1
|
Abstract
For bacteria, maintaining higher internal solute concentrations than those present in the environment allows cells to take up water. As a result, survival is challenging in high-osmolarity environments. To investigate how bacteria adapt to high-osmolarity environments, we maintained Escherichia coli in a variety of high-osmolarity solutions for hundreds of generations. We found that the evolved populations adopted different strategies to improve their growth rates depending on the osmotic passaging condition, either generally adapting to high-osmolarity conditions or better metabolizing the osmolyte as a carbon source. Single-cell imaging demonstrated that enhanced fitness was coupled to faster growth, and metagenomic sequencing revealed mutations that reflected growth trade-offs across osmolarities. Our study demonstrated the utility of long-term evolution experiments for probing adaptation occurring during environmental stress. Bacteria must maintain a cytosolic osmolarity higher than that of their environment in order to take up water. High-osmolarity environments therefore present formidable stress to bacteria. To explore the evolutionary mechanisms by which bacteria adapt to high-osmolarity environments, we selected Escherichia coli in media with a variety of osmolytes and concentrations for 250 generations. Adaptation was osmolyte dependent, with sorbitol stress generally resulting in increased fitness under conditions with higher osmolarity, while selection in high concentrations of proline resulted in increased fitness specifically on proline. Consistent with these phenotypes, sequencing of the evolved populations showed that passaging in proline resulted in specific mutations in an associated metabolic pathway that increased the ability to utilize proline for growth, while evolution in sorbitol resulted in mutations in many different genes that generally resulted in improved growth under high-osmolarity conditions at the expense of growth at low osmolarity. High osmolarity decreased the growth rate but increased the mean cell volume compared with growth on proline as the sole carbon source, demonstrating that osmolarity-induced changes in growth rate and cell size follow an orthogonal relationship from the classical Growth Law relating cell size and nutrient quality. Isolates from a sorbitol-evolved population that captured the likely temporal sequence of mutations revealed by metagenomic sequencing demonstrated a trade-off between growth at high osmolarity and growth at low osmolarity. Our report highlights the utility of experimental evolution for dissecting complex cellular networks and environmental interactions, particularly in the case of behaviors that can involve both specific and general metabolic stressors.
Collapse
|
2
|
The Bacterial DNA Binding Protein MatP Involved in Linking the Nucleoid Terminal Domain to the Divisome at Midcell Interacts with Lipid Membranes. mBio 2019; 10:mBio.00376-19. [PMID: 31138739 PMCID: PMC6538776 DOI: 10.1128/mbio.00376-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The division of an E. coli cell into two daughter cells with equal genomic information and similar size requires duplication and segregation of the chromosome and subsequent scission of the envelope by a protein ring, the Z-ring. MatP is a DNA binding protein that contributes both to the positioning of the Z-ring at midcell and the temporal control of nucleoid segregation. Our integrated in vivo and in vitro analysis provides evidence that MatP can interact with lipid membranes reproducing the phospholipid mixture in the E. coli inner membrane, without concomitant recruitment of the short DNA sequences specifically targeted by MatP. This observation strongly suggests that the membrane may play a role in the regulation of the function and localization of MatP, which could be relevant for the coordination of the two fundamental processes in which this protein participates, nucleoid segregation and cell division. Division ring formation at midcell is controlled by various mechanisms in Escherichia coli, one of them being the linkage between the chromosomal Ter macrodomain and the Z-ring mediated by MatP, a DNA binding protein that organizes this macrodomain and contributes to the prevention of premature chromosome segregation. Here we show that, during cell division, just before splitting the daughter cells, MatP seems to localize close to the cytoplasmic membrane, suggesting that this protein might interact with lipids. To test this hypothesis, we investigated MatP interaction with lipids in vitro. We found that, when encapsulated inside vesicles and microdroplets generated by microfluidics, MatP accumulates at phospholipid bilayers and monolayers matching the lipid composition in the E. coli inner membrane. MatP binding to lipids was independently confirmed using lipid-coated microbeads and biolayer interferometry assays, which suggested that the recognition is mainly hydrophobic. Interaction of MatP with the lipid membranes also occurs in the presence of the DNA sequences specifically targeted by the protein, but there is no evidence of ternary membrane/protein/DNA complexes. We propose that the association of MatP with lipids may modulate its spatiotemporal localization and its recognition of other ligands.
