1
|
de Jong SI, Sorokin DY, van Loosdrecht MCM, Pabst M, McMillan DGG. Membrane proteome of the thermoalkaliphile Caldalkalibacillus thermarum TA2.A1. Front Microbiol 2023; 14:1228266. [PMID: 37577439 PMCID: PMC10416648 DOI: 10.3389/fmicb.2023.1228266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Proteomics has greatly advanced the understanding of the cellular biochemistry of microorganisms. The thermoalkaliphile Caldalkalibacillus thermarum TA2.A1 is an organism of interest for studies into how alkaliphiles adapt to their extreme lifestyles, as it can grow from pH 7.5 to pH 11. Within most classes of microbes, the membrane-bound electron transport chain (ETC) enables a great degree of adaptability and is a key part of metabolic adaptation. Knowing what membrane proteins are generally expressed is crucial as a benchmark for further studies. Unfortunately, membrane proteins are the category of proteins hardest to detect using conventional cellular proteomics protocols. In part, this is due to the hydrophobicity of membrane proteins as well as their general lower absolute abundance, which hinders detection. Here, we performed a combination of whole cell lysate proteomics and proteomics of membrane extracts solubilised with either SDS or FOS-choline-12 at various temperatures. The combined methods led to the detection of 158 membrane proteins containing at least a single transmembrane helix (TMH). Within this data set we revealed a full oxidative phosphorylation pathway as well as an alternative NADH dehydrogenase type II (Ndh-2) and a microaerophilic cytochrome oxidase ba3. We also observed C. thermarum TA2.A1 expressing transporters for ectoine and glycine betaine, compounds that are known osmolytes that may assist in maintaining a near neutral internal pH when the external pH is highly alkaline.
Collapse
Affiliation(s)
- Samuel I. de Jong
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Dimitry Y. Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
2
|
Frelet-Barrand A. Lactococcus lactis, an Attractive Cell Factory for the Expression of Functional Membrane Proteins. Biomolecules 2022; 12:180. [PMID: 35204681 PMCID: PMC8961550 DOI: 10.3390/biom12020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Membrane proteins play key roles in most crucial cellular processes, ranging from cell-to-cell communication to signaling processes. Despite recent improvements, the expression of functionally folded membrane proteins in sufficient amounts for functional and structural characterization remains a challenge. Indeed, it is still difficult to predict whether a protein can be overproduced in a functional state in some expression system(s), though studies of high-throughput screens have been published in recent years. Prokaryotic expression systems present several advantages over eukaryotic ones. Among them, Lactococcus lactis (L. lactis) has emerged in the last two decades as a good alternative expression system to E. coli. The purpose of this chapter is to describe L. lactis and its tightly inducible system, NICE, for the effective expression of membrane proteins from both prokaryotic and eukaryotic origins.
Collapse
Affiliation(s)
- Annie Frelet-Barrand
- FEMTO-ST Institute, UMR 6174, CNRS, Université Bourgogne Franche-Comté, 15B Avenue des Montboucons, CEDEX, 25030 Besançon, France
| |
Collapse
|
3
|
High Throughput Expression Screening of Arabinofuranosyltransferases from Mycobacteria. Processes (Basel) 2021. [DOI: 10.3390/pr9040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studies on membrane proteins can help to develop new drug targets and treatments for a variety of diseases. However, membrane proteins continue to be among the most challenging targets in structural biology. This uphill endeavor can be even harder for membrane proteins from Mycobacterium species, which are notoriously difficult to express in heterologous systems. Arabinofuranosyltransferases are involved in mycobacterial cell wall synthesis and thus potential targets for antituberculosis drugs. A set of 96 mycobacterial genes coding for Arabinofuranosyltransferases was selected, of which 17 were successfully expressed in E. coli and purified by metal-affinity chromatography. We herein present an efficient high-throughput strategy to screen in microplates a large number of targets from Mycobacteria and select the best conditions for large-scale protein production to pursue functional and structural studies. This methodology can be applied to other targets, is cost and time effective and can be implemented in common laboratories.
Collapse
|
4
|
Dilworth MV, Findlay HE, Booth PJ. Detergent-free purification and reconstitution of functional human serotonin transporter (SERT) using diisobutylene maleic acid (DIBMA) copolymer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183602. [PMID: 33744253 PMCID: PMC8111416 DOI: 10.1016/j.bbamem.2021.183602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
Structure and function analysis of human membrane proteins in lipid bilayer environments is acutely lacking despite the fundame1ntal cellular importance of these proteins and their dominance of drug targets. An underlying reason is that detailed study usually requires a potentially destabilising detergent purification of the proteins from their host membranes prior to subsequent reconstitution in a membrane mimic; a situation that is exacerbated for human membrane proteins due to the inherent difficulties in overexpressing suitable quantities of the proteins. We advance the promising styrene maleic acid polymer (SMA) extraction approach to introduce a detergent-free method of obtaining stable, functional human membrane transporters in bilayer nanodiscs directly from yeast cells. We purify the human serotonin transporter (hSERT) following overexpression in Pichia pastoris using diisobutylene maleic acid (DIBMA) as a superior method to traditional detergents or the more established styrene maleic acid polymer. hSERT plays a pivotal role in neurotransmitter regulation being responsible for the transport of the neurotransmitter 5-hydroxytryptamine (5-HT or serotonin). It is representative of the neurotransmitter sodium symporter (NSS) family, whose importance is underscored by the numerous diseases attributed to their malfunction. We gain insight into hSERT activity through an in vitro transport assay and find that DIBMA extraction improves the thermostability and activity of hSERT over the conventional detergent method. The non-aromatic amphipathic polymer DIBMA can be successfully employed to purify human membrane proteins. DIBMA solubilisation of hSERT from yeast membranes and resultant nanodisc thermostability is comparable to SMA. DIBMA and SMA encapsulated hSERT lipid-nanodiscs exhibit higher binding activity than hSERT DDMCHS micelles. Proteoliposomes reconstituted with hSERT-DIBMALPs possess higher transport activity than comparable DDMCHS reconstitutions.
Collapse
Affiliation(s)
- Marvin V Dilworth
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom.
| | - Heather E Findlay
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom.
| | - Paula J Booth
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom.
| |
Collapse
|
5
|
Cai H, Yao H, Li T, Hutter CAJ, Li Y, Tang Y, Seeger MA, Li D. An improved fluorescent tag and its nanobodies for membrane protein expression, stability assay, and purification. Commun Biol 2020; 3:753. [PMID: 33303987 PMCID: PMC7729955 DOI: 10.1038/s42003-020-01478-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
Green fluorescent proteins (GFPs) are widely used to monitor membrane protein expression, purification, and stability. An ideal reporter should be stable itself and provide high sensitivity and yield. Here, we demonstrate that a coral (Galaxea fascicularis) thermostable GFP (TGP) is by such reasons an improved tag compared to the conventional jellyfish GFPs. TGP faithfully reports membrane protein stability at temperatures near 90 °C (20-min heating). By contrast, the limit for the two popular GFPs is 64 °C and 74 °C. Replacing GFPs with TGP increases yield for all four test membrane proteins in four expression systems. To establish TGP as an affinity tag for membrane protein purification, several high-affinity synthetic nanobodies (sybodies), including a non-competing pair, are generated, and the crystal structure of one complex is solved. Given these advantages, we anticipate that TGP becomes a widely used tool for membrane protein structural studies.
