1
|
Agam G, Barth A, Lamb DC. Folding pathway of a discontinuous two-domain protein. Nat Commun 2024; 15:690. [PMID: 38263337 PMCID: PMC10805907 DOI: 10.1038/s41467-024-44901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
It is estimated that two-thirds of all proteins in higher organisms are composed of multiple domains, many of them containing discontinuous folds. However, to date, most in vitro protein folding studies have focused on small, single-domain proteins. As a model system for a two-domain discontinuous protein, we study the unfolding/refolding of a slow-folding double mutant of the maltose binding protein (DM-MBP) using single-molecule two- and three-color Förster Resonance Energy Transfer experiments. We observe a dynamic folding intermediate population in the N-terminal domain (NTD), C-terminal domain (CTD), and at the domain interface. The dynamic intermediate fluctuates rapidly between unfolded states and compact states, which have a similar FRET efficiency to the folded conformation. Our data reveals that the delayed folding of the NTD in DM-MBP is imposed by an entropic barrier with subsequent folding of the highly dynamic CTD. Notably, accelerated DM-MBP folding is routed through the same dynamic intermediate within the cavity of the GroEL/ES chaperone system, suggesting that the chaperonin limits the conformational space to overcome the entropic folding barrier. Our study highlights the subtle tuning and co-dependency in the folding of a discontinuous multi-domain protein.
Collapse
Affiliation(s)
- Ganesh Agam
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Anders Barth
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629HZ, Delft, The Netherlands
| | - Don C Lamb
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany.
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany.
| |
Collapse
|
2
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
3
|
Jansson LI, Stone MD. Single-Molecule Analysis of Reverse Transcriptase Enzymes. Cold Spring Harb Perspect Biol 2019; 11:11/9/a032458. [PMID: 31481455 DOI: 10.1101/cshperspect.a032458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The original discovery of enzymes that synthesize DNA using an RNA template appeared to contradict the central dogma of biology, in which information is transferred, in a unidirectional way, from DNA genes into RNA molecules. The paradigm-shifting discovery of RNA-dependent DNA polymerases, also called reverse transcriptases (RTs), reshaped existing views for how cells function; however, the scope of the impact RTs impose on biology had yet to be realized. In the decades of research since the early 1970s, the biomedical and biotechnological significance of retroviral RTs, as well as the evolutionarily related telomerase enzyme, has become exceedingly clear. One common theme that has emerged in the course of RT-related research is the central role of nucleic acid binding and dynamics during enzyme function. However, directly interrogating these dynamic properties is challenging because of the stochastic properties of biological macromolecules. In this review, we describe how the development of single-molecule biophysical techniques has opened new windows through which to observe the dynamic behavior of this remarkable class of enzymes. Specifically, we focus on how the powerful single-molecule Förster resonance energy transfer (FRET) method has been exploited to study the structure and function of the human immunodeficiency virus (HIV) RT and telomerase ribonucleoprotein (RNP) enzymes. These exciting studies have refined our understanding of RT catalysis, have revealed unforeseen structural rearrangements between RTs and their nucleic acid substrates, and have helped to characterize the mode of action of RT-inhibiting drugs. We conclude with a discussion of how the ongoing development of single-molecule technologies will continue to empower researchers to probe RT mechanisms in new and exciting ways.