Collapse
|
3
|
Structure and allosteric coupling of type Ⅱ antitoxin CopA SO. Biochem Biophys Res Commun 2019; 514:1122-1127. [PMID: 31101334 DOI: 10.1016/j.bbrc.2019.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Toxin-antitoxin (TA) systems play critical roles in the environment adaptation of bacteria. Allosteric coupling between the N-terminal DNA-binding domain and the C-terminal toxin-binding domain of antitoxins contributes to conditional cooperativity in the functioning of type II TA. Herein, using circular dichroism (CD), nuclear magnetic resonance (NMR), X-ray crystallography, and size exclusion chromatography (SEC), the structure and DNA binding of CopASO, a newly identified type II antitoxin in Shewanella oneidensis, were investigated. Our data show that CopASO is a typical RHH antitoxin with an ordered N-terminal domain and a disordered C-terminal domain, and furthermore indicate that the C-terminal domain facilitates DNA binding of the N-terminal domain, which in turn induces the C-terminal domain to fold and associate.
Collapse
|
4
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
5
|
Abstract
SIGNIFICANCE Proline catabolism refers to the 4-electron oxidation of proline to glutamate catalyzed by the enzymes proline dehydrogenase (PRODH) and l-glutamate γ-semialdehyde dehydrogenase (GSALDH, or ALDH4A1). These enzymes and the intermediate metabolites of the pathway have been implicated in tumor growth and suppression, metastasis, hyperprolinemia metabolic disorders, schizophrenia susceptibility, life span extension, and pathogen virulence and survival. In some bacteria, PRODH and GSALDH are combined into a bifunctional enzyme known as proline utilization A (PutA). PutAs are not only virulence factors in some pathogenic bacteria but also fascinating systems for studying the coordination of metabolic enzymes via substrate channeling. Recent Advances: The past decade has seen an explosion of structural data for proline catabolic enzymes. This review surveys these structures, emphasizing protein folds, substrate recognition, oligomerization, kinetic mechanisms, and substrate channeling in PutA. CRITICAL ISSUES Major unsolved structural targets include eukaryotic PRODH, the complex between monofunctional PRODH and monofunctional GSALDH, and the largest of all PutAs, trifunctional PutA. The structural basis of PutA-membrane association is poorly understood. Fundamental aspects of substrate channeling in PutA remain unknown, such as the identity of the channeled intermediate, how the tunnel system is activated, and the roles of ancillary tunnels. FUTURE DIRECTIONS New approaches are needed to study the molecular and in vivo mechanisms of substrate channeling. With the discovery of the proline cycle driving tumor growth and metastasis, the development of inhibitors of proline metabolic enzymes has emerged as an exciting new direction. Structural biology will be important in these endeavors.