Collapse
Affiliation(s)
- Hongmin Cai
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Hebang Yao
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Tingting Li
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Yanfang Li
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Yannan Tang
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Dianfan Li
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.
| |
Collapse
|
6
|
Ehsan M, Kumar A, Mortensen JS, Du Y, Hariharan P, Kumar KK, Ha B, Byrne B, Guan L, Kobilka BK, Loland CJ, Chae PS. Self-Assembly Behaviors of a Penta-Phenylene Maltoside and Its Application for Membrane Protein Study. Chem Asian J 2019; 14:1926-1931. [PMID: 30969484 PMCID: PMC7239035 DOI: 10.1002/asia.201900224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Indexed: 01/07/2023]
Abstract
We prepared an amphiphile with a penta-phenylene lipophilic group and a branched trimaltoside head group. This new agent, designated penta-phenylene maltoside (PPM), showed a marked tendency to self-assembly into micelles via strong aromatic-aromatic interactions in aqueous media, as evidenced by 1 H NMR spectroscopy and fluorescence studies. When utilized for membrane protein studies, this new agent was superior to DDM, a gold standard conventional detergent, in stabilizing multiple proteins long term. The ability of this agent to form aromatic-aromatic interactions is likely responsible for enhanced protein stabilization when associated with a target membrane protein.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
- Current address: Department of Chemistry, Mirpur University of Science&Technology (MUST), Mirpur-, 10250 (AJK), Pakistan
| | - Ashwani Kumar
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Kaavya K Kumar
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Betty Ha
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
7
|
Li H, Liu L, Zhang WJ, Zhang X, Zheng J, Li L, Zhu X, Yang Q, Zhang M, Liu H, Chen X, Jin Q. Analysis of the Antigenic Properties of Membrane Proteins of Mycobacterium tuberculosis. Sci Rep 2019; 9:3042. [PMID: 30816178 PMCID: PMC6395656 DOI: 10.1038/s41598-019-39402-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/21/2018] [Indexed: 11/08/2022] Open
Abstract
Tuberculosis (TB) is a continuing major threat to global health and a leading cause of death, particularly in developing countries. In this study, we aimed to identify a specific and sensitive diagnostic biomarker and develop a vaccine to prevent this disease. We investigated membrane proteins to reveal biomarkers in serum and peripheral blood mononuclear cells (PBMCs) obtained from TB patients. We employed Western blotting to evaluate serological immunoglobulin G levels, and Enzyme Linked Immunospot (ELISpot) to assess the antigen-specific cellular interferon-γ secretion from PBMCs after membrane protein stimulation. A total of 219 membrane proteins were identified, 52 exhibited at a higher levels than the 38-kDa prositive control. Of these 18 exhibited reacted ratios above 1, especially Rv1111c (427-981), with a ratios at 3.38. Accuracy and sensitivity were markedly higher for the top two antigen candidates, Rv0232 and Rv1115, after two rounds of ELISpot tests than ESAT-6 in the commercial kit (42.15 and 43.62%, respectively). These two proteins were administered to mice to detect whether they acted as effective antigens in vivo. These data provide a comprehensive view of the membranes involved in humoural and cellular immune responses that may be used as biomarkers for TB and candidates for a vaccine.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Antigens, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/isolation & purification
- Bacterial Proteins/blood
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Biomarkers/blood
- Cloning, Molecular
- Computational Biology
- Disease Models, Animal
- Female
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin G
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Male
- Membrane Proteins/blood
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/isolation & purification
- Mice
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Tuberculosis Vaccines/immunology
- Tuberculosis Vaccines/therapeutic use
- Tuberculosis, Pulmonary/blood
- Tuberculosis, Pulmonary/diagnosis
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/prevention & control
- Young Adult
Collapse
Affiliation(s)
- Haifeng Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei-Jia Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Xiaobing Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhua Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuyun Zhu
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Qianting Yang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Mingxia Zhang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Haiying Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Saladi SM, Javed N, Müller A, Clemons WM. A statistical model for improved membrane protein expression using sequence-derived features. J Biol Chem 2018; 293:4913-4927. [PMID: 29378850 PMCID: PMC5880134 DOI: 10.1074/jbc.ra117.001052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/22/2018] [Indexed: 11/06/2022] Open
Abstract
The heterologous expression of integral membrane proteins (IMPs) remains a major bottleneck in the characterization of this important protein class. IMP expression levels are currently unpredictable, which renders the pursuit of IMPs for structural and biophysical characterization challenging and inefficient. Experimental evidence demonstrates that changes within the nucleotide or amino acid sequence for a given IMP can dramatically affect expression levels, yet these observations have not resulted in generalizable approaches to improve expression levels. Here, we develop a data-driven statistical predictor named IMProve that, using only sequence information, increases the likelihood of selecting an IMP that expresses in Escherichia coli The IMProve model, trained on experimental data, combines a set of sequence-derived features resulting in an IMProve score, where higher values have a higher probability of success. The model is rigorously validated against a variety of independent data sets that contain a wide range of experimental outcomes from various IMP expression trials. The results demonstrate that use of the model can more than double the number of successfully expressed targets at any experimental scale. IMProve can immediately be used to identify favorable targets for characterization. Most notably, IMProve demonstrates for the first time that IMP expression levels can be predicted directly from sequence.
Collapse
Affiliation(s)
- Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Nauman Javed
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Axel Müller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
9
|
Oliver RC, Pingali SV, Urban VS. Designing Mixed Detergent Micelles for Uniform Neutron Contrast. J Phys Chem Lett 2017; 8:5041-5046. [PMID: 28960995 DOI: 10.1021/acs.jpclett.7b02149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) at the neutron contrast match point of detergent molecules allows observing the signal from membrane proteins unobstructed by contributions from the detergent. However, we show that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal interferes with interpreting structural data of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. We present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell and allows the micelle scattering to be fully contrast-matched to unambiguously resolve membrane protein structure using solution SANS.
Collapse
Affiliation(s)
- Ryan C Oliver
- Center for Structural Molecular Biology and Biology and Soft Matter Division, Oak Ridge National Laboratory , P.O. Box 2008, MS 6475, Oak Ridge, Tennessee 37831, United States
| | - Sai Venkatesh Pingali
- Center for Structural Molecular Biology and Biology and Soft Matter Division, Oak Ridge National Laboratory , P.O. Box 2008, MS 6475, Oak Ridge, Tennessee 37831, United States
| | - Volker S Urban
- Center for Structural Molecular Biology and Biology and Soft Matter Division, Oak Ridge National Laboratory , P.O. Box 2008, MS 6475, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
10
|
Sommer M, Xie H, Michel H. Pseudomonas stutzeri as an alternative host for membrane proteins. Microb Cell Fact 2017; 16:157. [PMID: 28931397 PMCID: PMC5607611 DOI: 10.1186/s12934-017-0771-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background Studies on membrane proteins are often hampered by insufficient yields of the protein of interest. Several prokaryotic hosts have been tested for their applicability as production platform but still Escherichia coli by far is the one most commonly used. Nevertheless, it has been demonstrated that in some cases hosts other than E. coli are more appropriate for certain target proteins. Results Here we have developed an expression system for the heterologous production of membrane proteins using a single plasmid-based approach. The gammaproteobacterium Pseudomonas stutzeri was employed as a new production host. We investigated several basic microbiological features crucial for its handling in the laboratory. The organism belonging to bio-safety level one is a close relative of the human pathogen Pseudomonas aeruginosa. Pseudomonas stutzeri is comparable to E. coli regarding its growth and cultivation conditions. Several effective antibiotics were identified and a protocol for plasmid transformation was established. We present a workflow including cloning of the target proteins, small-scale screening for the best production conditions and finally large-scale production in the milligram range. The GFP folding assay was used for the rapid analysis of protein folding states. In summary, out of 36 heterologous target proteins, 20 were produced at high yields. Additionally, eight transporters derived from P. aeruginosa could be obtained with high yields. Upscaling of protein production and purification of a Gluconate:H+ Symporter (GntP) family transporter (STM2913) from Salmonella enterica to high purity was demonstrated. Conclusions Pseudomonas stutzeri is an alternative production host for membrane proteins with success rates comparable to E. coli. However, some proteins were produced with high yields in P. stutzeri but not in E. coli and vice versa. Therefore, P. stutzeri extends the spectrum of useful production hosts for membrane proteins and increases the success rate for highly produced proteins. Using the new pL2020 vector no additional cloning is required to test both hosts in parallel. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0771-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Sommer
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
| | - Hao Xie
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Jeffery CJ. Expression, Solubilization, and Purification of Bacterial Membrane Proteins. ACTA ACUST UNITED AC 2016; 83:29.15.1-29.15.15. [PMID: 26836409 DOI: 10.1002/0471140864.ps2915s83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.
