1
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
2
|
Sushi-Repeat-Containing Protein X-Linked 2: A Potential Therapeutic Target for Inflammation and Cancer Therapy. J Immunol Res 2022; 2022:2931214. [PMID: 35935582 PMCID: PMC9352485 DOI: 10.1155/2022/2931214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence has showed that sushi-repeat-containing protein X-linked 2 (SRPX2) is an abnormal expression in a variety of cancers and involved in cancer carcinogenesis, chemosensitivity, and prognosis, which mainly promote cancer cell metastasis, invasion, and migration by regulating the uPAR/integrins/FAK signaling pathway, epithelial-mesenchymal transition (EMT), angiogenesis, and glycosylation. Inflammation has been regarded as a key role in regulating cancer initiation, progression, EMT, and therapeutics. Furthermore, SRPX2 exhibited excellent antifibrosis effect via the TGFβR1/SMAD3/SRPX2/AP1/SMAD7 signaling pathway. Therefore, this review provides compelling evidence that SRPX2 might be a therapeutic target for inflammation and cancer-related inflammation for future cancer therapeutics.
Collapse
|
3
|
Erdei A, Kovács KG, Nagy-Baló Z, Lukácsi S, Mácsik-Valent B, Kurucz I, Bajtay Z. New aspects in the regulation of human B cell functions by complement receptors CR1, CR2, CR3 and CR4. Immunol Lett 2021; 237:42-57. [PMID: 34186155 DOI: 10.1016/j.imlet.2021.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The involvement of complement in the regulation of antibody responses has been known for long. By now several additional B cell functions - including cytokine production and antigen presentation - have also been shown to be regulated by complement proteins. Most of these important activities are mediated by receptors interacting with activation fragments of the central component of the complement system C3, such as C3b, iC3b and C3d, which are covalently attached to antigens and immune complexes. This review summarizes the role of complement receptors interacting with these ligands, namely CR1 (CD35), CR2 (CD21), CR3 (CD11b/CD18) and CR4 (CD11c/CD18) expressed by B cells in health and disease. Although we focus on human B lymphocytes, we also aim to call the attention to important differences between human and mouse systems.
Collapse
Affiliation(s)
- Anna Erdei
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.
| | - Kristóf G Kovács
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Nagy-Baló
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - István Kurucz
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
4
|
Qiu WQ, Luo S, Ma SA, Saminathan P, Li H, Gunnersen JM, Gelbard HA, Hammond JW. The Sez6 Family Inhibits Complement by Facilitating Factor I Cleavage of C3b and Accelerating the Decay of C3 Convertases. Front Immunol 2021; 12:607641. [PMID: 33936031 PMCID: PMC8081827 DOI: 10.3389/fimmu.2021.607641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
The Sez6 family consists of Sez6, Sez6L, and Sez6L2. Its members are expressed throughout the brain and have been shown to influence synapse numbers and dendritic morphology. They are also linked to various neurological and psychiatric disorders. All Sez6 family members contain 2-3 CUB domains and 5 complement control protein (CCP) domains, suggesting that they may be involved in complement regulation. We show that Sez6 family members inhibit C3b/iC3b opsonization by the classical and alternative pathways with varying degrees of efficacy. For the classical pathway, Sez6 is a strong inhibitor, Sez6L2 is a moderate inhibitor, and Sez6L is a weak inhibitor. For the alternative pathway, the complement inhibitory activity of Sez6, Sez6L, and Sez6L2 all equaled or exceeded the activity of the known complement regulator MCP. Using Sez6L2 as the representative family member, we show that it specifically accelerates the dissociation of C3 convertases. Sez6L2 also functions as a cofactor for Factor I to facilitate the cleavage of C3b; however, Sez6L2 has no cofactor activity toward C4b. In summary, the Sez6 family are novel complement regulators that inhibit C3 convertases and promote C3b degradation.
Collapse
Affiliation(s)
- Wen Q Qiu
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Shaopeiwen Luo
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Stefanie A Ma
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Priyanka Saminathan
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Herman Li
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jenny M Gunnersen
- Department of Anatomy and Neuroscience and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jennetta W Hammond
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Tang KT, Wu TY, Chen HH, Lin CC, Hsu YHH. Cardiolipin interacts with beta-2-glycoprotein I and forms an open conformation-Mechanisms analyzed using hydrogen/deuterium exchange. Protein Sci 2021; 30:927-939. [PMID: 33641242 PMCID: PMC8040858 DOI: 10.1002/pro.4054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Beta‐2‐glycoprotein I (β2GPI) is the major antigen for the antiphospholipid antibodies in the antiphospholipid syndrome. The exposed epitope in domain I of β2GPI can be recognized by the anti‐β2GPI antibody. Here, we prepared the anionic di‐oleoyl‐phosphatidylserine (DOPS) and cardiolipin (CL) liposomes to interact with the β2GPI. The conformational changes of β2GPI upon binding with the liposomes were analyzed using hydrogen/deuterium exchange mass spectrometry. The exchange level of sequences 21–27 significantly increased after β2GPI had interacted with DOPS. This change indicated a reduced interaction between domain I and domain V, inferring to a protrusion of the sequences 21–27 from the ring conformation. After β2GPI had interacted with CL for 30 min, the exchange levels in 4 of the 5 domains increased significantly. The deuteration levels of sequences 1–20, 21–27, 196–205, 273–279 and 297–306 increased, suggesting that these regions had become more exposed, and the domain I was no longer in contact with domain V. The increasing deuteration levels in sequences 70–86, 153–162, 191–198, 196–205 and 273–279 indicated β2GPI undergoing conformational changes to expose these inner regions, suggesting a structural transition. Overall, DOPS and CL induced minor conformational changes of β2GPI at sequences 21–27 and forms an intermediate conformation after 10 min of interaction. After a complete protein–lipid interaction, high negatively charged CL membrane induced a major conformation transition of β2GPI.