Collapse
Affiliation(s)
- John J Tanner
- 1 Department of Biochemistry and University of Missouri-Columbia , Columbia, Missouri.,2 Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri
| |
Collapse
|
6
|
Christgen SL, Zhu W, Sanyal N, Bibi B, Tanner JJ, Becker DF. Discovery of the Membrane Binding Domain in Trifunctional Proline Utilization A. Biochemistry 2017; 56:6292-6303. [PMID: 29090935 PMCID: PMC6044449 DOI: 10.1021/acs.biochem.7b01008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli proline utilization A (EcPutA) is the archetype of trifunctional PutA flavoproteins, which function both as regulators of the proline utilization operon and bifunctional enzymes that catalyze the four-electron oxidation of proline to glutamate. EcPutA shifts from a self-regulating transcriptional repressor to a bifunctional enzyme in a process known as functional switching. The flavin redox state dictates the function of EcPutA. Upon proline oxidation, the flavin becomes reduced, triggering a conformational change that causes EcPutA to dissociate from the put regulon and bind to the cellular membrane. Major structure/function domains of EcPutA have been characterized, including the DNA-binding domain, proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase catalytic domains, and an aldehyde dehydrogenase superfamily fold domain. Still lacking is an understanding of the membrane-binding domain, which is essential for EcPutA catalytic turnover and functional switching. Here, we provide evidence for a conserved C-terminal motif (CCM) in EcPutA having a critical role in membrane binding. Deletion of the CCM or replacement of hydrophobic residues with negatively charged residues within the CCM impairs EcPutA functional and physical membrane association. Furthermore, cell-based transcription assays and limited proteolysis indicate that the CCM is essential for functional switching. Using fluorescence resonance energy transfer involving dansyl-labeled liposomes, residues in the α-domain are also implicated in membrane binding. Taken together, these experiments suggest that the CCM and α-domain converge to form a membrane-binding interface near the PRODH domain. The discovery of the membrane-binding region will assist efforts to define flavin redox signaling pathways responsible for EcPutA functional switching.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Weidong Zhu
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Nikhilesh Sanyal
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Bushra Bibi
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - John J. Tanner
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
7
|
Liu LK, Becker DF, Tanner JJ. Structure, function, and mechanism of proline utilization A (PutA). Arch Biochem Biophys 2017; 632:142-157. [PMID: 28712849 DOI: 10.1016/j.abb.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023]
Abstract
Proline has important roles in multiple biological processes such as cellular bioenergetics, cell growth, oxidative and osmotic stress response, protein folding and stability, and redox signaling. The proline catabolic pathway, which forms glutamate, enables organisms to utilize proline as a carbon, nitrogen, and energy source. FAD-dependent proline dehydrogenase (PRODH) and NAD+-dependent glutamate semialdehyde dehydrogenase (GSALDH) convert proline to glutamate in two sequential oxidative steps. Depletion of PRODH and GSALDH in humans leads to hyperprolinemia, which is associated with mental disorders such as schizophrenia. Also, some pathogens require proline catabolism for virulence. A unique aspect of proline catabolism is the multifunctional proline utilization A (PutA) enzyme found in Gram-negative bacteria. PutA is a large (>1000 residues) bifunctional enzyme that combines PRODH and GSALDH activities into one polypeptide chain. In addition, some PutAs function as a DNA-binding transcriptional repressor of proline utilization genes. This review describes several attributes of PutA that make it a remarkable flavoenzyme: (1) diversity of oligomeric state and quaternary structure; (2) substrate channeling and enzyme hysteresis; (3) DNA-binding activity and transcriptional repressor function; and (4) flavin redox dependent changes in subcellular location and function in response to proline (functional switching).
