1
|
Correction to "Allosteric Modulation of Fluorescence Revealed by Hydrogen Bond Dynamics in a Genetically Encoded Maltose Biosensor". Proteins 2024. [PMID: 39704333 DOI: 10.1002/prot.26787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
|
2
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
3
|
Christou NE, Giandoreggio-Barranco K, Ayala I, Glushonkov O, Adam V, Bourgeois D, Brutscher B. Disentangling Chromophore States in a Reversibly Switchable Green Fluorescent Protein: Mechanistic Insights from NMR Spectroscopy. J Am Chem Soc 2021; 143:7521-7530. [PMID: 33966387 DOI: 10.1021/jacs.1c02442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The photophysical properties of fluorescent proteins, including phototransformable variants used in advanced microscopy applications, are influenced by the environmental conditions in which they are expressed and used. Rational design of improved fluorescent protein markers requires a better understanding of these environmental effects. We demonstrate here that solution NMR spectroscopy can detect subtle changes in the chemical structure, conformation, and dynamics of the photoactive chromophore moiety with atomic resolution, providing such mechanistic information. Studying rsFolder, a reversibly switchable green fluorescent protein, we have identified four distinct configurations of its p-HBI chromophore, corresponding to the cis and trans isomers, with each one either protonated (neutral) or deprotonated (anionic) at the benzylidene ring. The relative populations and interconversion kinetics of these chromophore species depend on sample pH and buffer composition that alter in a complex way the strength of H-bonds that contribute in stabilizing the chromophore within the protein scaffold. We show in particular the important role of histidine-149 in stabilizing the neutral trans chromophore at intermediate pH values, leading to ground-state cis-trans isomerization with a peculiar pH dependence. We discuss the potential implications of our findings on the pH dependence of the photoswitching contrast, a critical parameter in nanoscopy applications.
Collapse
Affiliation(s)
- Nina Eleni Christou
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | | | - Isabel Ayala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Oleksandr Glushonkov
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Virgile Adam
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Dominique Bourgeois
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Bernhard Brutscher
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
4
|
Flanagan JC, Baiz CR. Ultrafast pH-jump two-dimensional infrared spectroscopy. OPTICS LETTERS 2019; 44:4937-4940. [PMID: 31613233 DOI: 10.1364/ol.44.004937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
We present a pH-jump two-dimensional infrared (2D IR) spectrometer to probe pH-dependent conformational changes from nanoseconds to milliseconds. The design incorporates a nanosecond 355 nm source into a pulse-shaper-based 2D IR spectrometer to trigger dissociation of a caged proton prior to probing subsequent conformational changes with femtosecond 2D IR spectroscopy. We observe a blue shift in the amide I mode (C═O stretch) of diglycine induced by protonation of the terminal amine. This method combines the bond-specific structural sensitivity of ultrafast 2D IR with triggered conformational dynamics, providing structural access to multiscale biomolecular transformations such as protein folding.
Collapse
|
5
|
Jeong BS, Dyer RB. Proton Transport Mechanism of M2 Proton Channel Studied by Laser-Induced pH Jump. J Am Chem Soc 2017; 139:6621-6628. [PMID: 28467842 DOI: 10.1021/jacs.7b00617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The M2 proton transport channel of the influenza virus A is an important model system because it conducts protons with high selectivity and unidirectionally when activated at low pH, despite the relative simplicity of its structure. Although it has been studied extensively, the molecular details of the pH-dependent gating and proton conductance mechanisms are incompletely understood. We report direct observation of the M2 proton channel activation process using a laser-induced pH jump coupled with tryptophan fluorescence as a probe. Biphasic kinetics is observed, with the fast phase corresponding to the His37 protonation, and the slow phase associated with the subsequent conformation change. Unusually fast His37 protonation was observed (2.0 × 1010 M-1 s-1), implying the existence of proton collecting antennae for expedited proton transport. The conformation change (4 × 103 s-1) was about 2 orders of magnitude slower than protonation at endosomal pH, suggesting that a transporter model is likely not feasible.