Collapse
Affiliation(s)
- Constance J Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Cheng X, Kim JK, Kim Y, Bowie JU, Im W. Molecular dynamics simulation strategies for protein-micelle complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1566-72. [PMID: 26679426 DOI: 10.1016/j.bbamem.2015.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 01/27/2023]
Abstract
The structure and stability of membrane proteins can vary widely in different detergents and this variability has great practical consequences for working with membrane proteins. Nevertheless, the mechanisms that operate to alter the behavior of proteins in micelles are poorly understood and not predictable. Atomic simulations could provide considerable insight into these mechanisms. Building protein-micelle complexes for simulation is fraught with uncertainty, however, in part because it is often unknown how many detergent molecules are present in the complex. Here, we describe several convenient ways to employ Micelle Builder in CHARMM-GUI to rapidly construct protein-micelle complexes and performed simulations of the isolated voltage-sensor domain of voltage-dependent potassium-selective channel and an antimicrobial peptide papiliocin with varying numbers of detergents. We found that once the detergent number exceeds a threshold, protein-detergent interactions change very little and remain very consistent with experimental observations. Our results provide a platform for future studies of the interplays between protein structure and detergent properties at the atomic level. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Jin-Kyoung Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA, 611 Charles E. Young Dr. E, Los Angeles, CA 90095-1570, USA
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
13
|
Lantez V, Nikolaidis I, Rechenmann M, Vernet T, Noirclerc-Savoye M. Rapid automated detergent screening for the solubilization and purification of membrane proteins and complexes. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Violaine Lantez
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | - Ioulia Nikolaidis
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
- Department of Biochemistry of Membranes; Bijvoet Center for Biomolecular Research, Utrecht University; The Netherlands
| | - Mathias Rechenmann
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | - Thierry Vernet
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | | |
Collapse
|
14
|
Beyond the cytoplasm of Escherichia coli: localizing recombinant proteins where you want them. Methods Mol Biol 2015; 1258:79-97. [PMID: 25447860 DOI: 10.1007/978-1-4939-2205-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Recombinant protein expression in Escherichia coli represents a cornerstone of the biotechnology enterprise. While cytoplasmic expression in this host has received the most attention, achieving substantial yields of correctly folded proteins in this compartment can sometimes be met with difficulties. These issues can often be overcome by targeting protein expression to extracytoplasmic compartments (e.g., membrane, periplasm) or to the culture medium. This chapter discusses various strategies for exporting proteins out of the cytoplasm as well as tools for monitoring and optimizing these different export mechanisms.
Collapse
|
15
|
Abstract
The expression and screening of the solubility of recombinant proteins is an important step in the high-throughput (HT) production of target proteins. For many applications, E. coli remains the most widely used expression system due to the relative ease of adapting it to HT pipelines. Herein is described a platform using a 96-well format for efficient expression and solubility screening of target proteins.
Collapse
Affiliation(s)
- Keehwan Kwon
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA,
| | | |
Collapse
|
16
|
|
17
|
Liguori L, Marques B, Villegas-Méndez A, Rothe R, Lenormand JL. Production of membrane proteins using cell–free expression systems. Expert Rev Proteomics 2014; 4:79-90. [PMID: 17288517 DOI: 10.1586/14789450.4.1.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.
Collapse
Affiliation(s)
- Lavinia Liguori
- University Joseph Fourier, HumProTher Laboratory, GREPI, CHU-Grenoble, 38043 Grenoble, France.
| | | | | | | | | |
Collapse
|
18
|
Cheng X, Jo S, Lee HS, Klauda JB, Im W. CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems. J Chem Inf Model 2013; 53:2171-80. [PMID: 23865552 DOI: 10.1021/ci4002684] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micelle Builder in CHARMM-GUI, http://www.charmm-gui.org/input/micelle , is a web-based graphical user interface to build pure/mixed micelle and protein/micelle complex systems for molecular dynamics (MD) simulation. The robustness of Micelle Builder is tested by simulating four detergent-only homogeneous micelles of DHPC (dihexanoylphosphatidylcholine), DPC (dodecylphosphocholine), TPC (tetradecylphosphocholine), and SDS (sodium dodecyl sulfate) and comparing the calculated micelle properties with experiments and previous simulations. As a representative protein/micelle model, Pf1 coat protein is modeled and simulated in DHPC micelles with three different numbers of DHPC molecules. While the number of DHPC molecules in direct contact with Pf1 protein converges during the simulation, distinct behavior and geometry of micelles lead to different protein conformations in comparison to that in bilayers. It is our hope that CHARMM-GUI Micelle Builder can be used for simulation studies of various protein/micelle systems to better understand the protein structure and dynamics in micelles as well as distribution of detergents and their dynamics around proteins.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
19
|
Oliver RC, Lipfert J, Fox DA, Lo RH, Doniach S, Columbus L. Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS One 2013; 8:e62488. [PMID: 23667481 PMCID: PMC3648574 DOI: 10.1371/journal.pone.0062488] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC) currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS), micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.
Collapse
Affiliation(s)
- Ryan C. Oliver
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jan Lipfert
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Daniel A. Fox
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ryan H. Lo
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sebastian Doniach
- Departments of Physics and Applied Physics, Biophysics Program, Stanford, California, United States of America
- Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, California, United States of America
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
20
|
Hart DJ, Waldo GS. Library methods for structural biology of challenging proteins and their complexes. Curr Opin Struct Biol 2013; 23:403-8. [PMID: 23602357 DOI: 10.1016/j.sbi.2013.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 02/08/2023]
Abstract
Genetic engineering of constructs to improve solubility or stability is a common approach, but it is often unclear how to obtain improvements. When the domain composition of a target is poorly understood, or if there are insufficient structure data to guide sited directed mutagenesis, long iterative phases of subcloning or mutation and expression often prove unsuccessful despite much effort. Random library approaches can offer a solution to this problem and involve construction of large libraries of construct variants that are analysed via screens or selections for the desired phenotype. Huge improvements in construct behaviour can be achieved rapidly with no requirement for prior knowledge of the target. Here we review the development of these experimental strategies and recent successes.