Collapse
Affiliation(s)
- Li-Kai Liu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, United States.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
8
|
Korasick DA, Gamage TT, Christgen S, Stiers KM, Beamer LJ, Henzl MT, Becker DF, Tanner JJ. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis. J Biol Chem 2017; 292:9652-9665. [PMID: 28420730 PMCID: PMC5465489 DOI: 10.1074/jbc.m117.786855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
The bifunctional flavoenzyme proline utilization A (PutA) catalyzes the two-step oxidation of proline to glutamate using separate proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase active sites. Because PutAs catalyze sequential reactions, they are good systems for studying how metabolic enzymes communicate via substrate channeling. Although mechanistically similar, PutAs vary widely in domain architecture, oligomeric state, and quaternary structure, and these variations represent different structural solutions to the problem of sequestering a reactive metabolite. Here, we studied PutA from Corynebacterium freiburgense (CfPutA), which belongs to the uncharacterized 3B class of PutAs. A 2.7 Å resolution crystal structure showed the canonical arrangement of PRODH, l-glutamate-γ-semialdehyde dehydrogenase, and C-terminal domains, including an extended interdomain tunnel associated with substrate channeling. The structure unexpectedly revealed a novel open conformation of the PRODH active site, which is interpreted to represent the non-activated conformation, an elusive form of PutA that exhibits suboptimal channeling. Nevertheless, CfPutA exhibited normal substrate-channeling activity, indicating that it isomerizes into the active state under assay conditions. Sedimentation-velocity experiments provided insight into the isomerization process, showing that CfPutA dimerizes in the presence of a proline analog and NAD+ These results are consistent with the morpheein model of enzyme hysteresis, in which substrate binding induces conformational changes that promote assembly of a high-activity oligomer. Finally, we used domain deletion analysis to investigate the function of the C-terminal domain. Although this domain contains neither catalytic residues nor substrate sites, its removal impaired both catalytic activities, suggesting that it may be essential for active-site integrity.
Collapse
Affiliation(s)
| | | | - Shelbi Christgen
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | | | | | | | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - John J Tanner
- From the Departments of Biochemistry and
- Chemistry, University of Missouri, Columbia, Missouri 65211, and
| |
Collapse
|
9
|
Moxley MA, Zhang L, Christgen S, Tanner JJ, Becker DF. Identification of a Conserved Histidine As Being Critical for the Catalytic Mechanism and Functional Switching of the Multifunctional Proline Utilization A Protein. Biochemistry 2017; 56:3078-3088. [PMID: 28558236 DOI: 10.1021/acs.biochem.7b00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proline utilization A from Escherichia coli (EcPutA) is a multifunctional flavoenzyme that oxidizes proline to glutamate through proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) activities, while also switching roles as a DNA-bound transcriptional repressor and a membrane-bound catabolic enzyme. This phenomenon, termed functional switching, occurs through a redox-mediated mechanism in which flavin reduction triggers a conformational change that increases EcPutA membrane binding affinity. Structural studies have shown that reduction of the FAD cofactor causes the ribityl moiety to undergo a crankshaft motion, indicating that the orientation of the ribityl chain is a key element of PutA functional switching. Here, we test the role of a conserved histidine that bridges from the FAD pyrophosphate to the backbone amide of a conserved leucine residue in the PRODH active site. An EcPutA mutant (H487A) was characterized by steady-state and rapid-reaction kinetics, and cell-based reporter gene experiments. The catalytic activity of H487A is severely diminished (>50-fold) with membrane vesicles as the electron acceptor, and H487A exhibits impaired lipid binding and in vivo transcriptional repressor activity. Rapid-reaction kinetic experiments demonstrate that H487A is 3-fold slower than wild-type EcPutA in a conformational change step following reduction of the FAD cofactor. Furthermore, the reduction potential (Em) of H487A is ∼40 mV more positive than that of wild-type EcPutA, and H487A has an attenuated ability to catalyze the reverse PRODH chemical step of reoxidation by P5C. In this process, significant red semiquinone forms in contrast to the same reaction with wild-type EcPutA, in which facile two-electron reoxidation occurs without the formation of a measurable amount of semiquinone. These results indicate that His487 is critically important for the proline/P5C chemical step, conformational change kinetics, and functional switching in EcPutA.
Collapse
Affiliation(s)
- Michael A Moxley
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Lu Zhang
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Shelbi Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - John J Tanner
- Department of Biochemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| |
Collapse
|
10
|
Arentson BW, Hayes EL, Zhu W, Singh H, Tanner JJ, Becker DF. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA. Biosci Rep 2016; 36:e00413. [PMID: 27742866 PMCID: PMC5293562 DOI: 10.1042/bsr20160435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/05/2016] [Accepted: 10/14/2016] [Indexed: 01/18/2023] Open
Abstract
Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon-helix-helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH-RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH-RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs.