Collapse
Affiliation(s)
- Ban-Seok Jeong
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Nienhaus K, Nienhaus GU. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:443001. [PMID: 27604321 DOI: 10.1088/0953-8984/28/44/443001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Straße 1, 76131 Karlsruhe, Germany
| | | |
Collapse
|
7
|
MacAleese L, Hermelin S, Hage KE, Chouzenoux P, Kulesza A, Antoine R, Bonacina L, Meuwly M, Wolf JP, Dugourd P. Sequential Proton Coupled Electron Transfer (PCET): Dynamics Observed over 8 Orders of Magnitude in Time. J Am Chem Soc 2016; 138:4401-7. [DOI: 10.1021/jacs.5b12587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Luke MacAleese
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon1-CNRS, Université de Lyon 69622 Villeurbanne
cedex, France
| | - Sylvain Hermelin
- Group
of Applied Physics (GAP) Biophotonics, Université de Genève, Chemin
de Pinchat 22, CH-1211 Geneva, Switzerland
| | - Krystel El Hage
- Department
of Chemistry, University of Basel, Klingelbergstr 80, CH-4056 Basel, Switzerland
| | - Pierre Chouzenoux
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon1-CNRS, Université de Lyon 69622 Villeurbanne
cedex, France
| | - Alexander Kulesza
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon1-CNRS, Université de Lyon 69622 Villeurbanne
cedex, France
| | - Rodolphe Antoine
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon1-CNRS, Université de Lyon 69622 Villeurbanne
cedex, France
| | - Luigi Bonacina
- Group
of Applied Physics (GAP) Biophotonics, Université de Genève, Chemin
de Pinchat 22, CH-1211 Geneva, Switzerland
| | - Markus Meuwly
- Department
of Chemistry, University of Basel, Klingelbergstr 80, CH-4056 Basel, Switzerland
| | - Jean-Pierre Wolf
- Group
of Applied Physics (GAP) Biophotonics, Université de Genève, Chemin
de Pinchat 22, CH-1211 Geneva, Switzerland
| | - Philippe Dugourd
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon1-CNRS, Université de Lyon 69622 Villeurbanne
cedex, France
| |
Collapse
|
8
|
Vegh RB, Bloch DA, Bommarius AS, Verkhovsky M, Pletnev S, Iwaï H, Bochenkova AV, Solntsev KM. Hidden photoinduced reactivity of the blue fluorescent protein mKalama1. Phys Chem Chem Phys 2015; 17:12472-85. [DOI: 10.1039/c5cp00887e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report a complete photocycle of the blue fluorescent protein exhibiting two delayed branches coupled to hidden proton transfer events.
Collapse
Affiliation(s)
- Russell B. Vegh
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- Petit Institute of Bioengineering and Bioscience
| | - Dmitry A. Bloch
- Research Program in Structural Biology and Biophysics
- Institute of Biotechnology
- University of Helsinki
- Helsinki 00014
- Finland
| | - Andreas S. Bommarius
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- Petit Institute of Bioengineering and Bioscience
| | - Michael Verkhovsky
- Research Program in Structural Biology and Biophysics
- Institute of Biotechnology
- University of Helsinki
- Helsinki 00014
- Finland
| | - Sergei Pletnev
- Synchrotron Radiation Research Section
- Macromolecular Crystallography Laboratory
- National Cancer Institute
- Argonne
- USA
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics
- Institute of Biotechnology
- University of Helsinki
- Helsinki 00014
- Finland
| | | | - Kyril M. Solntsev
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
9
|
Kohse S, Neubauer A, Lochbrunner S, Kragl U. Improving the Time Resolution for Remote Control of Enzyme Activity by a Nanosecond Laser-Induced pH Jump. ChemCatChem 2014. [DOI: 10.1002/cctc.201402442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Oltrogge LM, Wang Q, Boxer SG. Ground-state proton transfer kinetics in green fluorescent protein. Biochemistry 2014; 53:5947-57. [PMID: 25184668 PMCID: PMC4172208 DOI: 10.1021/bi500147n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Proton
transfer plays an important role in the optical properties
of green fluorescent protein (GFP). While much is known about excited-state
proton transfer reactions (ESPT) in GFP occurring on ultrafast time
scales, comparatively little is understood about the factors governing
the rates and pathways of ground-state proton transfer. We have utilized
a specific isotopic labeling strategy in combination with one-dimensional 13C nuclear magnetic resonance (NMR) spectroscopy to install
and monitor a 13C directly adjacent to the GFP chromophore