Collapse
Affiliation(s)
- Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ting-Yuan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | |
Collapse
|
6
|
Zhang M, Li X, Fan Z, Zhao J, Liu S, Zhang M, Li H, Goscinski MA, Fan H, Suo Z. High SRPX2 protein expression predicts unfavorable clinical outcome in patients with prostate cancer. Onco Targets Ther 2018; 11:3149-3157. [PMID: 29881288 PMCID: PMC5983007 DOI: 10.2147/ott.s158820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Sushi repeat-containing protein X-linked 2 (SRPX2) is overexpressed in a variety of different tumor tissues and correlated with poor prognosis in patients. Little research focuses on the role of SRPX2 expression in prostate cancer (PCa), and the clinicopathological significance of the protein expression in this tumor is relatively unknown. However, our previous transcriptome data from those cancer stem-like cells indicated the role of SRPX2 in PCa. Materials and methods In this study, RT-PCR and Western blotting were firstly used to examine the SRPX2 expression in three PCa cell lines including LNCaP, DU145, and PC3, and then SRPX2 protein expression was immunohistochemically investigated and statistically analyzed in a series of 106 paraffin-embedded PCa tissue specimens. Results Significantly lower levels of SRPX2 expression were verified in the LNCaP cells, compared with the expression in the aggressive DU145 and PC3 cells, in both mRNA and protein levels. Immunohistochemically, there were variable SRPX2 protein expressions in the clinical samples. Moreover, high levels of SRPX2 expression in the PCa tissues were significantly associated with Gleason score (P=0.008), lymph node metastasis (P=0.009), and distant metastasis (P=0.021). Furthermore, higher levels of SRPX2 expression in the PCa tissues were significantly associated with shorter overall survival (OS) (P<0.001). Conclusion Our results demonstrate that SRPX2 is highly expressed in aggressive PCa cells in vitro, and its protein expression in PCa is significantly associated with malignant clinical features and shorter OS, strongly indicating its prognostic value in prostate cancers.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Zhirui Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuzheng Liu
- Henan Office for Cancer Research and Control, Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mariusz Adam Goscinski
- Department of Surgery, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Huijie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Richter S, Helm C, Meunier FA, Hering L, Campbell LI, Drukewitz SH, Undheim EAB, Jenner RA, Schiavo G, Bleidorn C. Comparative analyses of glycerotoxin expression unveil a novel structural organization of the bloodworm venom system. BMC Evol Biol 2017; 17:64. [PMID: 28259138 PMCID: PMC5336659 DOI: 10.1186/s12862-017-0904-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We present the first molecular characterization of glycerotoxin (GLTx), a potent neurotoxin found in the venom of the bloodworm Glycera tridactyla (Glyceridae, Annelida). Within the animal kingdom, GLTx shows a unique mode of action as it can specifically up-regulate the activity of Cav2.2 channels (N-type) in a reversible manner. The lack of sequence information has so far hampered a detailed understanding of its mode of action. RESULTS Our analyses reveal three ~3.8 kb GLTx full-length transcripts, show that GLTx represents a multigene family, and suggest it functions as a dimer. An integrative approach using transcriptomics, quantitative real-time PCR, in situ hybridization, and immunocytochemistry shows that GLTx is highly expressed exclusively in four pharyngeal lobes, a previously unrecognized part of the venom apparatus. CONCLUSIONS Our results overturn a century old textbook view on the glycerid venom system, suggesting that it is anatomically and functionally much more complex than previously thought. The herein presented GLTx sequence information constitutes an important step towards the establishment of GLTx as a versatile tool to understand the mechanism of synaptic function, as well as the mode of action of this novel neurotoxin.