Collapse
Affiliation(s)
- Benjamin W Arentson
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Erin L Hayes
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Weidong Zhu
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
- Protein Technologies and Assays, Research and Development, MilliporeSigma, 2909 Laclede Avenue, St. Louis, MO 63103, U.S.A
| | - John J Tanner
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A.
| |
Collapse
|
11
|
Wang J, Zhong W, Lin D, Xia F, Wu W, Zhang H, Lv L, Liu S, He J. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents. Chem Biol Drug Des 2015; 86:487-95. [PMID: 25581878 DOI: 10.1111/cbdd.12511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022]
Abstract
The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjing Zhong
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Dongguo Lin
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fan Xia
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjiao Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Heyuan Zhang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Lin Lv
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jian He
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
12
|
Abstract
SIGNIFICANCE The imino acid proline is utilized by different organisms to offset cellular imbalances caused by environmental stress. The wide use in nature of proline as a stress adaptor molecule indicates that proline has a fundamental biological role in stress response. Understanding the mechanisms by which proline enhances abiotic/biotic stress response will facilitate agricultural crop research and improve human health. RECENT ADVANCES It is now recognized that proline metabolism propels cellular signaling processes that promote cellular apoptosis or survival. Studies have shown that proline metabolism influences signaling pathways by increasing reactive oxygen species (ROS) formation in the mitochondria via the electron transport chain. Enhanced ROS production due to proline metabolism has been implicated in the hypersensitive response in plants, lifespan extension in worms, and apoptosis, tumor suppression, and cell survival in animals. CRITICAL ISSUES The ability of proline to influence disparate cellular outcomes may be governed by ROS levels generated in the mitochondria. Defining the threshold at which proline metabolic enzyme expression switches from inducing survival pathways to cellular apoptosis would provide molecular insights into cellular redox regulation by proline. Are ROS the only mediators of proline metabolic signaling or are other factors involved? FUTURE DIRECTIONS New evidence suggests that proline biosynthesis enzymes interact with redox proteins such as thioredoxin. An important future pursuit will be to identify other interacting partners of proline metabolic enzymes to uncover novel regulatory and signaling networks of cellular stress response.
Collapse
Affiliation(s)
- Xinwen Liang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | | | | |
Collapse
|
13
|
Structure and function of AvtR, a novel transcriptional regulator from a hyperthermophilic archaeal lipothrixvirus. J Virol 2012; 87:124-36. [PMID: 23055559 DOI: 10.1128/jvi.01306-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural and functional analysis of the protein AvtR encoded by Acidianus filamentous virus 6 (AFV6), which infects the archaeal genus Acidianus, revealed its unusual structure and involvement in transcriptional regulation of several viral genes. The crystal structure of AvtR (100 amino acids) at 2.6-Å resolution shows that it is constituted of a repeated ribbon-helix-helix (RHH) motif, which is found in a large family of bacterial transcriptional regulators. The known RHH proteins form dimers that interact with DNA using their ribbon to create a central β-sheet. The repeated RHH motifs of AvtR superpose well on such dimers, but its central sheet contains an extra strand, suggesting either conformational changes or a different mode of DNA binding. Systematic evolution of ligands by exponential enrichment (SELEX) experiments combined with systematic mutational and computational analysis of the predicted site revealed 8 potential AvtR targets in the AFV6 genome. Two of these targets were studied in detail, and the complex role of AvtR in the transcriptional regulation of viral genes was established. Repressing transcription from its own gene, gp29, AvtR can also act as an activator of another gene, gp30. Its binding sites are distant from both genes' TATA boxes, and the mechanism of AvtR-dependent regulation appears to include protein oligomerization starting from the protein's initial binding sites. Many RHH transcriptional regulators of archaeal viruses could share this regulatory mechanism.