ionization site. The chemical shift of this probe is highly sensitive
to the protonation state of the chromophore, and the resulting spectra
reflect the thermodynamics and kinetics of the proton transfer in
the NMR line shapes. This information is complemented by time-resolved
NMR, fluorescence correlation spectroscopy, and steady-state absorbance
and fluorescence measurements to provide a picture of chromophore
ionization reactions spanning a wide time domain. Our findings indicate
that proton transfer in GFP is described well by a two-site model
in which the chromophore is energetically coupled to a secondary site,
likely the terminal proton acceptor of ESPT, Glu222. Additionally,
experiments on a selection of GFP circular permutants suggest an important
role played by the structural dynamics of the seventh β-strand
in gating proton transfer from bulk solution to the buried chromophore.
Collapse
Affiliation(s)
- Luke M Oltrogge
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | | | | |
Collapse
|
11
|
Campanini B, Pioselli B, Raboni S, Felici P, Giordano I, D'Alfonso L, Collini M, Chirico G, Bettati S. Role of histidine 148 in stability and dynamics of a highly fluorescent GFP variant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:770-9. [PMID: 23357652 DOI: 10.1016/j.bbapap.2013.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
The armory of GFP mutants available to biochemists and molecular biologists is huge. Design and selection of mutants are usually driven by tailored spectroscopic properties, but some key aspects of stability, folding and dynamics of selected GFP variants still need to be elucidated. We have prepared, expressed and characterized three H148 mutants of the highly fluorescent variant GFPmut2. H148 is known to be involved in the H-bonding network surrounding the chromophore, and all the three mutants, H148G, H148R and H148K, show increased pKa values of the chromophore. Only H148G GFPmut2 (Mut2G) gave good expression and purification yields, indicating that position 148 is critical for efficient folding in vivo. The chemical denaturation of Mut2G was monitored by fluorescence emission, absorbance and far-UV circular dichroism spectroscopy. The mutation has little effect on the spectroscopic properties of the protein and on its stability in solution. However, the unfolding kinetics of the protein encapsulated in wet nanoporous silica gels, a system that allows to stabilize conformations that are poorly or only transiently populated in solution, indicate that the unfolding pathway of Mut2G is markedly different from the parent molecule. In particular, encapsulation allowed to identify an unfolding intermediate that retains a native-like secondary structure despite a destructured chromophore environment. Thus, H148 is a critical residue not only for the chromophoric and photodynamic properties, but also for the correct folding of GFP, and its substitution has great impact on expression yields and stability of the mature protein.
Collapse
Affiliation(s)
- Barbara Campanini
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Saha R, Verma PK, Rakshit S, Saha S, Mayor S, Pal SK. Light driven ultrafast electron transfer in oxidative redding of Green Fluorescent Proteins. Sci Rep 2013; 3:1580. [PMID: 23552964 PMCID: PMC3615570 DOI: 10.1038/srep01580] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/07/2013] [Indexed: 01/22/2023] Open
Abstract
Fluorescent proteins undergoing green to red (G/R) photoconversion have proved to be potential tools for investigating dynamic processes in living cells and for photo-localization nanoscopy. However, the photochemical reaction during light induced G/R photoconversion of fluorescent proteins remains unclear. Here we report the direct observation of ultrafast time-resolved electron transfer (ET) during the photoexcitation of the fluorescent proteins EGFP and mEos2 in presence of electron acceptor, p-benzoquinone (BQ). Our results show that in the excited state, the neutral EGFP chromophore accepts electrons from an anionic electron donor, Glu222, and G/R photoconversion is facilitated by ET to nearby electron acceptors. By contrast, mEos2 fails to produce the red emitting state in the presence of BQ; ET depletes the excited state configuration en route to the red-emitting fluorophore. These results show that ultrafast ET plays a pivotal role in multiple photoconversion mechanisms and provide a method to modulate the G/R photoconversion process.