Collapse
Affiliation(s)
- Sandy Richter
- Institute of Biology - Molecular Evolution and Systematics of Animals, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, SW7 5BD UK
| | - Conrad Helm
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Frederic A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, 4072 QLD Australia
| | - Lars Hering
- Institute of Biology - Department of Zoology, University of Kassel, Heinrich-Plett-Straße 40, D-34132 Kassel, Germany
| | - Lahcen I. Campbell
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, SW7 5BD UK
- The European Bioinformatics Institute (EMBL-EBI) - Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Stephan H. Drukewitz
- Institute of Biology - Molecular Evolution and Systematics of Animals, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, 4072 QLD Australia
| | - Ronald A. Jenner
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, SW7 5BD UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Christoph Bleidorn
- Institute of Biology - Molecular Evolution and Systematics of Animals, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Calle José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
8
|
Tang H, Zhao J, Zhang L, Zhao J, Zhuang Y, Liang P. SRPX2 Enhances the Epithelial-Mesenchymal Transition and Temozolomide Resistance in Glioblastoma Cells. Cell Mol Neurobiol 2016; 36:1067-76. [PMID: 26643178 DOI: 10.1007/s10571-015-0300-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most common and most aggressive central nervous system tumor in adults. Due to GBM cell invasiveness and resistance to chemotherapy, current medical interventions are not satisfactory, and the prognosis for GBM is poor. It is necessary to investigate the underlying mechanism of GBM metastasis and drug resistance so that more effective treatments can be developed for GBM patients. sushi repeat-containing protein, X-linked 2 (SRPX2) is a prognostic biomarker in many different cancer cell lines and is associated with poor prognosis in cancer patients. SRPX2 overexpression promotes interactions between tumor and endothelial cells, leading to tumor progression and metastasis. We hypothesize that SRPX2 also contributes to GBM chemotherapy resistance and metastasis. Our results revealed that GBM tumor samples from 42 patients expressed higher levels of SRPX2 than the control normal brain tissue samples. High-SRPX2 expression levels are correlated with poor prognosis in those patients, as well as resistance to temozolomide in cultured GBM cells. Up-regulating SRPX2 expression in cultured GBM cell lines facilitated invasiveness and migration of GBM cells, while down-regulating SRPX2 through RNA interference was inhibitory. These results suggest that SRPX2 plays an important role in GBM metastasis. Epithelial to mesenchymal transition (EMT) is one of the processes that facilitate GBM metastasis and resistance to chemotherapy. EMT marker expression was decreased in SRPX2 down-regulated GBM cells, and MAPK signaling pathway marker expression was also decreased when SRPX2 is knocked down in GBM-cultured cells. Blocking the MAPK signaling pathway inhibited GBM metastasis but did not inhibit cell invasion and migration in SRPX2 down-regulated cells. Our results indicate that SRPX2 facilitates GBM metastasis by enhancing the EMT process via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Haitao Tang
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
- Department of Neurosurgery, The General Hospital of Daqing Oil Field, 9 Zhongkang Road, Saertu District, Daqing, 163001, Heilongjiang, China
| | - Jiaxin Zhao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Liangyu Zhang
- Department of Medical Oncology, The General Hospital of Daqing Oil Field, 9 Zhongkang Road, Saertu District, Daqing, 163001, Heilongjiang, China
| | - Jiang Zhao
- Department of Neurosurgery, The General Hospital of Daqing Oil Field, 9 Zhongkang Road, Saertu District, Daqing, 163001, Heilongjiang, China
| | - Yongzhi Zhuang
- Department of Medical Oncology, The General Hospital of Daqing Oil Field, 9 Zhongkang Road, Saertu District, Daqing, 163001, Heilongjiang, China
| | - Peng Liang
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
9
|
Yamada T, Oshima T, Yoshihara K, Sato T, Nozaki A, Shiozawa M, Ota M, Yoshikawa T, Akaike M, Numata K, Rino Y, Kunisaki C, Tanaka K, Imada T, Masuda M. Impact of overexpression of Sushi repeat-containing protein X-linked 2 gene on outcomes of gastric cancer. J Surg Oncol 2014; 109:836-40. [PMID: 24700475 DOI: 10.1002/jso.23602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/16/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Sushi repeat-containing protein X-linked 2 (SRPX2) was first described as a downstream target gene for E2A-HLA, which causes pro-B acute leukemia. SRPX2 is considered to promote cellular migration and adhesion in cancers. Our objective was to evaluate the relative expression of the SRPX2 gene and to determine whether such expression correlates with outcomes in patients with gastric cancer. METHODS Surgical specimens of cancer tissue and adjacent normal mucosa obtained from 227 patients with previously untreated gastric cancer were examined. SRPX2 mRNA expression levels of cancer tissue and adjacent normal mucosa were measured by quantitative real-time polymerase chain reaction. We evaluated the clinicopathological significance of the relative expression of SRPX2 in patients with gastric cancer. RESULTS SRPX2 expression was higher in cancer tissue than in adjacent normal mucosa (P < 0.001). On analysis of the relations between gene expression and clinicopathological factors, SRPX2 expression correlated with tumor size and distant metastasis. Overall survival was significantly lower in patients whose tumors had high SRPX2 expression than in those who had low SRPX2 expression (P = 0.003). Multivariate analysis showed that high SRPX2 expression was an independent predictor of survival (HR = 2.028, 95% CI = 1.265-3.251). CONCLUSIONS SRPX2 expression was significantly higher in gastric cancer tissue than in adjacent normal mucosa, and overexpression of the SRPX2 gene is considered a useful independent predictor of outcomes in patients with gastric cancer.