Collapse
Affiliation(s)
- Darren J Hart
- EMBL Grenoble Outstation and Unit of Virus Host-Cell Interactions, UMI3265 UJF-EMBL-CNRS, Grenoble, France.
| | | |
Collapse
|
21
|
High-throughput analytical gel filtration screening of integral membrane proteins for structural studies. Biochim Biophys Acta Gen Subj 2013; 1830:3497-508. [PMID: 23403133 DOI: 10.1016/j.bbagen.2013.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/21/2013] [Accepted: 02/04/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Structural studies of integral membrane proteins (IMPs) are often hampered by difficulties in producing stable homogenous samples for crystallization. To overcome this hurdle it has become common practice to screen large numbers of target proteins to find suitable candidates for crystallization. For such an approach to be effective, an efficient screening strategy is imperative. To this end, strategies have been developed that involve the use of green fluorescent protein (GFP) fusion constructs. However, these approaches suffer from two drawbacks; proteins with a translocated C-terminus cannot be tested and scale-up from analytical to preparative purification is often non-trivial and may require re-cloning. METHODS Here we present a screening approach that prioritizes IMP targets based on three criteria: expression level, detergent solubilization yield and homogeneity as determined by high-throughput small-scale immobilized metal affinity chromatography (IMAC) and automated size-exclusion chromatography (SEC). RESULTS To validate the strategy, we screened 48 prokaryotic IMPs in two different vectors and two Escherichia coli strains. A set of 11 proteins passed all preset quality control checkpoints and was subjected to crystallization trials. Four of these crystallized directly in initial sparse matrix screens, highlighting the robustness of the strategy. CONCLUSIONS We have developed a rapid and cost efficient screening strategy that can be used for all IMPs regardless of topology. The analytical steps have been designed to be a good mimic of preparative purification, which greatly facilitates scale-up. GENERAL SIGNIFICANCE The screening approach presented here is intended and expected to help drive forward structural biology of membrane proteins.
Collapse
|
22
|
Comprehensive analysis and identification of the human STIM1 domains for structural and functional studies. PLoS One 2013; 8:e53979. [PMID: 23320111 PMCID: PMC3540032 DOI: 10.1371/journal.pone.0053979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
STIM1 is a Ca2+ sensor within the ER membrane known to activate the plasma membrane store-operated Ca2+ channel upon depletion of its target ion in the ER lumen. This activation is a crucial step to initiate the Ca2+ signaling cascades within various cell types. Human STIM1 is a 77.4 kDa protein consisting of various domains that are involved in Ca2+ sensing, oligomerization, and channel activation and deactivation. In this study, we identify the domains and boundaries in which functional and stable recombinant human STIM1 can be produced in large quantities. To achieve this goal, we cloned nearly 200 constructs that vary in their initial and terminal residues, length and presence of the transmembrane domain, and we conducted expression and purification analyses using these constructs. The results revealed that nearly half of the constructs could be expressed and purified with high quality, out of which 25% contained the integral membrane domain. Further analyses using surface plasmon resonance, nuclear magnetic resonance and a thermostability assay verified the functionality and integrity of these constructs. Thus, we have been able to identify the most stable and well-behaved domains of the hSTIM1 protein, which can be used for future in vitro biochemical and biophysical studies.
Collapse
|
23
|
Biochemical characterization of cardiolipin synthase mutations associated with daptomycin resistance in enterococci. Antimicrob Agents Chemother 2012; 57:289-96. [PMID: 23114777 DOI: 10.1128/aac.01743-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Daptomycin (DAP) resistance in enterococci has been linked to mutations in genes that alter the cell envelope stress response (CESR) (liaFSR) and changes in enzymes that directly affect phospholipid homeostasis, and these changes may alter membrane composition, such as that of cardiolipin synthase (Cls). While Cls substitutions are observed in response to DAP therapy, the effect of these mutations on Cls activity remains obscure. We have expressed, purified, and characterized Cls enzymes from both Enterococcus faecium S447 (residues 52 to 482; Cls447a) and Enterococcus faecalis S613 (residues 53 to 483; Cls613a) as well as Cls variants harboring a single-amino-acid change derived from DAP-resistant isolates of E. faecium. E. faecium Cls447a and E. faecalis Cls613a are tightly associated with the membrane and copurify with their substrate, phosphatidylglycerol (PG), and product, cardiolipin (CL). The amount of PG that copurifies with Cls is in molar excess to protein, suggesting that the enzyme localizes to PG-rich membrane regions. Both Cls447a(H215R) and Cls447a(R218Q) showed an increase in V(max) (μM CL/min/μM protein) from 0.16 ± 0.01 to 0.26 ± 0.02 and 0.26 ± 0.04, respectively, indicating that mutations associated with adaptation to DAP increase Cls activity. Modeling of Cls447a to Streptomyces sp. phospholipase D indicates that the adaptive mutations Cls447a(H215R) and Cls447a(R218Q) are proximal to the phospholipase domain 1 (PLD1) active site and near the putative nucleophile H217. As mutations to Cls are part of a larger genomic adaptation process, increased Cls activity is likely to be highly epistatic with other changes to facilitate DAP resistance.
Collapse
|
24
|
Russell D, Kolaj-Robin O, Soulimane T. Maricaulis maris cation diffusion facilitator: Achieving homogeneity through a mixed-micelle approach. Protein Expr Purif 2012; 85:173-80. [DOI: 10.1016/j.pep.2012.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/22/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
|
25
|
Marino J, Geertsma ER, Zerbe O. Topogenesis of heterologously expressed fragments of the human Y4 GPCR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3055-63. [PMID: 22867850 DOI: 10.1016/j.bbamem.2012.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 06/24/2012] [Accepted: 07/26/2012] [Indexed: 12/12/2022]
Abstract
Fragments of large membrane proteins have the potential to facilitate structural analysis by NMR, but their folding state remains a concern. Here we determined the quality of folding upon heterologous expression for a series of N- or C-terminally truncated fragments of the human Y4 G-protein coupled receptor, amounting to six different complementation pairs. As the individual fragments lack a specific function that could be used to ascertain proper folding, we instead assessed folding on a basic level by studying their membrane topology and by comparing it to well-established structural models of GPCRs. The topology of the fragments was determined using a reporter assay based on C-terminal green fluorescent protein- or alkaline phosphatase-fusions. N-terminal fusions to Lep or Mistic were used if a periplasmic orientation of the N-terminus of the fragments was expected based on predictions. Fragments fused to Mistic expressed at comparably high levels, whereas Lep fusions were produced to a much lower extent. Though none of the fragments exclusively adopted one orientation, often the correct topology predominated. In addition, systematic analysis of the fragment series suggested that the C-terminal half of the Y4 receptor is more important for adopting the correct topology than the N-terminal part. Using the detergent dodecylphosphocholine, selected fragments were solubilized from the membrane and proved sufficiently stable to allow purification. Finally, as a first step toward reconstituting a functional receptor from two fragments, we observed a physical interaction between complementing fragments pairs upon co-expression.
Collapse
Affiliation(s)
- Jacopo Marino
- Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | | | | |
Collapse
|
26
|
Translation levels control multi-spanning membrane protein expression. PLoS One 2012; 7:e35844. [PMID: 22563408 PMCID: PMC3338534 DOI: 10.1371/journal.pone.0035844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 03/26/2012] [Indexed: 11/19/2022] Open
Abstract
Attempts to express eukaryotic multi-spanning membrane proteins at high-levels have been generally unsuccessful. In order to investigate the cause of this limitation and gain insight into the rate limiting processes involved, we have analyzed the effect of translation levels on the expression of several human membrane proteins in Escherichia coli (E. coli). These results demonstrate that excessive translation initiation rates of membrane proteins cause a block in protein synthesis and ultimately prevent the high-level accumulation of these proteins. Moderate translation rates allow coupling of peptide synthesis and membrane targeting, resulting in a significant increase in protein expression and accumulation over time. The current study evaluates four membrane proteins, CD20 (4-transmembrane (TM) helixes), the G-protein coupled receptors (GPCRs, 7-TMs) RA1c and EG-VEGFR1, and Patched 1 (12-TMs), and demonstrates the critical role of translation initiation rates in the targeting, insertion and folding of integral membrane proteins in the E. coli membrane.