Collapse
|
14
|
Durand D, Li de la Sierra-Gallay I, Brooks MA, Thompson AW, Lazar N, Lisboa J, van Tilbeurgh H, Quevillon-Cheruel S. Expression, purification and preliminary structural analysis of Escherichia coli MatP in complex with the matS DNA site. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:638-43. [PMID: 22684059 DOI: 10.1107/s1744309112011062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/13/2012] [Indexed: 11/10/2022]
Abstract
The Escherichia coli chromosome is organized into four macrodomains which are found in the replication-origin region (Ori), at the terminus (Ter) and on both its sides (Right and Left). The localization of the macrodomains is subject to programmed changes during the cell cycle. The compaction of the 800 kb Ter macrodomain relies on the binding of the MatP protein to a 13 bp matS motif repeated 23 times. MatP is a small DNA-binding protein of about 18 kDa that shares homology in its C-terminal region with the ribbon-helix-helix (RHH) motifs present in regulatory DNA-binding proteins such as CopG. In order to understand the DNA-compaction mechanism of MatP at an atomic level, it was decided to study the structure of apo MatP and of the nucleoprotein complex MatP-matS by both X-ray diffraction and SAXS analysis. It was demonstrated that MatP forms dimers that bind a single matS motif. Complete native X-ray data sets were collected and phasing of the diffraction data is under way.
Collapse
Affiliation(s)
- Dominique Durand
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, UMR8619 du CNRS, Bâtiment 430, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pryor EE, Waligora EA, Xu B, Dellos-Nolan S, Wozniak DJ, Hollis T. The transcription factor AmrZ utilizes multiple DNA binding modes to recognize activator and repressor sequences of Pseudomonas aeruginosa virulence genes. PLoS Pathog 2012; 8:e1002648. [PMID: 22511872 PMCID: PMC3325190 DOI: 10.1371/journal.ppat.1002648] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 03/02/2012] [Indexed: 01/07/2023] Open
Abstract
AmrZ, a member of the Ribbon-Helix-Helix family of DNA binding proteins, functions as both a transcriptional activator and repressor of multiple genes encoding Pseudomonas aeruginosa virulence factors. The expression of these virulence factors leads to chronic and sustained infections associated with worsening prognosis. In this study, we present the X-ray crystal structure of AmrZ in complex with DNA containing the repressor site, amrZ1. Binding of AmrZ to this site leads to auto-repression. AmrZ binds this DNA sequence as a dimer-of-dimers, and makes specific base contacts to two half sites, separated by a five base pair linker region. Analysis of the linker region shows a narrowing of the minor groove, causing significant distortions. AmrZ binding assays utilizing sequences containing variations in this linker region reveals that secondary structure of the DNA, conferred by the sequence of this region, is an important determinant in binding affinity. The results from these experiments allow for the creation of a model where both intrinsic structure of the DNA and specific nucleotide recognition are absolutely necessary for binding of the protein. We also examined AmrZ binding to the algD promoter, which results in activation of the alginate exopolysaccharide biosynthetic operon, and found the protein utilizes different interactions with this site. Finally, we tested the in vivo effects of this differential binding by switching the AmrZ binding site at algD, where it acts as an activator, for a repressor binding sequence and show that differences in binding alone do not affect transcriptional regulation.