Collapse
Affiliation(s)
- Ranajay Saha
- Unit for Nano Science & Technology, Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
- These authors contributed equally to this work
| | - Pramod Kumar Verma
- Unit for Nano Science & Technology, Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
- These authors contributed equally to this work
| | - Surajit Rakshit
- Unit for Nano Science & Technology, Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
| | - Suvrajit Saha
- National Centre for Biological Science (TIFR), Bellary Road, Bangalore 560 065, India
| | - Satyajit Mayor
- National Centre for Biological Science (TIFR), Bellary Road, Bangalore 560 065, India
| | - Samir Kumar Pal
- Unit for Nano Science & Technology, Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India
| |
Collapse
|
13
|
Costello DA, Lee DW, Drewes J, Vasquez KA, Kisler K, Wiesner U, Pollack L, Whittaker GR, Daniel S. Influenza virus-membrane fusion triggered by proton uncaging for single particle studies of fusion kinetics. Anal Chem 2012; 84:8480-9. [PMID: 22974237 DOI: 10.1021/ac3006473] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a method for studying membrane fusion, focusing on influenza virus fusion to lipid bilayers, which provides high temporal resolution through the rapid and coordinated initiation of individual virus fusion events. Each fusion event proceeds through a series of steps, much like multistep chemical reaction. Fusion is initiated by a rapid decrease in pH that accompanies the "uncaging" of an effector molecule from o-nitrobenzaldehyde, a photoisomerizable compound that releases a proton to the surrounding solution within microseconds of long-wave ultraviolet irradiation. In order to quantify pH values upon UV irradiation and uncaging, we introduce a simple silica nanoparticle pH sensor, useful for reporting the pH in homogeneous nanoliter volumes under conditions where traditional organic dye-type pH probes fail. Subsequent single-virion fusion events are monitored using total internal reflection fluorescence microscopy. Statistical analysis of these stochastic events uncovers kinetic information about the fusion reaction. This approach reveals that the kinetic parameters obtained from the data are sensitive to the rate at which protons are delivered to the bound viruses. Higher resolution measurements can enhance fundamental fusion studies and aid antiviral antifusogenic drug development.
Collapse
Affiliation(s)
- Deirdre A Costello
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Photophysics and Spectroscopy of Fluorophores in the Green Fluorescent Protein Family. SPRINGER SERIES ON FLUORESCENCE 2010. [DOI: 10.1007/978-3-642-04702-2_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
16
|
Wani AH, Udgaonkar JB. Native state dynamics drive the unfolding of the SH3 domain of PI3 kinase at high denaturant concentration. Proc Natl Acad Sci U S A 2009; 106:20711-6. [PMID: 19920173 PMCID: PMC2791584 DOI: 10.1073/pnas.0908617106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Indexed: 11/18/2022] Open
Abstract
Little is known about the role of protein dynamics in directing protein unfolding along a specific pathway and about the role played by chemical denaturants in modulating the dynamics and the initiation of unfolding. In this study, deuterium-hydrogen exchange (HX) detected by electrospray ionization mass spectrometry (ESI-MS) was used to study the unfolding of the SH3 domain of the PI3 kinase. Unfolding on the principal unfolding pathway occurs in 2 steps, both in the absence and in the presence of 1.8 M guanidine hydrochloride (GdnHCl). In both cases, the first step leads to the formation of an intermediate, I(N), with 5 fewer protected amide hydrogen sites than in N. In the second step, I(N) loses the structure protecting the remaining 14 amide hydrogen sites from HX as it unfolds completely. ESI-MS analysis of fragments of the protein created by proteolytic digestion, after completion of the HX reaction, shows that I(N) has lost protection against HX in the same segments of native structure during unfolding in the absence and presence of 1.8 M GdnHCl. Hence, GdnHCl does not appear to play a direct active role in the initiation of unfolding. However, at higher GdnHCl concentrations, a second unfolding pathway is shown to compete effectively with the N <--> I(N) <--> U pathway. In this way, the denaturant modulates the energy landscape of unfolding.