Collapse
|
27
|
Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G. Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:35-62. [PMID: 23076578 PMCID: PMC3555569 DOI: 10.1007/978-94-007-4954-2_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
28
|
Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P, Joyard J, Pignol D, Sabaty M, Desnos T, Pebay-Peyroula E, Darrouzet E, Vernet T, Rolland N. Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 2011; 6:e29191. [PMID: 22216205 PMCID: PMC3244453 DOI: 10.1371/journal.pone.0029191] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022] Open
Abstract
Background Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. Methodology/Principal Findings The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Conclusions/Significance Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.
Collapse
Affiliation(s)
- Florent Bernaudat
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Palladino P, Ragone R. Ionic strength effects on the critical micellar concentration of ionic and nonionic surfactants: the binding model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14065-14070. [PMID: 22026636 DOI: 10.1021/la202897q] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have recently investigated the aggregation behavior of zwitterionic n-dodecyl phosphocholine in the presence of high salt. As double logarithmic Corrin-Harkins plots of the critical micellar concentration versus the salt concentration were not linear, here we re-examine those data in the context of the binding model of surfactant aggregation, as previously developed by us for ionic surfactants. We have also re-examined plenty of data available in the literature on the salt-dependent aggregation of neutral surfactants. The use of double-logarithmic plots allowed us to show that the binding model is of general applicability. Indeed, it permits unified treatment of ionic and uncharged aggregation without requiring the introduction of linear terms in the salt concentration, as needed in the empirical Corrin-Harkins treatment of nonionic surfactants. The use of this model could be of help in a broad range of surfactant-based applications in the presence of high salt.
Collapse
Affiliation(s)
- Pasquale Palladino
- Università degli Studi di Napoli Federico II, via Mezzocannone 16, 80134 Naples, Italy.
| | | |
Collapse
|
30
|
High throughput platforms for structural genomics of integral membrane proteins. Curr Opin Struct Biol 2011; 21:517-22. [PMID: 21807498 DOI: 10.1016/j.sbi.2011.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 11/20/2022]
Abstract
Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules.
Collapse
|
31
|
Tait AR, Straus SK. Overexpression and purification of U24 from human herpesvirus type-6 in E. coli: unconventional use of oxidizing environments with a maltose binding protein-hexahistine dual tag to enhance membrane protein yield. Microb Cell Fact 2011; 10:51. [PMID: 21714924 PMCID: PMC3155487 DOI: 10.1186/1475-2859-10-51] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obtaining membrane proteins in sufficient quantity for biophysical study and biotechnological applications has been a difficult task. Use of the maltose binding protein/hexahistidine dual tag system with E.coli as an expression host is emerging as a high throughput method to enhance membrane protein yield, solubility, and purity, but fails to be effective for certain proteins. Optimizing the variables in this system to fine-tune for efficiency can ultimately be a daunting task. To identify factors critical to success in this expression system, we have selected to study U24, a novel membrane protein from Human Herpesvirus type-6 with potent immunosuppressive ability and a possible role in the pathogenesis of the disease multiple sclerosis. RESULTS We expressed full-length U24 as a C-terminal fusion to a maltose binding protein/hexahistidine tag and examined the effects of temperature, growth medium type, cell strain type, oxidizing vs. reducing conditions and periplasmic vs. cytoplasmic expression location. Temperature appeared to have the greatest effect on yield; at 37°C full-length protein was either poorly expressed (periplasm) or degraded (cytoplasm) whereas at 18°C, expression was improved especially in the periplasm of C41(DE3) cells and in the cytoplasm of oxidizing Δtrx/Δgor mutant strains, Origami 2 and SHuffle. Expression of the fusion protein in these strains were estimated to be 3.2, 5.3 and 4.3 times greater, respectively, compared to commonly-used BL21(DE3) cells. We found that U24 is isolated with an intramolecular disulfide bond under these conditions, and we probed whether this disulfide bond was critical to high yield expression of full-length protein. Expression analysis of a C21SC37S cysteine-free mutant U24 demonstrated that this disulfide was not critical for full-length protein expression, but it is more likely that strained metabolic conditions favour factors which promote protein expression. This hypothesis is supported by the fact that use of minimal media could enhance protein production compared to nutrient-rich LB media. CONCLUSIONS We have found optimal conditions for heterologous expression of U24 from Human Herpesvirus type-6 in E.coli and have demonstrated that milligram quantities of pure protein can be obtained. Strained metabolic conditions such as low temperature, minimal media and an oxidizing environment appeared essential for high-level, full-length protein production and this information may be useful for expressing other membrane proteins of interest.
Collapse
Affiliation(s)
- Andrew R Tait
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | | |
Collapse
|
32
|
Infed N, Hanekop N, Driessen AJM, Smits SHJ, Schmitt L. Influence of detergents on the activity of the ABC transporter LmrA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2313-21. [PMID: 21651889 DOI: 10.1016/j.bbamem.2011.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 12/29/2022]
Abstract
The ABC transporter LmrA from Lactococcus lactis has been intensively studied and a role in multidrug resistance was proposed. Here, we performed a comprehensive detergent screen to analyze the impact of detergents for a successful solubilization, purification and retention of functional properties of this ABC transporter. Our screen revealed the preference of LmrA for zwitterionic detergents. In detergent solution, LmrA purified with FC-16 was highly active with respect to ATPase activity, which could be stimulated by a substrate (rhodamine 123) of LmrA. Both, high ATPase activity and substrate stimulation were not detected for LmrA solubilized in DDM. Interestingly, reconstituted LmrA showed an opposite behavior, with a high basal ATPase activity and stimulation by rhodamine 123 for a DDM-reconstituted, but only low ATPase activity and no substrate stimulation for a FC-16 reconstituted sample.
Collapse
Affiliation(s)
- Nacera Infed
- Institute of Biochemistry, Universitaetstr 1; Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
33
|
Bäcklund E, Ignatushchenko M, Larsson G. Suppressing glucose uptake and acetic acid production increases membrane protein overexpression in Escherichia coli. Microb Cell Fact 2011; 10:35. [PMID: 21586123 PMCID: PMC3121589 DOI: 10.1186/1475-2859-10-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 05/17/2011] [Indexed: 11/12/2022] Open
Abstract
Background The production of integral membrane spanning proteins (IMP's) constitutes a bottleneck in pharmaceutical development. It was long considered that the state-of-the-art was to produce the proteins as inclusion bodies using a powerful induction system. However, the quality of the protein was compromised and the production of a soluble protein that is incorporated into the membrane from which it is extracted is now considered to be a better method. Earlier research has indicated that a slower rate of protein synthesis might overcome the tendency to form inclusion bodies. We here suggest the use of a set of E. coli mutants characterized by a slower rate of growth and protein synthesis as a tool for increasing the amount of soluble protein in high- throughput protein production processes. Results A set of five IMP's was chosen which were expressed in three mutants and the corresponding WT cell (control). The mutations led to three different substrate uptake rates, two of which were considerably slower than that of the wild type. Using the mutants, we were able to express three out of the five membrane proteins. Most successful was the mutant growing at 50% of the wild type growth rate. A further effect of a low growth rate is a low acetic acid formation, and we believe that this is a possible reason for the better production. This hypothesis was further supported by expression from the BL21(DE3) strain, using the same plasmid. This strain grows at a high growth rate but nevertheless yields only small amounts of acetic acid. This strain was also able to express three out of the five IMP's, although at lower quantities. Conclusions The use of mutants that reduce the specific substrate uptake rate seems to be a versatile tool for overcoming some of the difficulties in the production of integral membrane spanning proteins. A set of strains with mutations in the glucose uptake system and with a lower acetic acid formation were able to produce three out of five membrane proteins that it was not possible to produce with the corresponding wild type.