Collapse
Affiliation(s)
- Linnea I Jansson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064.,The Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064.,The Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064
| |
Collapse
|
4
|
Voith von Voithenberg L, Lamb DC. Single Pair Förster Resonance Energy Transfer: A Versatile Tool To Investigate Protein Conformational Dynamics. Bioessays 2018; 40. [DOI: 10.1002/bies.201700078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/05/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Lena Voith von Voithenberg
- Department Chemie; Center for Nanoscience (CeNS); Center for Integrated Protein Science Munich (CIPSM); Nanosystem Initiative Munich (NIM); Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 München Germany
- BIOSS Centre for Signalling Studies; Schänzlestr. 18 79104 Freiburg Germany
| | - Don C. Lamb
- Department Chemie; Center for Nanoscience (CeNS); Center for Integrated Protein Science Munich (CIPSM); Nanosystem Initiative Munich (NIM); Ludwig-Maximilians-Universität München; Butenandtstr. 5-13 81377 München Germany
| |
Collapse
|
5
|
Górka AK, Górecki A, Dziedzicka-Wasylewska M. Site-directed fluorescence labeling of intrinsically disordered region of human transcription factor YY1: The inhibitory effect of zinc ions. Protein Sci 2017; 27:390-401. [PMID: 29024161 DOI: 10.1002/pro.3323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 11/12/2022]
Abstract
Site-specific labeling of proteins with fluorescent dyes allows the study of protein structure and function using a wide variety of fluorescent techniques. However, specific labeling is not trivial in the case of proteins containing multiple cysteine residues. An example of such a protein is transcription factor Yin Yang 1, which comprises eight cysteine residues in four C2H2 type zinc fingers in the C-terminal region. Kinetic measurements of the labeling process allowed us to develop preparative labeling of three cysteine residues differently introduced to the N-terminal, disordered fragment of the protein. The protocol developed in the present study allows to prepare the protein with high recovery yield and high selectivity of the labeling. This was confirmed using proteolytic digestion and spectroscopic approach. The labeling process was significantly affected by the presence of zinc ions and was dependent on the localization of the engineered cysteine residue. This is the first known example of the use of cysteine metal protection and labeling (CyMPL) technology for the labeling of protein regions with no stable secondary structures.
Collapse
Affiliation(s)
- Adam Kazimierz Górka
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
|
7
|
Kapanidis A, Majumdar D, Heilemann M, Nir E, Weiss S. Alternating Laser Excitation for Solution-Based Single-Molecule FRET. Cold Spring Harb Protoc 2015; 2015:979-987. [PMID: 26527772 DOI: 10.1101/pdb.top086405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) has been widely applied to the study of fluorescently labeled biomolecules on surfaces and in solution. Sorting single molecules based on fluorescent dye stoichiometry provides one with further layers of information and also enables "filtering" of unwanted molecules from the analysis. We accomplish this sorting by using alternating laser excitation (ALEX) in combination with smFRET measurements; here we describe the implementation of these methodologies for the study of biomolecules in solution.
Collapse
|
8
|
Orevi T, Lerner E, Rahamim G, Amir D, Haas E. Ensemble and single-molecule detected time-resolved FRET methods in studies of protein conformations and dynamics. Methods Mol Biol 2014; 1076:113-169. [PMID: 24108626 DOI: 10.1007/978-1-62703-649-8_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most proteins are nanomachines that are selected to execute specific functions and therefore should have some degree of flexibility. The driving force that excites specific motions of domains and smaller chain elements is the thermal fluctuations of the solvent bath which are channeled to selected modes of motions by the structural constraints. Consequently characterization of the ensembles of conformers of proteins and their dynamics should be expressed in statistical terms, i.e., determination of probability distributions of the various conformers. This can be achieved by measurements of time-resolved dynamic non-radiative excitation energy transfer (trFRET) within ensembles of site specifically labeled protein molecules. Distributions of intramolecular segmental end-to-end distances and their fast fluctuations can be determined, and fast and slow conformational transitions within selected sections of the molecule can be monitored and analyzed. Both ensemble and single-molecule detection methods can be applied for data collection. In combination with synchronization methods, time-resolved FRET was also used for studies of fast conformational transitions, in particular the folding/unfolding transitions.