Collapse
Affiliation(s)
- Ajazul Hamid Wani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
17
|
Durin G, Delaunay A, Darnault C, Heyes DJ, Royant A, Vernede X, Hunter CN, Weik M, Bourgeois D. Simultaneous measurements of solvent dynamics and functional kinetics in a light-activated enzyme. Biophys J 2009; 96:1902-10. [PMID: 19254549 DOI: 10.1016/j.bpj.2008.10.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022] Open
Abstract
Solvent fluctuations play a key role in controlling protein motions and biological function. Here, we have studied how individual steps of the reaction catalyzed by the light-activated enzyme protochlorophyllide oxidoreductase (POR) couple with solvent dynamics. To simultaneously monitor the catalytic cycle of the enzyme and the dynamical behavior of the solvent, we designed temperature-dependent UV-visible microspectrophotometry experiments, using flash-cooled nanodroplets of POR to which an exogenous soluble fluorophore was added. The formation and decay of the first two intermediates in the POR-catalyzed reaction were measured, together with the solvent glass transition and the buildup of crystalline ice at cryogenic temperatures. We find that formation of the first intermediate occurs below the glass transition temperature (T(g)), and is not affected by changes in solvent dynamics induced by modifying the glycerol content. In contrast, formation of the second intermediate occurs above T(g) and is influenced by changes in glycerol concentration in a manner remarkably similar to the buildup of crystalline ice. These results suggest that internal, nonslaved protein motions drive the first step of the POR-catalyzed reaction whereas solvent-slaved motions control the second step. We propose that the concept of solvent slaving applies to complex enzymes such as POR.
Collapse
Affiliation(s)
- Guillaume Durin
- Institut de Biologie Structurale Jean-Pierre Ebel, Centre d'Etudes Atomiques, Centre National de la Recherche Scientifique, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Krasnenko V, Tkaczyk AH, Tkaczyk ER, Mauring K. Physicochemical properties of blue fluorescent protein determined via molecular dynamics simulation. Biopolymers 2008; 89:1136-43. [DOI: 10.1002/bip.21065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Bosisio C, Quercioli V, Collini M, D'Alfonso L, Baldini G, Bettati S, Campanini B, Raboni S, Chirico G. Protonation and conformational dynamics of GFP mutants by two-photon excitation fluorescence correlation spectroscopy. J Phys Chem B 2008; 112:8806-14. [PMID: 18582099 DOI: 10.1021/jp801164n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GFP mutants are known to display fluorescence flickering, a process that occurs in a wide time range. Because serine 65, threonine 203, glutamate 222, and histidine 148 have been indicated as key residues in determining the GFP fluorescence photodynamics, we have focused here on the role of histidine 148 and glutamate 222 by studying the fluorescence dynamics of GFPmut2 (S65A, V68L, and S72A GFP) and its H148G (Mut2G) and E222Q (Mut2Q) mutants. Two relaxation components are found in the fluorescence autocorrelation functions of GFPmut2: a 10-100 micros pH-dependent component and a 100-500 micros laser-power-dependent component. The comparison of these three mutants shows that the mutation of histidine 148 to glycine induces a 3-fold increase in the protonation rate, thereby indicating that the protonation-deprotonation of the chromophore occurs via a proton exchange with the solution mediated by the histidine 148 residue. The power-dependent but pH-independent relaxation mode, which is not affected by the E222Q and H148G mutations, is due to an excited-state process that is probably related to conformational rearrangements of the chromophore after the photoexcitation, more than to the chromophore excited-state proton transfer.