Collapse
Affiliation(s)
- Emma Bäcklund
- Div of Bioprocess Technology, School of Biotechnology, Albanova University Center, Royal Institute of Technology, SE 106 91 Stockholm, Sweden
| | | | | |
Collapse
|
34
|
Correa A, Oppezzo P. Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: advantages of high-throughput screening. Biotechnol J 2011; 6:715-30. [PMID: 21567962 DOI: 10.1002/biot.201100025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 01/04/2023]
Abstract
Proteins are the main reagents for structural, biomedical, and biotechnological studies; however, some important challenges remain concerning protein solubility and stability. Numerous strategies have been developed, with some success, to mitigate these challenges, but a universal strategy is still elusive. Currently, researchers face a plethora of alternatives for the expression of the target protein, which generates a great diversity of conditions to be evaluated. Among these, different promoter strength, diverse expression host and constructs, or special culture conditions have an important role in protein solubility. With the arrival of automated high-throughput screening (HTS) systems, the evaluation of hundreds of different conditions within reasonable cost and time limits is possible. This technology increases the chances to obtain the target protein in a pure, soluble, and stable state. This review focuses on some of the most commonly used strategies for the expression of recombinant proteins in the enterobacterium Escherichia coli, including the use of HTS for the production of soluble proteins.
Collapse
Affiliation(s)
- Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
35
|
Gan SW, Vararattanavech A, Nordin N, Eshaghi S, Torres J. A cost-effective method for simultaneous homo-oligomeric size determination and monodispersity conditions for membrane proteins. Anal Biochem 2011; 416:100-6. [PMID: 21624344 DOI: 10.1016/j.ab.2011.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/29/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
Abstract
The use of blue native polyacrylamide gel electrophoresis (BN-PAGE) has been reported in the literature to retain both water-soluble and membrane protein complexes in their native hetero-oligomeric state and to determine the molecular weight of membrane proteins. However, membrane proteins show abnormal mobility when compared with water-soluble markers. Although one could use membrane proteins as markers or apply a conversion factor to the observed molecular weight to account for the bound Coomassie blue dye, when one just wants to assess homo-oligomeric size, these methods appear to be too time-consuming or might not be generally applicable. Here, during detergent screening studies to identify the best detergent for achieving a monodisperse sample, we observed that under certain conditions membrane proteins tend to form ladders of increasing oligomeric size. Although the ladders themselves contain no indication of which band represents the correct oligomeric size, they provide a scale that can be compared with a single band, representing the native homo-oligomeric size, obtained in other conditions of the screen. We show that this approach works for three membrane proteins: CorA (42 kDa), aquaporin Z (25 kDa), and small hydrophobic (SH) protein from respiratory syncytial virus (8 kDa). In addition, polydispersity results and identification of the most suitable detergent correlate optimally not only with size exclusion chromatography (SEC) but also with results from sedimentation velocity and equilibrium experiments. Because it involves minute quantities of sample and detergent, this method can be used in high-throughput approaches as a low-cost technique.
Collapse
Affiliation(s)
- Siok Wan Gan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
36
|
Kwon K, Hasseman J, Latham S, Grose C, Do Y, Fleischmann RD, Pieper R, Peterson SN. Recombinant expression and functional analysis of proteases from Streptococcus pneumoniae, Bacillus anthracis, and Yersinia pestis. BMC BIOCHEMISTRY 2011; 12:17. [PMID: 21545736 PMCID: PMC3113736 DOI: 10.1186/1471-2091-12-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/05/2011] [Indexed: 12/17/2022]
Abstract
Background Uncharacterized proteases naturally expressed by bacterial pathogens represents important topic in infectious disease research, because these enzymes may have critical roles in pathogenicity and cell physiology. It has been observed that cloning, expression and purification of proteases often fail due to their catalytic functions which, in turn, cause toxicity in the E. coli heterologous host. Results In order to address this problem systematically, a modified pipeline of our high-throughput protein expression and purification platform was developed. This included the use of a specific E. coli strain, BL21(DE3) pLysS to tightly control the expression of recombinant proteins and various expression vectors encoding fusion proteins to enhance recombinant protein solubility. Proteases fused to large fusion protein domains, maltosebinding protein (MBP), SP-MBP which contains signal peptide at the N-terminus of MBP, disulfide oxidoreductase (DsbA) and Glutathione S-transferase (GST) improved expression and solubility of proteases. Overall, 86.1% of selected protease genes including hypothetical proteins were expressed and purified using a combination of five different expression vectors. To detect novel proteolytic activities, zymography and fluorescence-based assays were performed and the protease activities of more than 46% of purified proteases and 40% of hypothetical proteins that were predicted to be proteases were confirmed. Conclusions Multiple expression vectors, employing distinct fusion tags in a high throughput pipeline increased overall success rates in expression, solubility and purification of proteases. The combinatorial functional analysis of the purified proteases using fluorescence assays and zymography confirmed their function.
Collapse
Affiliation(s)
- Keehwan Kwon
- Pathogen Functional Genomics Resource Center, J, Craig Venter Institute, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fan J, Heng J, Dai S, Shaw N, Zhou B, Huang B, He Z, Wang Y, Jiang T, Li X, Liu Z, Wang X, Zhang XC. An efficient strategy for high throughput screening of recombinant integral membrane protein expression and stability. Protein Expr Purif 2011; 78:6-13. [PMID: 21354311 DOI: 10.1016/j.pep.2011.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/14/2011] [Accepted: 02/18/2011] [Indexed: 02/05/2023]
Abstract
Membrane proteins account for about 30% of the genomes sequenced to date and play important roles in a variety of cellular functions. However, determining the three-dimensional structures of membrane proteins continues to pose a major challenge for structural biologists due to difficulties in recombinant expression and purification. We describe here a high throughput pipeline for Escherichia coli based membrane protein expression and purification. A ligation-independent cloning (LIC)-based vector encoding a C-terminal green fluorescence protein (GFP) tag was used for cloning in a high throughput mode. The GFP tag facilitated expression screening in E. coli through both cell culture fluorescence measurements and in-gel fluorescence imaging. Positive candidates from the GFP screening were subsequently sub-cloned into a LIC-based, GFP free vector for further expression and purification. The expressed, C-terminal His-tagged membrane proteins were purified via membrane enrichment and Ni-affinity chromatography. Thermofluor technique was applied to screen optimal buffers and detergents for the purified membrane proteins. This pipeline has been successfully tested for membrane proteins from E. coli and can be potentially expanded to other prokaryotes.