Collapse
Affiliation(s)
- Edward E. Pryor
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Elizabeth A. Waligora
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Binjie Xu
- Departments of Microbiology and Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sheri Dellos-Nolan
- Departments of Microbiology and Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Departments of Microbiology and Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas Hollis
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Schlenker C, Goel A, Tripet BP, Menon S, Willi T, Dlakić M, Young MJ, Lawrence CM, Copié V. Structural studies of E73 from a hyperthermophilic archaeal virus identify the "RH3" domain, an elaborated ribbon-helix-helix motif involved in DNA recognition. Biochemistry 2012; 51:2899-910. [PMID: 22409376 PMCID: PMC3326356 DOI: 10.1021/bi201791s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperthermophilic archaeal viruses, including Sulfolobus spindle-shaped viruses (SSVs) such as SSV-1 and SSV-Ragged Hills, exhibit remarkable morphology and genetic diversity. However, they remain poorly understood, in part because their genomes exhibit limited or unrecognizable sequence similarity to genes with known function. Here we report structural and functional studies of E73, a 73-residue homodimeric protein encoded within the SSV-Ragged Hills genome. Despite lacking significant sequence similarity, the nuclear magnetic resonance (NMR) structure reveals clear similarity to ribbon-helix-helix (RHH) domains present in numerous proteins involved in transcriptional regulation. In vitro double-stranded DNA (dsDNA) binding experiments confirm the ability of E73 to bind dsDNA in a nonspecific manner with micromolar affinity, and characterization of the K11E variant confirms the location of the predicted DNA binding surface. E73 is distinct, however, from known RHH domains. The RHH motif is elaborated upon by the insertion of a third helix that is tightly integrated into the structural domain, giving rise to the "RH3" fold. Within the homodimer, this helix results in the formation of a conserved, symmetric cleft distal to the DNA binding surface, where it may mediate protein-protein interactions or contribute to the high thermal stability of E73. Analysis of backbone amide dynamics by NMR provides evidence of a rigid core, fast picosecond to nanosecond time scale NH bond vector motions for residues located within the antiparallel β-sheet region of the proposed DNA-binding surface, and slower microsecond to millisecond time scale motions for residues in the α1-α2 loop. The roles of E73 and its SSV homologues in the viral life cycle are discussed.
Collapse
Affiliation(s)
- Casey Schlenker
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Anupam Goel
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Brian P. Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Smita Menon
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Taylor Willi
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Mensur Dlakić
- Department of Microbiology, Montana State University, Bozeman, MT 59717
| | - Mark J. Young
- Department of Microbiology, Montana State University, Bozeman, MT 59717
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| |
Collapse
|
17
|
Arentson BW, Sanyal N, Becker DF. Substrate channeling in proline metabolism. Front Biosci (Landmark Ed) 2012; 17:375-88. [PMID: 22201749 DOI: 10.2741/3932] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism.
Collapse
Affiliation(s)
- Benjamin W Arentson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | | |
Collapse
|
18
|
Singh RK, Tanner JJ. Unique structural features and sequence motifs of proline utilization A (PutA). Front Biosci (Landmark Ed) 2012; 17:556-68. [PMID: 22201760 DOI: 10.2741/3943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related monofunctional enzymes. Some of these extra features are predicted to be important for substrate channeling in BjPutA. Multiple sequence alignment analysis shows that some PutAs have a 17-residue conserved motif in the C-terminal 20-30 residues of the polypeptide chain. The BjPutA structure shows that this motif helps seal the internal substrate-channeling cavity from the bulk medium. Finally, it is shown that some PutAs have a 100-200 residue domain of unknown function in the C-terminus that is not found in minimalist PutAs. Remote homology detection suggests that this domain is homologous to the oligomerization beta-hairpin and Rossmann fold domain of BjPutA.