Collapse
Affiliation(s)
- C Bosisio
- Dipartimento G. Occhialini, Universita di Milano Bicocca
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Haldar S, Chattopadhyay A. Dipolar relaxation within the protein matrix of the green fluorescent protein: a red edge excitation shift study. J Phys Chem B 2007; 111:14436-9. [PMID: 18052368 DOI: 10.1021/jp076797z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluorophore in green fluorescent protein (GFP) is localized in a highly constrained environment, protected from the bulk solvent by the barrel-shaped protein matrix. We have used the wavelength-selective fluorescence approach (red edge excitation shift, REES) to monitor solvent (environment) dynamics around the fluorophore in enhanced green fluorescent protein (EGFP) under various conditions. Our results show that EGFP displays REES in buffer and glycerol, i.e., the fluorescence emission maxima exhibit a progressive shift toward the red edge, as the excitation wavelength is shifted toward the red edge of the absorption spectrum. Interestingly, EGFP displays REES when incorporated in reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT), independent of the hydration state. We interpret the observed REES to the constrained environment experienced by the EGFP fluorophore in the rigid protein matrix, rather than to the dynamics of the bulk solvent. These results are supported by the temperature dependence of REES and characteristic wavelength-dependent changes in fluorescence anisotropy.
Collapse
Affiliation(s)
- Sourav Haldar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
21
|
Tansila N, Tantimongcolwat T, Isarankura-Na-Ayudhya C, Nantasenamat C, Prachayasittikul V. Rational design of analyte channels of the green fluorescent protein for biosensor applications. Int J Biol Sci 2007; 3:463-70. [PMID: 18071586 PMCID: PMC2096736 DOI: 10.7150/ijbs.3.463] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 11/19/2007] [Indexed: 11/05/2022] Open
Abstract
A novel solvent-exposed analyte channel, generated by F165G substitution, on the surface of green fluorescent protein (designated His(6)GFPuv/F165G) was successfully discovered by the aid of molecular modeling software (PyMOL) in conjunction with site-directed mutagenesis. Regarding the high predictive performance of PyMOL, two pore-containing mutants namely His(6)GFPuv/H148G and His(6)GFPuv/H148G/F165G were also revealed. The pore sizes of F165G, H148G, and the double mutant H148G/F165G were in the order of 4, 4.5 and 5.5 A, respectively. These mutants were subjected to further investigation on the effect of small analytes (e.g. metal ions and hydrogen peroxide) as elucidated by fluorescence quenching experiments. Results revealed that the F165G mutant exhibited the highest metal sensitivity at physiological pH. Meanwhile, the other 2 mutants lacking histidine at position 148 had lower sensitivity against Zn(2+) and Cu(2+) than those of the template protein (His(6)GFPuv). Hence, a significant role of this histidine residue in mediating metal transfer toward the GFP chromophore was proposed and evidently demonstrated by testing in acidic condition. Results revealed that at pH 6.5 the order of metal sensitivity was found to be inverted whereby the H148G/F165G became the most sensitive mutant. The dissociation constants (K(d)) to metal ions were in the order of 4.88 x 10(-6) M, 16.67 x 10(-6) M, 25 x 10(-6) M, and 33.33 x 10(-6) M for His(6)GFPuv/F165G, His(6)GFPuv, His(6)GFPuv/H148G/F165G and His(6)GFPuv/H148G, respectively. Sensitivity against hydrogen peroxide was in the order of H148G/F165G > H148G > F165G indicating the crucial role of pore diameters. However, it should be mentioned that H148G substitution caused a markedly decrease in pH- and thermo-stability. Taken together, our findings rendered the novel pore of GFP as formed by F165G substitution to be a high impact channel without adversely affecting the intrinsic fluorescent properties. This opens up a great potential of using F165G mutant in enhancing the sensitivity of GFP in future development of biosensors.