Collapse
Affiliation(s)
- Junping Fan
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Low KO, Mahadi NM, Rahim RA, Rabu A, Abu Bakar FD, Murad AMA, Illias RM. An effective extracellular protein secretion by an ABC transporter system in Escherichia coli: statistical modeling and optimization of cyclodextrin glucanotransferase secretory production. J Ind Microbiol Biotechnol 2011; 38:1587-97. [PMID: 21336875 DOI: 10.1007/s10295-011-0949-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/02/2011] [Indexed: 11/27/2022]
Abstract
Direct transport of recombinant protein from cytosol to extracellular medium offers great advantages, such as high specific activity and a simple purification step. This work presents an investigation on the potential of an ABC (ATP-binding cassette) transporter system, the hemolysin transport system, for efficient protein secretion in Escherichia coli (E. coli). A higher secretory production of recombinant cyclodextrin glucanotransferase (CGTase) was achieved by a new plasmid design and subsequently by optimization of culture conditions via central composite design. An improvement of at least fourfold extracellular recombinant CGTase was obtained using the new plasmid design. The optimization process consisted of 20 experiments involving six star points and six replicates at the central point. The predicted optimum culture conditions for maximum recombinant CGTase secretion were found to be 25.76 μM IPTG, 1.0% (w/v) arabinose and 34.7°C post-induction temperature, with a predicted extracellular CGTase activity of 68.76 U/ml. Validation of the model gave an extracellular CGTase activity of 69.15 ± 0.71 U/ml, resulting in a 3.45-fold increase compared to the initial conditions. This corresponded to an extracellular CGTase yield of about 0.58 mg/l. We showed that a synergistic balance of transported protein and secretory pathway is important for efficient protein transport. In addition, we also demonstrated the first successful removal of the C-terminal secretion signal from the transported fusion protein by thrombin proteolytic cleavage.
Collapse
Affiliation(s)
- Kheng Oon Low
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
39
|
Madhavan V, Bhatt F, Jeffery CJ. Recombinant expression screening of P. aeruginosa bacterial inner membrane proteins. BMC Biotechnol 2010; 10:83. [PMID: 21114855 PMCID: PMC3009615 DOI: 10.1186/1472-6750-10-83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 11/29/2010] [Indexed: 11/17/2022] Open
Abstract
Background Transmembrane proteins (TM proteins) make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY). All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%). In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical characteristics. Surveys like this one could aid in overcoming the technical bottlenecks in working with TM proteins and could potentially aid in increasing the rate of structure determination.
Collapse
Affiliation(s)
- Vidya Madhavan
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA
| | | | | |
Collapse
|
40
|
Alli AA, Gower WR. Molecular approaches to examine the phosphorylation state of the C type natriuretic peptide receptor. J Cell Biochem 2010; 110:985-94. [PMID: 20564198 DOI: 10.1002/jcb.22612] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular domain of the C type natriuretic peptide receptor (NPRC) contains one threonine and several serine residues where phosphorylation is thought to occur. Several phosphorylation consensus sequences for various kinases have been identified within the intracellular domain of NPRC, but the exact residues that are phosphorylated and the specific kinases responsible for their phosphorylation have not been thoroughly defined. Here we introduce a recombinant GST fusion protein and a rat gastric mucosa (RGM1) cell line as molecular tools to study the phosphorylation state of NPRC in vitro and in vivo, respectively. We utilize a previously characterized polyclonal antibody against NPRC to probe for total NPRC protein and various phosphospecific and substrate motif antibodies to probe for phosphorylation of NPRC. Phosphoprotein staining reagents were used with a phosphoprotein control set to detect phosphorylation of NPRC at serine and threonine residues. Recombinant GST-NPRC fusion protein was phosphorylated in vitro by RGM1 lysate in the presence of adenosine-5'-triphosphate (ATP). Western blot analysis using a monoclonal phospho-Thr antibody, which exclusively detects phosphorylated threonine residues, and does not cross-react with phosphorylated serine residues revealed NPRC immunoprecipitated from RGM1 lysate is phosphorylated on a threonine residue. Global analysis of the entire rat NPRC sequence using a protein kinase A (PKA) prediction algorithm, identified five putative PKA phosphorylation sites containing a serine residue and one containing a threonine residue, Thr 505. Taken together, the data presented here suggest that rat NPRC is a substrate for PKA and Thr 505 located within the intracellular domain of NPRC is a likely candidate site for the phosphorylation.
Collapse
Affiliation(s)
- Abdel A Alli
- Research Service, James A. Haley Veterans Hospital, Tampa, Florida 33612, USA
| | | |
Collapse
|
41
|
Hsieh JM, Besserer GM, Madej MG, Bui HQ, Kwon S, Abramson J. Bridging the gap: a GFP-based strategy for overexpression and purification of membrane proteins with intra and extracellular C-termini. Protein Sci 2010; 19:868-80. [PMID: 20196076 DOI: 10.1002/pro.365] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low expression and instability during isolation are major obstacles preventing adequate structure-function characterization of membrane proteins (MPs). To increase the likelihood of generating large quantities of protein, C-terminally fused green fluorescent protein (GFP) is commonly used as a reporter for monitoring expression and evaluating purification. This technique has mainly been restricted to MPs with intracellular C-termini (C(in)) due to GFP's inability to fluoresce in the Escherichia coli periplasm. With the aid of Glycophorin A, a single transmembrane spanning protein, we developed a method to convert MPs with extracellular C-termini (C(out)) to C(in) ones providing a conduit for implementing GFP reporting. We tested this method on eleven MPs with predicted C(out) topology resulting in high level expression. For nine of the eleven MPs, a stable, monodisperse protein-detergent complex was identified using an extended fluorescence-detection size exclusion chromatography procedure that monitors protein stability over time, a critical parameter affecting the success of structure-function studies. Five MPs were successfully cleaved from the GFP tag by site-specific proteolysis and purified to homogeneity. To address the challenge of inefficient proteolysis, we explored expression and purification conditions in the absence of the fusion tag. Contrary to previous studies, optimal expression conditions established with the fusion were not directly transferable for overexpression in the absence of the GFP tag. These studies establish a broadly applicable method for GFP screening of MPs with C(out) topology, yielding sufficient protein suitable for structure-function studies and are superior to expression and purification in the absence GFP fusion tagging.
Collapse
Affiliation(s)
- Jennifer M Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
42
|
Mancia F, Love J. High-throughput expression and purification of membrane proteins. J Struct Biol 2010; 172:85-93. [PMID: 20394823 DOI: 10.1016/j.jsb.2010.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/11/2010] [Accepted: 03/17/2010] [Indexed: 11/17/2022]
Abstract
High-throughput (HT) methodologies have had a tremendous impact on structural biology of soluble proteins. High-resolution structure determination relies on the ability of the macromolecule to form ordered crystals that diffract X-rays. While crystallization remains somewhat empirical, for a given protein, success is proportional to the number of conditions screened and to the number of variants trialed. HT techniques have greatly increased the number of targets that can be trialed and the rate at which these can be produced. In terms of number of structures solved, membrane proteins appear to be lagging many years behind their soluble counterparts. Likewise, HT methodologies for production and characterization of these hydrophobic macromolecules are only now emerging. Presented here is an HT platform designed exclusively for membrane proteins that has processed over 5000 targets.
