cell proliferation, differentiation and gene transcription. Among the 20 members of that family, only Rac2 and RhoH show an expression restricted to the haematopoietic lineage. RhoH was first discovered in 1995 as a fusion transcript with the transcriptional repressor LAZ3/BCL6. It was therefore initially named translation three four (TTF) but later on renamed RhoH due to its close relationship to the Ras/Rho family of GTPases. Since then, RhoH has been implicated in human cancer as the gene is subject to somatic hypermutation and by the detection of RHOH as a translocation partner for LAZ3/BCL6 or other genes in human lymphomas. Underexpression of RhoH is found in hairy cell leukaemia and acute myeloid leukaemia. Some of the amino acids that are crucial for GTPase activity are mutated in RhoH so that the protein is a GTPase-deficient, so-called atypical Rho GTPase. Therefore other mechanisms of regulating RhoH activity have been described. These include regulation at the mRNA level and tyrosine phosphorylation of the protein's unique ITAM-like motif. The C-terminal CaaX box of RhoH is mainly a target for farnesyl-transferase but can also be modified by geranylgeranyl-transferase. Isoprenylation of RhoH and changes in subcellular localisation may be an additional factor to fine-tune signalling. Little is currently known about its signalling, regulation or interaction partners. Recent studies have shown that RhoH negatively influences the proliferation and homing of murine haematopoietic progenitor cells, presumably by acting as an antagonist for Rac1. In leukocytes, RhoH is needed to keep the cells in a resting, non-adhesive state, but the exact mechanism has yet to be elucidated. RhoH has also been implicated as a regulatory molecule in the NFκB, PI3 kinase and Map kinase pathways. The recent generation of RhoH knockout mice showed a defect in thymocyte selection and TCR signalling of thymic and peripheral T-cells. However, RhoH-deficient mice did not develop lymphomas or showed obvious defects in haematopoiesis.
Collapse
Affiliation(s)
- Florian Fueller
- Ruprecht-Karls-Universität Heidelberg, Hygiene Institut, Abteilung für Hygiene und Medizinische Mikrobiologie, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | |
Collapse
|