Collapse
Affiliation(s)
- Takanobu Yamada
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama-shi, Kanagawa-ken, Japan; Department of Surgery, Yokohama City University, Yokohama-shi, Kanagawa-ken, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fernández FJ, Vega MC. Technologies to keep an eye on: alternative hosts for protein production in structural biology. Curr Opin Struct Biol 2013; 23:365-73. [DOI: 10.1016/j.sbi.2013.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 12/21/2022]
|
11
|
Valentini E, Cherchi S, Possenti A, Dubremetz JF, Pozio E, Spano F. Molecular characterisation of a Cryptosporidium parvum rhoptry protein candidate related to the rhoptry neck proteins TgRON1 of Toxoplasma gondii and PfASP of Plasmodium falciparum. Mol Biochem Parasitol 2012; 183:94-9. [DOI: 10.1016/j.molbiopara.2012.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/19/2012] [Accepted: 02/06/2012] [Indexed: 11/28/2022]
|
12
|
Tanaka K, Arao T, Tamura D, Aomatsu K, Furuta K, Matsumoto K, Kaneda H, Kudo K, Fujita Y, Kimura H, Yanagihara K, Yamada Y, Okamoto I, Nakagawa K, Nishio K. SRPX2 is a novel chondroitin sulfate proteoglycan that is overexpressed in gastrointestinal cancer. PLoS One 2012; 7:e27922. [PMID: 22242148 PMCID: PMC3252299 DOI: 10.1371/journal.pone.0027922] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/27/2011] [Indexed: 12/22/2022] Open
Abstract
SRPX2 (Sushi repeat-containing protein, X-linked 2) has recently emerged as a multifunctional protein that is involved in seizure disorders, angiogenesis and cellular adhesion. Here, we analyzed this protein biochemically. SRPX2 protein was secreted with a highly posttranslational modification. Chondroitinase ABC treatment completely decreased the molecular mass of purified SRPX2 protein to its predicted size, whereas heparitinase, keratanase and hyaluroinidase did not. Secreted SRPX2 protein was also detected using an anti-chondroitin sulfate antibody. These results indicate that SRPX2 is a novel chondroitin sulfate proteoglycan (CSPG). Furthermore, a binding assay revealed that hepatocyte growth factor dose-dependently binds to SRPX2 protein, and a ligand-glycosaminoglycans interaction was speculated to be likely in proteoglycans. Regarding its molecular architecture, SRPX2 has sushi repeat modules similar to four other CSPGs/lecticans; however, the molecular architecture of SRPX2 seems to be quite different from that of the lecticans. Taken together, we found that SRPX2 is a novel CSPG that is overexpressed in gastrointestinal cancer cells. Our findings provide key glycobiological insight into SRPX2 in cancer cells and demonstrate that SRPX2 is a new member of the cancer-related proteoglycan family.
Collapse
Affiliation(s)
- Kaoru Tanaka
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
- Department of Medical Oncology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tokuzo Arao
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Daisuke Tamura
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Keiichi Aomatsu
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuyuki Furuta
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuko Matsumoto
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hiroyasu Kaneda
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
- Department of Medical Oncology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kanae Kudo
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yoshihiko Fujita
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hideharu Kimura
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuyoshi Yanagihara
- Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Asaminami-ku, Hiroshima, Japan
| | - Yasuhide Yamada
- Department of Medical Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Isamu Okamoto
- Department of Medical Oncology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
13
|
Moreno-Perez DA, Montenegro M, Patarroyo ME, Patarroyo MA. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1). Malar J 2011; 10:314. [PMID: 22024312 PMCID: PMC3215230 DOI: 10.1186/1475-2875-10-314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/24/2011] [Indexed: 01/16/2023] Open
Abstract
Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1) and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP) according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs) by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of the P. vivax rhoptry neck protein 1 in the VCG-1 strain. Taking into account that PvRON1 shares several important characteristics with other Plasmodium antigens that play a functional role during RBC invasion and, as shown here, it is antigenic, it could be considered as a good vaccine candidate. Further studies aimed at assessing its immunogenicity and protection-inducing ability in the Aotus monkey model are thus recommended.