Collapse
Affiliation(s)
- Natta Tansila
- Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | | |
Collapse
|
22
|
Wong FHC, Banks DS, Abu-Arish A, Fradin C. A Molecular Thermometer Based on Fluorescent Protein Blinking. J Am Chem Soc 2007; 129:10302-3. [PMID: 17685514 DOI: 10.1021/ja0715905] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felix H C Wong
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | | | | | | |
Collapse
|
23
|
Cannone F, Collini M, Chirico G, Baldini G, Bettati S, Campanini B, Mozzarelli A. Environment effects on the oscillatory unfolding kinetics of GFP. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:795-803. [PMID: 17429619 DOI: 10.1007/s00249-007-0160-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 03/13/2007] [Accepted: 03/20/2007] [Indexed: 11/29/2022]
Abstract
The chromophore of a green fluorescent protein (GFP) mutant engineered to enhance emission and stability is known to display erratic switchings among a few of its chemical substates and, in particular, between the anionic A and the neutral N substates, whose difference is associated with a proton exchange and a consequent conformation rearrangement. However, when close to unfolding, the A-N switchings suddenly become very regular as shown by fluorescence oscillations that have been recently observed for molecules embedded in wet silica gel. In order to establish whether the matrix hosting the protein is responsible for these oscillations, we investigated the effect of another medium (silanized surfaces), of a different denaturant (urea) and of cosolvents (D(2)O and glycerol). The occurrence of periodic A-N switchings, in the last milliseconds before GFP unfolding, is observed under all investigated conditions, together with three specific frequency values that characterize the pre-unfolding fluorescence. Urea and guanidinium, the denaturants employed in order to unfold GFP, do not lead to appreciable differences in the observed switching parameters, whereas the different media embedding the protein give rise only to frequency shifts that scale with the viscosity of the host. The periodicity of the GFP A-N switchings and their dependence on cosolvents suggest that they could be associated with oscillatory motions between meta-stable conformations of the beta-barrel surrounding the chromophore near protein unfolding.
Collapse
Affiliation(s)
- Fabio Cannone
- Department of Physics, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Baldini G, Cannone F, Chirico G, Collini M, Campanini B, Bettati S, Mozzarelli A. Evidence of discrete substates and unfolding pathways in green fluorescent protein. Biophys J 2006; 92:1724-31. [PMID: 17142282 PMCID: PMC1796838 DOI: 10.1529/biophysj.106.093567] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present evidence of conformational substates of a green fluorescent protein mutant, GFPmut2, and of their relationship with the protein behavior during chemical unfolding. The fluorescence of single molecules, excited by two infrared photons from a pulsed laser, was detected in two separate channels that simultaneously collected the blue or the green emission from the protein chromophore chemical states (anionic or neutral, respectively). Time recording of the fluorescence signals from molecules in the native state shows that the chromophore, an intrinsic probe sensitive to conformational changes, switches between the two states with average rates that are found to assume distinct values, thereby suggesting a multiplicity of protein substates. Furthermore, under denaturing conditions, the chromophore switching rate displays different and reproducible time evolutions that are characterized by discrete unfolding times. The correlation that is found between native molecules' switching rate values and unfolding times appears as direct evidence that GFPmut2 can unfold only along distinct paths that are determined by the initial folded substate of the protein.