Collapse
Affiliation(s)
- Tomer Orevi
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
9
|
Kim T, Reitmair A. Non-Coding RNAs: Functional Aspects and Diagnostic Utility in Oncology. Int J Mol Sci 2013; 14:4934-68. [PMID: 23455466 PMCID: PMC3634484 DOI: 10.3390/ijms14034934] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/09/2013] [Accepted: 02/18/2013] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs (ncRNAs) have been found to have roles in a large variety of biological processes. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined, holding great promise for use in diagnostic, prognostic, and therapeutic applications. Within ncRNAs, microRNAs (miRNAs) are the most widely studied and characterized. They have been implicated in initiation and progression of a variety of human malignancies, including major pathologies such as cancers, arthritis, neurodegenerative disorders, and cardiovascular diseases. Their surprising stability in serum and other bodily fluids led to their rapid ascent as a novel class of biomarkers. For example, several properties of stable miRNAs, and perhaps other classes of ncRNAs, make them good candidate biomarkers for early cancer detection and for determining which preneoplastic lesions are likely to progress to cancer. Of particular interest is the identification of biomarker signatures, which may include traditional protein-based biomarkers, to improve risk assessment, detection, and prognosis. Here, we offer a comprehensive review of the ncRNA biomarker literature and discuss state-of-the-art technologies for their detection. Furthermore, we address the challenges present in miRNA detection and quantification, and outline future perspectives for development of next-generation biodetection assays employing multicolor alternating-laser excitation (ALEX) fluorescence spectroscopy.
Collapse
Affiliation(s)
- Taiho Kim
- Nesher Technologies, Inc., 2100 W. 3rd St. Los Angeles, CA 90057, USA.
| | | |
Collapse
|
10
|
Voelz VA, Jäger M, Yao S, Chen Y, Zhu L, Waldauer SA, Bowman GR, Friedrichs M, Bakajin O, Lapidus LJ, Weiss S, Pande VS. Slow unfolded-state structuring in Acyl-CoA binding protein folding revealed by simulation and experiment. J Am Chem Soc 2012; 134:12565-77. [PMID: 22747188 DOI: 10.1021/ja302528z] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein folding is a fundamental process in biology, key to understanding many human diseases. Experimentally, proteins often appear to fold via simple two- or three-state mechanisms involving mainly native-state interactions, yet recent network models built from atomistic simulations of small proteins suggest the existence of many possible metastable states and folding pathways. We reconcile these two pictures in a combined experimental and simulation study of acyl-coenzyme A binding protein (ACBP), a two-state folder (folding time ~10 ms) exhibiting residual unfolded-state structure, and a putative early folding intermediate. Using single-molecule FRET in conjunction with side-chain mutagenesis, we first demonstrate that the denatured state of ACBP at near-zero denaturant is unusually compact and enriched in long-range structure that can be perturbed by discrete hydrophobic core mutations. We then employ ultrafast laminar-flow mixing experiments to study the folding kinetics of ACBP on the microsecond time scale. These studies, along with Trp-Cys quenching measurements of unfolded-state dynamics, suggest that unfolded-state structure forms on a surprisingly slow (~100 μs) time scale, and that sequence mutations strikingly perturb both time-resolved and equilibrium smFRET measurements in a similar way. A Markov state model (MSM) of the ACBP folding reaction, constructed from over 30 ms of molecular dynamics trajectory data, predicts a complex network of metastable stables, residual unfolded-state structure, and kinetics consistent with experiment but no well-defined intermediate preceding the main folding barrier. Taken together, these experimental and simulation results suggest that the previously characterized fast kinetic phase is not due to formation of a barrier-limited intermediate but rather to a more heterogeneous and slow acquisition of unfolded-state structure.
Collapse
Affiliation(s)
- Vincent A Voelz
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu B, Wang Z, Huang Y, Liu WR. Catalyst-free and site-specific one-pot dual-labeling of a protein directed by two genetically incorporated noncanonical amino acids. Chembiochem 2012; 13:1405-8. [PMID: 22628069 DOI: 10.1002/cbic.201200281] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Wu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The main structural characteristic of intrinsically disordered proteins (IDPs) or intrinsically disordered regions of globular proteins is that they exist as ensembles of multiple conformers which can continuously interconvert, and at times, form ensembles of a more restricted number of conformers. Characterization of the disordered state and transitions to partially or fully ordered states of such ensembles must be expressed in statistical terms, i.e., determination of probability distributions of the various conformers. This can be achieved by measurements of time-resolved dynamic non-radiative excitation energy transfer within ensembles of site-specifically labeled IDP molecules. Distributions of intramolecular segmental end-to-end distances and their fast fluctuations can be determined and fast and slow conformational transitions within selected sections of the molecule can be monitored and analyzed.