Collapse
Affiliation(s)
- Darwin A Moreno-Perez
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No, 26-20, Bogotá, Colombia
| | | | | | | |
Collapse
|
14
|
Láng A, Szilágyi K, Major B, Gál P, Závodszky P, Perczel A. Intermodule cooperativity in the structure and dynamics of consecutive complement control modules in human C1r: structural biology. FEBS J 2010; 277:3986-98. [PMID: 20796027 DOI: 10.1111/j.1742-4658.2010.07790.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modular C1r protein is the first protease activated in the classical complement pathway, a key component of innate immunity. Activation of the heteropentameric C1 complex, possibly accompanied by major intersubunit re-arrangements besides proteolytic cleavage, requires targeted regulation of flexibility within the context of the intramolecular and intermolecular interaction networks of the complex. In this study, we prepared the two complement control protein (CCP) modules, CCP1 and CCP2, of C1r in their free form, as well as their tandem-linked construct, CCP1CCP2, to characterize their solution structure, conformational dynamics and cooperativity. The structures derived from NMR signal dispersion and secondary chemical shifts were in good agreement with those obtained by X-ray crystallography. However, successful heterologus expression of both the single CCP1 module and the CCP1CCP2 constructs required the attachment of the preceding N-terminal module, CUB2, which could then be removed to obtain the properly folded proteins. Internal mobility of the modules, especially that of CCP1, exhibited considerable changes accompanied by interfacial chemical shift alterations upon the attachment of the C-terminal CCP2 domain. Our NMR data suggest that in terms of folding, stability and dynamics, CCP1 is heavily dependent on the presence of its neighboring modules in intact C1r. Therefore, CCP1 could be a focal interaction point, capable of transmitting information towards its neighboring modules.
Collapse
Affiliation(s)
- András Láng
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
With the evolution of fish, systems appeared for the disposal of the hemoglobin (Hb) that was inevitably released from erythrocytes. Thus, a plasma protein that bound free Hb with great affinity, haptoglobin (Hp), evolved from a protease of the innate immune system. In parallel, other proteins appeared (for example, hemopexin and alpha(1)-microglobulin), which bound and mediated the removal of free heme groups. Remarkably, Hp later disappeared in some vertebrate lineages, suggesting that it could also be disadvantageous. In the avian lineage, a soluble protein evolved, possibly from a scavenger receptor, which in some birds seems to have replaced Hp. Among mammals, multimeric forms of Hp appeared independently at two discrete times, suggesting that this form of the protein confers an advantage on the bearer, possibly by improving resistance to infection.
Collapse
|
16
|
Miljkovic-Licina M, Hammel P, Garrido-Urbani S, Bradfield PF, Szepetowski P, Imhof BA. Sushi repeat protein X-linked 2, a novel mediator of angiogenesis. FASEB J 2009; 23:4105-16. [PMID: 19667118 DOI: 10.1096/fj.09-135202] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
On appropriate stimuli, quiescent endothelial cells start to proliferate and form de novo blood vessels through angiogenesis. To further define molecular mechanisms accompanying the activation of endothelial cells during angiogenesis, we identified genes that were differentially regulated during this process using microarray analyses. In this work, we established a regulatory role for Sushi repeat protein X-linked 2 (Srpx2) in endothelial cell remodeling during angiogenesis. In particular, silencing of Srpx2 using small interfering RNAs (siRNAs) specifically attenuated endothelial cell migration and delayed angiogenic sprout formation. In vivo, Srpx2 expression was detected in de novo formation of blood vessels in angiogenic tissues by in situ mRNA hybridization and immunostaining. Pulldown experiments identified Srpx2 as a ligand for vascular uPAR, a key molecule involved in invasive migration of angiogenic endothelium. Immunostaining revealed coexpression of the Srpx2 and uPAR on vascular endothelium. These findings suggest that Srpx2 regulates endothelial cell migration and tube formation and provides a new target for modulating angiogenesis.
Collapse
Affiliation(s)
- Marijana Miljkovic-Licina
- Department of Pathology and Immunology, Centre Médical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Tanaka K, Arao T, Maegawa M, Matsumoto K, Kaneda H, Kudo K, Fujita Y, Yokote H, Yanagihara K, Yamada Y, Okamoto I, Nakagawa K, Nishio K. SRPX2 is overexpressed in gastric cancer and promotes cellular migration and adhesion. Int J Cancer 2009; 124:1072-80. [PMID: 19065654 DOI: 10.1002/ijc.24065] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SRPX2 (Sushi repeat containing protein, X-linked 2) was first identified as a downstream molecule of the E2A-HLF fusion gene in t(17;19)-positive leukemia cells and the biological function of this gene remains unknown. We found that SRPX2 is overexpressed in gastric cancer and the expression and clinical features showed that high mRNA expression levels were observed in patients with unfavorable outcomes using real-time RT-PCR. The cellular distribution of SRPX2 protein showed the secretion of SRPX2 into extracellular regions and its localization in the cytoplasm. The introduction of the SRPX2 gene into HEK293 cells did not modulate the cellular proliferative activity but did enhance the cellular migration activity, as shown using migration and scratch assays. The conditioned-medium obtained from SRPX2-overexpressing cells increased the cellular migration activity of a gastric cancer cell line, SNU-16. In addition, SRPX2 protein remarkably enhanced the cellular adhesion of SNU-16 and HSC-39 and increased the phosphorylation levels of focal adhesion kinase (FAK), as shown using western blotting, suggesting that SRPX2 enhances cellular migration and adhesion through FAK signaling. In conclusion, the overexpression of SRPX2 enhances cellular migration and adhesion in gastric cancer cells. Here, we report that the biological functions of SRPX2 include cellular migration and adhesion to cancer cells.