Collapse
Affiliation(s)
- Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | | |
Collapse
|
43
|
Van Pham ST, Engman H, Dahlgren LG, Cornvik T, Eshaghi S. A systematic approach to isolate mono-disperse membrane proteins - purification of zinc transporter ZntB. Protein Expr Purif 2010; 72:48-54. [PMID: 20159043 DOI: 10.1016/j.pep.2010.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/11/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
Obtaining mono-disperse and stable protein is a requirement for successful structural and biochemical investigation of proteins. For membrane proteins, such preparation is one of the major hurdles, which consequently has contributed to the slow progress in studying them. During the past few years, many screening methods have been developed to make studies of membrane proteins more efficient. Despite these advances, many membrane proteins remain challenging to even isolate in a stable and homogeneous form. The bacterial zinc transporter ZntB is such a protein, for which no isolation procedure has been reported. Here, we present a systematic approach to obtain homogeneous and mono-disperse zinc transporter ZntB in quantities sufficient for structural and biochemical studies. Important aspects of this study that can be applied to other membrane proteins are also discussed.
Collapse
Affiliation(s)
- Sally Thanh Van Pham
- Centre for Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
44
|
Freigassner M, Pichler H, Glieder A. Tuning microbial hosts for membrane protein production. Microb Cell Fact 2009; 8:69. [PMID: 20040113 PMCID: PMC2807855 DOI: 10.1186/1475-2859-8-69] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/29/2009] [Indexed: 12/22/2022] Open
Abstract
The last four years have brought exciting progress in membrane protein research. Finally those many efforts that have been put into expression of eukaryotic membrane proteins are coming to fruition and enable to solve an ever-growing number of high resolution structures. In the past, many skilful optimization steps were required to achieve sufficient expression of functional membrane proteins. Optimization was performed individually for every membrane protein, but provided insight about commonly encountered bottlenecks and, more importantly, general guidelines how to alleviate cellular limitations during microbial membrane protein expression. Lately, system-wide analyses are emerging as powerful means to decipher cellular bottlenecks during heterologous protein production and their use in microbial membrane protein expression has grown in popularity during the past months. This review covers the most prominent solutions and pitfalls in expression of eukaryotic membrane proteins using microbial hosts (prokaryotes, yeasts), highlights skilful applications of our basic understanding to improve membrane protein production. Omics technologies provide new concepts to engineer microbial hosts for membrane protein production.
Collapse
Affiliation(s)
- Maria Freigassner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| | | | | |
Collapse
|
45
|
Koth CMM, Payandeh J. Strategies for the cloning and expression of membrane proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 76:43-86. [PMID: 20663478 DOI: 10.1016/s1876-1623(08)76002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Despite the determination of thousands of high-resolution structures of soluble proteins, many features of integral membrane proteins render them difficult targets for the structural biologist. Among these, the most important challenge is in expressing sufficient quantities of active protein to support downstream purification and structure determination efforts. Over 190 unique membrane protein structures have now been solved, and noticeable trends in successful expression strategies are beginning to emerge. A number of groups have also explored high-throughput (HTP) methods for membrane protein expression, with varying degrees of success. Here we review the current state of expressing membrane proteins for functional and structural studies. We first survey successful methods that have already yielded levels of membrane protein expression sufficient for structure determination. HTP methods are also examined since these aim to explore large numbers of targets and can predict reasonable starting points for many membrane proteins. Since HTP techniques may fail, particularly for certain classes of eukaryotic targets, detailed strategies for the expression of two prominent classes of eukaryotic protein families, G-protein-coupled receptors and ion channels, are also summarized.
Collapse
Affiliation(s)
- Christopher M M Koth
- Department of Structural Biology, Genentech, South San Francisco, California 94080, USA
| | | |
Collapse
|
46
|
Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:335-360. [PMID: 20161395 PMCID: PMC2782866 DOI: 10.1016/j.pnmrs.2009.07.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Hak Jun Kim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, 406-840, Korea
| | - Stanley C. Howell
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Wade D. Van Horn
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Young Ho Jeon
- Center for Magnetic Resonance, Korea Basic Research Institute, Daejon, 305-333, Korea
| | - Charles R. Sanders
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
- Corresponding Author: ; phone: 615-936-3756; fax: 615-936-2211
| |
Collapse
|
47
|
Palladino P, Rossi F, Ragone R. Effective critical micellar concentration of a zwitterionic detergent: a fluorimetric study on n-dodecyl phosphocholine. J Fluoresc 2009; 20:191-6. [PMID: 19756982 DOI: 10.1007/s10895-009-0537-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 08/25/2009] [Indexed: 11/27/2022]
Abstract
We have investigated the effect of ionic strength on the aggregation behavior of n-dodecyl phosphocholine. On the basis of the classical Corrin-Harkins relation, the critical micellar concentration of this detergent decreases with a biphasic trend on lithium chloride addition. It is nearly constant below 150 mM salt, with a mean value of 0.91 mM, whereas it undergoes a dramatic 80-fold decrease in 7 M LiCl. Such a drop in the critical micellar concentration could be explained by the effect of salting out and the implication of phosphocholine head groups on the organization of surrounding water. Knowledge of the effective critical micellar concentration of n-dodecyl phosphocholine could be useful in the purification of membrane proteins in non-denaturing conditions.
Collapse
Affiliation(s)
- Pasquale Palladino
- Dipartimento delle Scienze Biologiche & C.I.R.Pe.B., Università Federico II, via Mezzocannone 16, 80134, Naples, Italy
| | | | | |
Collapse
|
48
|
Singh J, Whitwill S, Lacroix G, Douglas J, Dubuc E, Allard G, Keller W, Schernthaner JP. The use of Group 3 LEA proteins as fusion partners in facilitating recombinant expression of recalcitrant proteins in E. coli. Protein Expr Purif 2009; 67:15-22. [DOI: 10.1016/j.pep.2009.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/28/2009] [Accepted: 04/04/2009] [Indexed: 11/16/2022]
|
49
|
Page RC, Lee S, Moore JD, Opella SJ, Cross TA. Backbone structure of a small helical integral membrane protein: A unique structural characterization. Protein Sci 2009; 18:134-46. [PMID: 19177358 DOI: 10.1002/pro.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural characterization of small integral membrane proteins pose a significant challenge for structural biology because of the multitude of molecular interactions between the protein and its heterogeneous environment. Here, the three-dimensional backbone structure of Rv1761c from Mycobacterium tuberculosis has been characterized using solution NMR spectroscopy and dodecylphosphocholine (DPC) micelles as a membrane mimetic environment. This 127 residue single transmembrane helix protein has a significant (10 kDa) C-terminal extramembranous domain. Five hundred and ninety distance, backbone dihedral, and orientational restraints were employed resulting in a 1.16 A rmsd backbone structure with a transmembrane domain defined at 0.40 A. The structure determination approach utilized residual dipolar coupling orientation data from partially aligned samples, long-range paramagnetic relaxation enhancement derived distances, and dihedral restraints from chemical shift indices to determine the global fold. This structural model of Rv1761c displays some influences by the membrane mimetic illustrating that the structure of these membrane proteins is dictated by a combination of the amino acid sequence and the protein's environment. These results demonstrate both the efficacy of the structural approach and the necessity to consider the biophysical properties of membrane mimetics when interpreting structural data of integral membrane proteins and, in particular, small integral membrane proteins.
Collapse
Affiliation(s)
- Richard C Page
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | | | | | | | | |
Collapse
|
50
|
Cleverley RM, Saleem M, Kean J, Ford RC, Derrick JP, Prince SM. Selection of membrane protein targets for crystallization using PFO-PAGE electrophoresis. Mol Membr Biol 2009; 25:625-30. [DOI: 10.1080/09687680802448530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|