Collapse
Affiliation(s)
- Elisha Haas
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
13
|
De Rosa L, Cortajarena AL, Romanelli A, Regan L, D'Andrea LD. Site-specific protein double labeling by expressed protein ligation: applications to repeat proteins. Org Biomol Chem 2011; 10:273-80. [PMID: 22072074 DOI: 10.1039/c1ob06397a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the last few years, the use of labeled proteins has significantly expanded in the life sciences. Now, labeled proteins are indispensable tools for a wide spectrum of biophysical and chemical biology applications. In particular, the quest for more sophisticated experimental setups requires the development of new synthetic methodology, especially for multiple site-specific labeling. In this paper, we describe a synthetic strategy based on expressed protein ligation to prepare proteins in high purity and homogeneity, in which two different molecular probes are incorporated specifically at any desired position. Proteins are sequentially labeled in solution, with the advantage that a large excess of probes is not required and the labeled fragments are not restricted to peptide synthesis length limitations. This strategy was applied to selectively label a repeat protein with a fluorophores pair in different positions along the protein sequence. The doubly labeled proteins were prepared at high purity and homogeneity, as required for single molecule FRET studies. Remarkably, this approach can be adapted to the introduction of more than two molecular probes.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134, Napoli, Italy
| | | | | | | | | |
Collapse
|
14
|
Clerico EM, Zhuravleva A, Smock RG, Gierasch LM. Segmental isotopic labeling of the Hsp70 molecular chaperone DnaK using expressed protein ligation. Biopolymers 2011; 94:742-52. [PMID: 20564022 DOI: 10.1002/bip.21426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introducing biophysical labels into specific regions of large and dynamic multidomain proteins greatly facilitates mechanistic analysis. Ligation of expressed domains that are labeled in a desired manner before assembly of the intact molecular machine provides such a strategy. We have elaborated an experimental route using expressed protein ligation (EPL) to create an Hsp70 molecular chaperone (the E. coli Hsp70, DnaK) where only one of the two constituent domains was labeled, in this case with NMR active isotopes, allowing visualization of the single domain in the context of the two domain protein. Several technical obstacles were overcome, including choice of site for ligation with retention of function, optimization of ligation yield, and purification from unreacted domains. Ligated semilabeled DnaK was successfully produced with a Cys residue at position 383, and the ligated product harboring the Cys mutation was confirmed to be functional and identical to an expressed Cys-containing two-domain construct. The NMR spectrum of the segmentally labeled protein was considerably simplified, enabling unequivocal assignment and enhanced analysis of dynamics, as a prelude to exploring the energy landscape for allostery in the Hsp70 family.
Collapse
Affiliation(s)
- Eugenia M Clerico
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, MA
| | | | | | | |
Collapse
|
15
|
Gambin Y, Deniz AA. Multicolor single-molecule FRET to explore protein folding and binding. MOLECULAR BIOSYSTEMS 2010; 6:1540-7. [PMID: 20601974 PMCID: PMC3005188 DOI: 10.1039/c003024d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Proper protein function in cells, tissues and organisms depends critically on correct protein folding or interaction with partners. Over the last decade, single-molecule FRET (smFRET) has emerged as a powerful tool to probe complex distributions, dynamics, pathways and landscapes in protein folding and binding reactions, leveraging its ability to avoid averaging over an ensemble of molecules. While smFRET was practiced in a two-color form until recently, the last few years have seen the development of enhanced multicolor smFRET methods that provide additional structural information permitting us to probe more complex mechanisms. In this review, we provide a brief introduction to the smFRET technique, then follow with advanced multicolor measurements and end with ongoing methodology developments in microfluidics and protein labeling that are beginning to make these techniques more broadly applicable to answering a number of key questions about folding and binding.