Collapse
Affiliation(s)
- Kaoru Tanaka
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Royer-Zemmour B, Ponsole-Lenfant M, Gara H, Roll P, Lévêque C, Massacrier A, Ferracci G, Cillario J, Robaglia-Schlupp A, Vincentelli R, Cau P, Szepetowski P. Epileptic and developmental disorders of the speech cortex: ligand/receptor interaction of wild-type and mutant SRPX2 with the plasminogen activator receptor uPAR. Hum Mol Genet 2008; 17:3617-30. [PMID: 18718938 DOI: 10.1093/hmg/ddn256] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in SRPX2 (Sushi-Repeat Protein, X-linked 2) cause rolandic epilepsy with speech impairment (RESDX syndrome) or with altered development of the speech cortex (bilateral perisylvian polymicrogyria). The physiological roles of SRPX2 remain unknown to date. One way to infer the function of SRPX2 relies on the identification of the as yet unknown SRPX2 protein partners. Using a combination of interactome approaches including yeast two-hybrid screening, co-immunoprecipitation experiments, cell surface binding and surface plasmon resonance (SPR), we show that SRPX2 is a ligand for uPAR, the urokinase-type plasminogen activator (uPA) receptor. Previous studies have shown that uPAR(-/-) knock-out mice exhibited enhanced susceptibility to epileptic seizures and had brain cortical anomalies consistent with altered neuronal migration and maturation, all features that are reminiscent to the phenotypes caused by SRPX2 mutations. SPR analysis indicated that the p.Y72S mutation associated with rolandic epilepsy and perisylvian polymicrogyria, led to a 5.8-fold gain-of-affinity of SRPX2 with uPAR. uPAR is a crucial component of the extracellular plasminogen proteolysis system; two more SRPX2 partners identified here, the cysteine protease cathepsin B (CTSB) and the metalloproteinase ADAMTS4, are also components of the extracellular proteolysis machinery and CTSB is a well-known activator of uPA. The identification of functionally related SRPX2 partners provides the first and exciting insights into the possible role of SRPX2 in the brain, and suggests that a network of SRPX2-interacting proteins classically involved in the proteolytic remodeling of the extracellular matrix and including uPAR participates in the functioning, in the development and in disorders of the speech cortex.
Collapse
|
19
|
Jarymowycz VA, Stone MJ. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 2007; 106:1624-71. [PMID: 16683748 DOI: 10.1021/cr040421p] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Virginia A Jarymowycz
- Department of Chemistry and Interdisciplinary Biochemistry Program, Indiana University, Bloomington, Indiana 47405-0001, USA
| | | |
Collapse
|
20
|
Furtado PB, Huang CY, Ihyembe D, Hammond RA, Marsh HC, Perkins SJ. The partly folded back solution structure arrangement of the 30 SCR domains in human complement receptor type 1 (CR1) permits access to its C3b and C4b ligands. J Mol Biol 2007; 375:102-18. [PMID: 18028942 DOI: 10.1016/j.jmb.2007.09.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 11/16/2022]
Abstract
Human complement receptor type 1 (CR1, CD35) is a type I membrane-bound glycoprotein that belongs to the regulators of complement activity (RCA) family. The extra-cellular component of CR1 is comprised of 30 short complement regulator (SCR) domains, whereas complement receptor type 2 (CR2) has 15 SCR domains and factor H (FH) has 20 SCR domains. The domain arrangement of a soluble form of CR1 (sCR1) was studied by X-ray scattering and analytical ultracentrifugation. The radius of gyration R(G) of sCR1 of 13.4(+/-1.1) nm is not much greater than those for CR2 and FH, and its R(G)/R(0) anisotropy ratio is 3.76, compared to ratios of 3.67 for FH and 4.1 for CR2. Unlike CR2, but similar to FH, two cross-sectional R(G) ranges were identified that gave R(XS) values of 4.7(+/-0.2) nm and 1.2(+/-0.7) nm, respectively, showing that the SCR domains adopt a range of conformations including folded-back ones. The distance distribution function P(r) showed that the most commonly occurring distance in sCR1 is at 11.5 nm. Its maximum length of 55 nm is less than double those for CR2 or FH, even though sCR1 has twice the number of SCR domains compared to CR2 Sedimentation equilibrium experiments gave a mean molecular weight of 235 kDa for sCR1. This is consistent with the value of 245 kDa calculated from its composition including 14 N-linked oligosaccharide sites, and confirmed that sCR1 is a monomer in solution. Sedimentation velocity experiments gave a sedimentation coefficient of 5.8 S. From this, the frictional ratio (f/f(0)) of sCR1 was calculated to be 2.29, which is greater than those of 1.96 for CR2 and 1.77 for FH. The constrained scattering modelling of the sCR1 solution structure starting from homologous SCR domain structures generated 5000 trial conformationally randomised models, 43 of which gave good scattering fits to show that sCR1 has a partly folded-back structure. We conclude that the inter-SCR linkers show structural features in common with those in FH, but differ from those in CR2, and the SCR arrangement in CR1 will permit C3b or C4b to access all three ligand sites.