Collapse
|
25
|
Swietach P, Spitzer KW, Vaughan-Jones RD. pH-Dependence of extrinsic and intrinsic H(+)-ion mobility in the rat ventricular myocyte, investigated using flash photolysis of a caged-H(+) compound. Biophys J 2006; 92:641-53. [PMID: 17056723 PMCID: PMC1751406 DOI: 10.1529/biophysj.106.096560] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Passive H(+)-ion mobility within eukaryotic cells is low, due to H(+)-ion binding to cytoplasmic buffers. A localized intracellular acidosis can therefore persist for seconds or even minutes. Because H(+)-ions modulate so many biological processes, spatial intracellular pH (pH(i))-regulation becomes important for coordinating cellular activity. We have investigated spatial pH(i)-regulation in single and paired ventricular myocytes from rat heart by inducing a localized intracellular acid-load, while confocally imaging pH(i) using the pH-fluorophore, carboxy-SNARF-1. We present a novel method for localizing the acid-load. This involves the intracellular photolytic uncaging of H(+)-ions from a membrane-permeant acid-donor, 2-nitrobenzaldehyde. The subsequent spatial pH(i)-changes are consistent with intracellular H(+)-mobility and cell-to-cell H(+)-permeability constants measured using more conventional acid-loading techniques. We use the method to investigate the effect of reducing pH(i) on intrinsic (non-CO(2)/HCO(3)(-) buffer-dependent) and extrinsic (CO(2)/HCO(3)(-) buffer-dependent) components of H(i)(+)-mobility. We find that although both components mediate spatial regulation of pH within the cell, their ability to do so declines sharply at low pH(i). Thus acidosis severely slows intracellular H(+)-ion movement. This can result in spatial pH(i) nonuniformity, particularly during the stimulation of sarcolemmal Na(+)-H(+) exchange. Intracellular acidosis thus presents a window of vulnerability in the spatial coordination of cellular function.
Collapse
Affiliation(s)
- Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | | | | |
Collapse
|
26
|
Abstract
Charge transfer reactions that contribute to the photoreactions of the wild type green fluorescent protein (GFP) do not occur in the isolated p-hydroxybenzylidene-imidazolidinone chromophore, demonstrating the role of the protein environment. The high quantum efficiency of the fluorescence photocycle that includes excited state proton transfer and the suppression of non-radiative pathways by the protein environment have been correlated with structural dynamics in the chromophore environment. A low quantum efficiency competing phototransformation reaction of GFP is accompanied by both proton and electron transfer, and closely mimics the charge redistribution that is occurring in the fluorescence photocycle. The protein response to this destabilising event has been demonstrated by cryo-trapping of early products in the reaction pathway and is found to be strong even at 100 K, including displacements of chromophore, protein, solvent and a photogenerated CO2 molecule derived from the decarboxylated Glu 222 side chain. We discuss the ramifications of the observation of strong conformational perturbations below the protein dynamical transition at approximately 200 K, in view of low temperature work on other light sensitive proteins such as myoglobin and bacteriorhodopsin. The proton and electron transfer in the phototransformation pathway mimics the proton and charge transfer which occurs during the fluorescence cycle, which leads to common structural responses in both photoreactions as shown by ultrafast spectroscopy. We review and discuss literature on light-induced and thermal charge transfer events, focusing on recent findings addressing conformational dynamics and implications for thermodynamic properties.
Collapse
Affiliation(s)
- Jasper J van Thor
- Laboratory of Molecular Biophysics, University of Oxford, Rex Richards Building, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
27
|
Leiderman P, Huppert D, Agmon N. Transition in the temperature-dependence of GFP fluorescence: from proton wires to proton exit. Biophys J 2005; 90:1009-18. [PMID: 16284263 PMCID: PMC1367087 DOI: 10.1529/biophysj.105.069393] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In green fluorescent protein, photo-excitation leads to excited-state proton transfer from its chromophore, leaving behind a strongly fluorescing anion, while the proton is commonly thought to migrate internally to Glu-222. X-ray data show that the protein contains more extended hydrogen-bonded networks that can support proton migration (i.e., proton wires). Here we study the temperature-dependence of the transient fluorescence from both the acid and anionic forms up to 15 ns. At low temperatures, we find that the (lifetime-corrected) fluorescence of the acidic form decays asymptotically as t(-1/2), following quantitatively the solution of a one-dimensional diffusion equation for reversible geminate recombination with quenching. This indicates proton migration along the internal proton wires. A small degree of geminate proton quenching is attributed to the formation of the zwitterion by proton migration on a side-branch of the proton wire. Above 230 K, the fluorescence kinetics undergo a transition, exhibiting an asymptotic t(-3/2) decay, and the quenching effect disappears. We interpret these findings as evidence for a conformational change enabling the rotation of Thr-203, which eventually allows the proton to escape to the exterior solution.
Collapse
Affiliation(s)
- Pavel Leiderman
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel
| | | | | |
Collapse
|