Collapse
Affiliation(s)
- Yann Gambin
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla CA 92037, USA. Fax: +1 (858) 784-9067; Tel: +1 (858) 784-9192
| | - Ashok A. Deniz
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla CA 92037, USA. Fax: +1 (858) 784-9067; Tel: +1 (858) 784-9192
| |
Collapse
|
16
|
Lu M, Li XF, Le XC, Weinfeld M, Wang H. Identification and characterization of cysteinyl exposure in proteins by selective mercury labeling and nano-electrospray ionization quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1523-1532. [PMID: 20486248 DOI: 10.1002/rcm.4550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We describe a method for probing surface-exposed cysteines in proteins by selective labeling with p-hydroxymercuribenzoate (PMB) combined with nano-electrospray ionization mass spectrometric analysis (nanoESI-MS). The rapid, stoichiometric, and specific labeling by PMB of surface-exposed cysteines allows for characterization of the accessibility of the cysteines using a single MS analysis. Moreover, by taking advantage of the large mass shift of 321 Da, unique isotopic pattern, and enhanced MS signal of PMB-labeled cysteine-containing peptide fragments, the surface-exposed cysteines in proteins can be accurately identified by peptide mapping. The number and sites of reactive cysteines on the surface of human and rat hemoglobins (hHb and rHb) were identified as examples. Collision-induced dissociation tandem mass spectrometric (MS/MS) analysis of specific peptides further confirmed the selective labeling of PMB in hHb. The subtle difference between the different cysteine residues in rHb was also evaluated by multiple PMB titrations. The difference between the two cysteines in their environment may partially explain their reaction specificity. Cysteine 125 in the beta unit of rHb is exposed on the surface, explaining its reactivity with glutathione. Cysteine 13 in the alpha subunit of rHb is much less exposed, and is located in a hydrophobic pocket, a conclusion that is consistent with the previous observation of its selective binding with dimethylarsinous acid, a reactive arsenic metabolite. The method is potentially useful for probing cysteines in other biologically important proteins and for studying proteins that are associated with conformational or structural changes induced by denaturing processes, protein modifications, protein-protein interactions and protein assemblies.
Collapse
Affiliation(s)
- Meiling Lu
- State Key Laboratory for Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, PR China.
| | | | | | | | | |
Collapse
|
17
|
Ferreon ACM, Moran CR, Gambin Y, Deniz AA. Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 2010; 472:179-204. [PMID: 20580965 DOI: 10.1016/s0076-6879(10)72010-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intrinsically disordered proteins (IDPs) (also referred to as natively unfolded proteins) play critical roles in a variety of cellular processes such as transcription and translation and also are linked to several human diseases. Biophysical studies of IDPs present unusual experimental challenges due in part to their broad conformational heterogeneity and potentially complex binding-induced folding behavior. By minimizing the averaging over an ensemble (which is typical of most conventional experiments), single-molecule fluorescence (SMF) techniques have recently begun to add advanced capabilities for structural studies to the experimental arsenal of IDP investigators. Here, we briefly discuss a few common SMF methods that are particularly useful for IDP studies, including SMF resonance energy transfer and fluorescence correlation spectroscopy, along with site-specific protein-labeling methods that are essential for application of these methods to IDPs. We then present an overview of a few studies in this area, highlighting how SMF methods are being used to gain valuable information about two amyloidogenic IDPs, the Parkinson's disease-linked alpha-synuclein and the NM domain of the yeast prion protein Sup 35. SMF experiments provided new information about the proteins' rapidly fluctuating IDP forms, and the complex alpha-synuclein folding behavior upon its binding to lipid and membrane mimics. We anticipate that SMF and single-molecule methods, in general, will find broad application for structural and mechanistic studies of a wide variety of IDPs, both of their disordered conformations, and their ordered ensembles relevant for function and disease.