Collapse
Affiliation(s)
- Patricia B Furtado
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
21
|
Weiss G, Madsen HO, Garred P. A novel mannose-binding lectin-associated serine protease 1/3 gene variant. Scand J Immunol 2007; 65:430-4. [PMID: 17444953 DOI: 10.1111/j.1365-3083.2007.01925.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ficolins and mannose-binding lectin (MBL) create complexes with three different serine proteases (MASP-1, MASP-2 and MASP-3) and a truncated non-enzymatic form of MASP-2 (sMAP). MASP-2 is able to activate complement by cleavage of C4 and C2, while the physiological functions of MASP-1, MASP-3 and sMAP still are debated. MASP-1 and MASP-3 are alternative spliced forms of the same MASP gene. To gain insight in the molecular variation in the MASP-1/3 gene, we undertook a systematic study of the protein coding sequences of the MASP-1/3 gene. The coding regions of the MASP-1/3 gene were sequenced in 92 healthy Caucasian donors. A total of six nucleotide substitutions were detected. Five were detected only once. One polymorphism identified in exon 10 at position +50074 (rs 38343199) relative to the transcription start site resulting in the amino acid substitution of a glycine (GGG) with a glutamic acid residue (GAG) in the second complement control protein domain was observed. The frequency of this allele in 305 blood donors, 90 patients with systemic lupus erythematosus and 234 patients with the systemic inflammatory response syndrome (SIRS) and/or sepsis was 0.03, 0.017 and 0.03 respectively. No significant differences in genotype frequencies between the groups were observed (P > 0.45). However, the SIRS/sepsis group deviated from the Hardy-Weinberg expectations due to one variant allele homozygote (P = 0.07), which was not observed in the other groups. In conclusion, the MASP1/3 gene harbours a low-frequent polymorphic site resulting in an amino acid substitution, which may influence the function of the gene product.
Collapse
Affiliation(s)
- G Weiss
- Tissue Typing Laboratory-7631, Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
22
|
Grace CRR, Perrin MH, Gulyas J, DiGruccio MR, Cantle JP, Rivier JE, Vale WW, Riek R. Structure of the N-terminal domain of a type B1 G protein-coupled receptor in complex with a peptide ligand. Proc Natl Acad Sci U S A 2007; 104:4858-63. [PMID: 17360332 PMCID: PMC1829229 DOI: 10.1073/pnas.0700682104] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticotropin releasing factor (CRF) family of ligands and their receptors coordinate endocrine, behavioral, autonomic, and metabolic responses to stress and play additional roles within the cardiovascular, gastrointestinal, and other systems. The actions of CRF and the related urocortins are mediated by activation of two receptors, CRF-R1 and CRF-R2, belonging to the B1 family of G protein-coupled receptors. The short-consensus-repeat fold (SCR) within the first extracellular domain (ECD1) of the CRF receptor(s) comprises the major ligand binding site and serves to dock a peptide ligand via its C-terminal segment, thus positioning the N-terminal segment to interact with the receptor's juxtamembrane domains to activate the receptor. Here we present the 3D NMR structure of ECD1 of CRF-R2beta in complex with astressin, a peptide antagonist. In the structure of the complex the C-terminal segment of astressin forms an amphipathic helix, whose entire hydrophobic face interacts with the short-consensus-repeat motif, covering a large intermolecular interface. In addition, the complex is characterized by intermolecular hydrogen bonds and a salt bridge. These interactions are quantitatively weighted by an analysis of the effects on the full-length receptor affinities using an Ala scan of CRF. These structural studies identify the major determinants for CRF ligand specificity and selectivity and support a two-step model for receptor activation. Furthermore, because of a proposed conservation of the fold for both the ECD1s and ligands, this structure can serve as a model for ligand recognition for the entire B1 receptor family.