Collapse
Affiliation(s)
- Allan Chris M Ferreon
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
18
|
Yang JY, Yang WY. Site-Specific Two-Color Protein Labeling for FRET Studies Using Split Inteins. J Am Chem Soc 2009; 131:11644-5. [DOI: 10.1021/ja9030215] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin-Yi Yang
- Institute of Biological Chemistry, Academia Sinica and Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wei Yuan Yang
- Institute of Biological Chemistry, Academia Sinica and Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Kline T, Felise HB, Barry KC, Jackson SR, Nguyen HV, Miller SI. Substituted 2-imino-5-arylidenethiazolidin-4-one inhibitors of bacterial type III secretion. J Med Chem 2009; 51:7065-74. [PMID: 18947223 DOI: 10.1021/jm8004515] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diverse species of pathogenic Gram-negative bacteria use secretion systems to export a variety of protein toxins and virulence factors that help establish and maintain infection. Disruption of such secretion systems is a potentially effective therapeutic strategy. We developed a high-throughput screen and identified a tris-aryl substituted 2-imino-5-arylidenethiazolidin-4-one, compound 1, as an inhibitor of the type III secretion system. Expansion of this chemotype enabled us to define the essential pharmacophore for type III secretion inhibition by this structural class. A synthetic diversity set helped us identify N-3 as the most permissive locus and led to the design of a panel of novel N-3-dipeptide-modified congeners with improved activity and physiochemical properties. We now report on the synthesis of these compounds, including a novel solid phase approach to the rapid generation of the dipeptide-thiazolidinone hybrids, and their in vitro characterization as inhibitors of type III secretion in Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Toni Kline
- Departments of Genome Sciences, Microbiology, and Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Burrows SM, Pappas D. Comparison of methods to classify and quantify free and bound states of complexes using single molecule fluorescence anisotropy. Analyst 2009; 134:1911-21. [DOI: 10.1039/b905847h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Waldauer SA, Bakajin O, Ball T, Chen Y, Decamp SJ, Kopka M, Jäger M, Singh VR, Wedemeyer WJ, Weiss S, Yao S, Lapidus LJ. Ruggedness in the folding landscape of protein L. HFSP JOURNAL 2008; 2:388-95. [PMID: 19436489 DOI: 10.2976/1.3013702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Indexed: 11/19/2022]
Abstract
By exploring the folding pathways of the B1 domain of protein L with a series of equilibrium and rapid kinetic experiments, we have found its unfolded state to be more complex than suggested by two-state folding models. Using an ultrarapid mixer to initiate protein folding within approximately 2-4 microseconds, we observe folding kinetics by intrinsic tryptophan fluorescence and fluorescence resonance energy transfer. We detect at least two processes faster than 100 mus that would be hidden within the burst phase of a stopped-flow instrument measuring tryptophan fluorescence. Previously reported measurements of slow intramolecular diffusion are commensurate with the slower of the two observed fast phases. These results suggest that a multidimensional energy landscape is necessary to describe the folding of protein L, and that the dynamics of the unfolded state is dominated by multiple small energy barriers.
Collapse
|
22
|
Hamadani KM, Weiss S. Nonequilibrium single molecule protein folding in a coaxial mixer. Biophys J 2008; 95:352-65. [PMID: 18339751 PMCID: PMC2426651 DOI: 10.1529/biophysj.107.127431] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/14/2008] [Indexed: 11/18/2022] Open
Abstract
We have developed a continuous-flow mixing device suitable for monitoring bioconformational reactions at the single-molecule level with a response time of approximately 10 ms under single-molecule flow conditions. Its coaxial geometry allows three-dimensional hydrodynamic focusing of sample fluids to diffraction-limited dimensions where diffusional mixing is rapid and efficient. The capillary-based design enables rapid in-lab construction of mixers without the need for expensive lithography-based microfabrication facilities. In-line filtering of sample fluids using granulated silica particles virtually eliminates clogging and extends the lifetime of each device to many months. In this article, to determine both the distance-to-time transfer function and the instrument response function of the device we characterize its fluid flow and mixing properties using both fluorescence cross-correlation spectroscopy velocimetry and finite element fluid dynamics simulations. We then apply the mixer to single molecule FRET protein folding studies of Chymotrypsin Inhibitor protein 2. By transiently populating the unfolded state of Chymotrypsin Inhibitor Protein 2 (CI2) under nonequilibrium in vitro refolding conditions, we spatially and temporally resolve the denaturant-dependent nonspecific collapse of the unfolded state from the barrier-limited folding transition of CI2. Our results are consistent with previous CI2 mixing results that found evidence for a heterogeneous unfolded state consisting of cis- and trans-proline conformers.
Collapse
Affiliation(s)
- Kambiz M Hamadani
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, USA.
| | | |
Collapse
|
23
|
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) is one of the most general and adaptable single-molecule techniques. Despite the explosive growth in the application of smFRET to answer biological questions in the last decade, the technique has been practiced mostly by biophysicists. We provide a practical guide to using smFRET, focusing on the study of immobilized molecules that allow measurements of single-molecule reaction trajectories from 1 ms to many minutes. We discuss issues a biologist must consider to conduct successful smFRET experiments, including experimental design, sample preparation, single-molecule detection and data analysis. We also describe how a smFRET-capable instrument can be built at a reasonable cost with off-the-shelf components and operated reliably using well-established protocols and freely available software.
Collapse
|
24
|
Orte A, Craggs TD, White SS, Jackson SE, Klenerman D. Evidence of an Intermediate and Parallel Pathways in Protein Unfolding from Single-Molecule Fluorescence. J Am Chem Soc 2008; 130:7898-907. [DOI: 10.1021/ja709973m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angel Orte
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Timothy D. Craggs
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Samuel S. White
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sophie E. Jackson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
25
|
Mallam AL, Jackson SE. Use of protein engineering techniques to elucidate protein folding pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:57-113. [PMID: 19121700 DOI: 10.1016/s0079-6603(08)00403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anna L Mallam
- Department of Chemistry, Cambridge, CB2 1EW, United Kingdom
| | | |
Collapse
|
26
|
|
27
|
Abstract
Recent progress in proteomics suggests that the cell can be conceived as a large network of highly refined, nanomachine-like protein complexes. This working hypothesis calls for new methods capable of analyzing individual protein complexes in living cells and tissues at high speed. Here, we examine whether single-molecule fluorescence (SMF) analysis can satisfy that demand. First, recent technical progress in the visualization, localization, tracking, conformational analysis, and true resolution of individual protein complexes is highlighted. Second, results obtained by the SMF analysis of protein complexes are reviewed, focusing on the nuclear pore complex as an instructive example. We conclude that SMF methods provide powerful, indispensable tools for the structural and functional characterization of protein complexes. However, the transition from in vitro systems to living cells is in the initial stages. We discuss how current limitations in the nanoscopic analysis of living cells and tissues can be overcome to create a new paradigm, nanoscopic biomedicine.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics, and Center for Nanotechnology (CeNTech), University of Münster, 48149 Münster, Germany.
| |
Collapse
|
28
|
Lyubchenko YL, Sherman S, Shlyakhtenko LS, Uversky VN. Nanoimaging for protein misfolding and related diseases. J Cell Biochem 2006; 99:52-70. [PMID: 16823798 PMCID: PMC1557678 DOI: 10.1002/jcb.20989] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Misfolding and aggregation of proteins is a common thread linking a number of important human health problems. The misfolded and aggregated proteins are inducers of cellular stress and activators of immunity in neurodegenerative diseases. They might possess clear cytotoxic properties, being responsible for the dysfunction and loss of cells in the affected organs. Despite the crucial importance of protein misfolding and abnormal interactions, very little is currently known about the molecular mechanism underlying these processes. Factors that lead to protein misfolding and aggregation in vitro are poorly understood, not to mention the complexities involved in the formation of protein nanoparticles with different morphologies (e.g., the nanopores) in vivo. A better understanding of the molecular mechanisms of misfolding and aggregation might facilitate development of the rational approaches to prevent pathologies mediated by protein misfolding. The conventional tools currently available to researchers can only provide an averaged picture of a living system, whereas much of the subtle or short-lived information is lost. We believe that the existing and emerging nanotools might help solving these problems by opening the entirely novel pathways for the development of early diagnostic and therapeutic approaches. This article summarizes recent advances of the nanoscience in detection and characterization of misfolded protein conformations. Based on these findings, we outline our view on the nanoscience development towards identification intracellular nanomachines and/or multicomponent complexes critically involved in protein misfolding.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA.