Collapse
Affiliation(s)
| | - Marilyn H. Perrin
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Jozsef Gulyas
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Michael R. DiGruccio
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Jeffrey P. Cantle
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Jean E. Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Wylie W. Vale
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
- To whom correspondence may be addressed. E-mail: or
| | - Roland Riek
- *Structural Biology Laboratory and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
23
|
Zhang L, Morikis D. Immunophysical properties and prediction of activities for vaccinia virus complement control protein and smallpox inhibitor of complement enzymes using molecular dynamics and electrostatics. Biophys J 2006; 90:3106-19. [PMID: 16473914 PMCID: PMC1432100 DOI: 10.1529/biophysj.105.068130] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 01/18/2006] [Indexed: 11/18/2022] Open
Abstract
We present immunophysical modeling for VCP, SPICE, and three mutants using MD simulations and Poisson-Boltzmann-type electrostatic calculations. VCP and SPICE are homologous viral proteins that control the complement system by imitating, structurally and functionally, natural regulators of complement activation. VCP and SPICE consist of four CCP modules connected with short flexible loops. MD simulations demonstrate that the rather complex modules of VCP/SPICE and their mutants exhibit a high degree of intermodular spatial mobility, which is affected by surface mutations. Electrostatic calculations using snapshots from the MD trajectories demonstrate variable spatial distribution of the electrostatic potentials, which suggests dynamic binding properties. We use covariance analysis to identify correlated modular oscillations. We also use electrostatic similarity indices to cluster proteins with common electrostatic properties. Our results are compared with experimental data to form correlations between the overall positive electrostatic potential of VCP/SPICE with binding and activity. We show how these correlations can be used to predict binding and activity properties. This work is expected to be useful for understanding the function of native CCP-containing regulators of complement activation and receptors and for the design of antiviral therapeutics and complement inhibitors.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
24
|
Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A. Localization of regions in CD46 that interact with adenovirus. J Virol 2005; 79:7503-13. [PMID: 15919905 PMCID: PMC1143628 DOI: 10.1128/jvi.79.12.7503-7513.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A variety of pathogens use CD46, a ubiquitously expressed membrane protein that regulates complement activation, as a cellular attachment receptor. While the CD46 binding sites of several pathogens, including measles virus, Neisseria gonorrhea, and human herpesvirus 6, have been described, the region of CD46 responsible for adenovirus binding has not been determined. In this study, we used competition experiments with known CD46 ligands, CD46-specific antibodies, and a set of CD46 mutants to localize the binding domain for the group B adenovirus serotype 35 (Ad35). Our results show that Ad35 competes with measles virus for binding to CD46 but not with complement protein C3b. We further show that this interaction is a protein-protein interaction and that N glycosylations do not critically contribute to infection with Ad35 fiber-containing Ad vectors. Our data demonstrate that the native conformation of the CCP2 domain is crucial for Ad35 binding and that the substitution of amino acids at positions 130 to 135 or 152 to 156 completely abolishes the receptor function of CD46. These regions localize to the same planar face of CD46 and likely form an extended adenovirus binding surface, since no single amino acid substitution within these areas eliminates virus binding. Finally, we demonstrate that the infection with a virus possessing human group B serotype Ad11 fibers is also mediated by the CCP2 domain. This information is important to better characterize the mechanisms of the receptor recognition by adenovirus relative to other pathogens that interact with CD46, and it may help in the design of antiviral therapeutics against adenovirus serotypes that use CD46 as a primary cellular attachment receptor.
Collapse
Affiliation(s)
- Anuj Gaggar
- University of Washington School of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
25
|
Blein S, Ginham R, Uhrin D, Smith BO, Soares DC, Veltel S, McIlhinney RAJ, White JH, Barlow PN. Structural Analysis of the Complement Control Protein (CCP) Modules of GABAB Receptor 1a. J Biol Chem 2004; 279:48292-306. [PMID: 15304491 DOI: 10.1074/jbc.m406540200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-aminobutyric acid type B (GABA(B)) receptor is a heterodimeric G-protein-coupled receptor. In humans, three splice variants of the GABA(B) receptor 1 (R1) subunit differ in having one, both, or neither of two putative complement control protein (CCP) modules at the extracellular N terminus, prior to the GABA-binding domain. The in vivo function of these predicted modules remains to be discovered, but a likely association with extracellular matrix proteins is intriguing. The portion of the GABA(B) R1a variant encompassing both of its CCP module-like sequences has been expressed, as have the sequences corresponding to each individual module. Each putative CCP module exhibits the expected pattern of disulfide formation. However, the second module (CCP2) is more compactly folded than the first, and the three-dimensional structure of this more C-terminal module (expressed alone) was solved on the basis of NMR-derived nuclear Overhauser effects. This revealed a strong similarity to previously determined CCP module structures in the regulators of complement activation. The N-terminal module (CCP1) displayed conformational heterogeneity under a wide range of conditions whether expressed alone or together with CCP2. Several lines of evidence indicated the presence of native disorder in CCP1, despite the fact that recombinant CCP1 contributes to binding to the extracellular matrix protein fibulin-2. Thus, we have shown that the two CCP modules of GABA(B) R1a have strikingly different structural properties, reflecting their different functions.
Collapse
Affiliation(s)
- Stanislas Blein
- Edinburgh Protein Interaction Centre, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|