| | | | | | | |
Collapse
|
29
|
Michalet X, Weiss S, Jäger M. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 2006; 106:1785-813. [PMID: 16683755 PMCID: PMC2569857 DOI: 10.1021/cr0404343] [Citation(s) in RCA: 415] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xavier Michalet
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Shimon Weiss
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Marcus Jäger
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| |
Collapse
|
30
|
Jäger M, Nir E, Weiss S. Site-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification. Protein Sci 2006; 15:640-6. [PMID: 16452617 PMCID: PMC2249784 DOI: 10.1110/ps.051851506] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An often limiting factor for studying protein folding by single-molecule fluorescence resonance energy transfer (FRET) is the ability to site-specifically introduce a photostable organic FRET donor (D) and a complementary acceptor (A) into a polypeptide chain. Using alternating-laser excitation and chymotrypsin inhibitor 2 as a model, we show that chemical labeling of a unique cysteine, followed by enzymatic modification of a reactive glutamine in an N-terminally appended substrate sequence recognition tag for transglutaminase (TGase) affords stoichiometrically D-/A-labeled protein suitable for single-molecule FRET experiments. Thermodynamic data indicate that neither the presence of the TGase tag nor D/A labeling perturbs protein stability. As the N terminus in proteins is typically solvent accessible, a TGase tag can (in principle) be appended to any protein of interest by genetic engineering. Two-step chemical/enzymatic labeling may thus represent a simple, low-cost, and widely available strategy for D/A labeling of proteins for FRET-based single-molecule protein folding studies, even for non-protein-experts laboratories.
Collapse
Affiliation(s)
- Marcus Jäger
- Department of Chemistry and Biochemistry, UCLA, Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
31
|
Perroud TD, Bokoch MP, Zare RN. Cytochrome c conformations resolved by the photon counting histogram: watching the alkaline transition with single-molecule sensitivity. Proc Natl Acad Sci U S A 2005; 102:17570-5. [PMID: 16314563 PMCID: PMC1308922 DOI: 10.1073/pnas.0508975102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We apply the photon counting histogram (PCH) model, a fluorescence technique with single-molecule sensitivity, to study pH-induced conformational changes of cytochrome c. PCH is able to distinguish different protein conformations based on the brightness of a fluorophore sensitive to its local environment. We label cytochrome c through its single free cysteine with tetramethylrhodamine-5-maleimide (TMR), a fluorophore with specific brightnesses that we associate with specific protein conformations. Ensemble measurements demonstrate two different fluorescence responses with increasing pH: (i) a decrease in fluorescence intensity caused by the alkaline transition of cytochrome c (pH 7.0-9.5), and (ii) an increase in intensity when the protein unfolds (pH 9.5-10.8). The magnitudes of these two responses depend strongly on the molar ratio of TMR used to label cytochrome c. Using PCH we determine that this effect arises from the proportion of a nonfunctional conformation in the sample, which can be differentiated from the functional conformation. We further determine the causes of each ensemble fluorescence response: (i) during the alkaline transition, the fluorophore enters a dark state and discrete conformations are observed, and (ii) as cytochrome c unfolds, the fluorophore incrementally brightens, but discrete conformations are no longer resolved. Moreover, we also show that functional TMR-cytochrome c undergoes a response of identical magnitude regardless of the proportion of nonfunctional protein in the sample. As expected for a technique with single-molecule sensitivity, we demonstrate that PCH can directly observe the most relevant conformation, unlike ensemble fluorometry.
Collapse
Affiliation(s)
- Thomas D Perroud
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | | |
Collapse
|