Collapse
Affiliation(s)
- Ranjan K Singh
- Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|
19
|
Singh RK, Larson JD, Zhu W, Rambo RP, Hura GL, Becker DF, Tanner JJ. Small-angle X-ray scattering studies of the oligomeric state and quaternary structure of the trifunctional proline utilization A (PutA) flavoprotein from Escherichia coli. J Biol Chem 2011; 286:43144-53. [PMID: 22013066 DOI: 10.1074/jbc.m111.292474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The trifunctional flavoprotein proline utilization A (PutA) links metabolism and gene regulation in Gram-negative bacteria by catalyzing the two-step oxidation of proline to glutamate and repressing transcription of the proline utilization regulon. Small-angle x-ray scattering (SAXS) and domain deletion analysis were used to obtain solution structural information for the 1320-residue PutA from Escherichia coli. Shape reconstructions show that PutA is a symmetric V-shaped dimer having dimensions of 205 × 85 × 55 Å. The particle consists of two large lobes connected by a 30-Å diameter cylinder. Domain deletion analysis shows that the N-terminal DNA-binding domain mediates dimerization. Rigid body modeling was performed using the crystal structure of the DNA-binding domain and a hybrid x-ray/homology model of residues 87-1113. The calculations suggest that the DNA-binding domain is located in the connecting cylinder, whereas residues 87-1113, which contain the two catalytic active sites, reside in the large lobes. The SAXS data and amino acid sequence analysis suggest that the Δ(1)-pyrroline-5-carboxylate dehydrogenase domains lack the conventional oligomerization flap, which is unprecedented for the aldehyde dehydrogenase superfamily. The data also provide insight into the function of the 200-residue C-terminal domain. It is proposed that this domain serves as a lid that covers the internal substrate channeling cavity, thus preventing escape of the catalytic intermediate into the bulk medium. Finally, the SAXS model is consistent with a cloaking mechanism of gene regulation whereby interaction of PutA with the membrane hides the DNA-binding surface from the put regulon thereby activating transcription.
Collapse
Affiliation(s)
- Ranjan K Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Flavin cofactors impart remarkable catalytic diversity to enzymes, enabling them to participate in a broad array of biological processes. The properties of flavins also provide proteins with a versatile redox sensor that can be utilized for converting physiological signals such as cellular metabolism, light, and redox status into a unique functional output. The control of protein functions by the flavin redox state is important for transcriptional regulation, cell signaling pathways, and environmental adaptation. A significant number of proteins that have flavin redox switches are found in the Per-Arnt-Sim (PAS) domain family and include flavoproteins that act as photosensors and respond to changes in cellular redox conditions. Biochemical and structural studies of PAS domain flavoproteins have revealed key insights into how flavin redox changes are propagated to the surface of the protein and translated into a new functional output such as the binding of a target protein in a signaling pathway. Mechanistic details of proteins unrelated to the PAS domain are also emerging and provide novel examples of how the flavin redox state governs protein-membrane interactions in response to appropriate stimuli. Analysis of different flavin switch proteins reveals shared mechanistic themes for the regulation of protein structure and function by flavins.
Collapse
Affiliation(s)
- Donald F Becker
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664, USA.
| | | | | |
Collapse
|
21
|
Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 2010; 107:2878-83. [PMID: 20133651 DOI: 10.1073/pnas.0906101107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bifunctional proline catabolic flavoenzyme, proline utilization A (PutA), catalyzes the oxidation of proline to glutamate via the sequential activities of FAD-dependent proline dehydrogenase (PRODH) and NAD(+)-dependent Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Although structures for some of the domains of PutA are known, a structure for the full-length protein has not previously been solved. Here we report the 2.1 A resolution crystal structure of PutA from Bradyrhizobium japonicum, along with data from small-angle x-ray scattering, analytical ultracentrifugation, and steady-state and rapid-reaction kinetics. PutA forms a ring-shaped tetramer in solution having a diameter of 150 A. Within each protomer, the PRODH and P5CDH active sites face each other at a distance of 41 A and are connected by a large, irregularly shaped cavity. Kinetics measurements show that glutamate production occurs without a lag phase, suggesting that the intermediate, Delta(1)-pyrroline-5-carboxylate, is preferably transferred to the P5CDH domain rather than released into the bulk medium. The structural and kinetic data imply that the cavity serves both as a microscopic vessel for the hydrolysis of Delta(1)-pyrroline-5-carboxylate to glutamate semialdehyde and a protected conduit for the transport of glutamate semialdehyde to the P5CDH active site.
Collapse
|
22
|
Guillière F, Peixeiro N, Kessler A, Raynal B, Desnoues N, Keller J, Delepierre M, Prangishvili D, Sezonov G, Guijarro JI. Structure, function, and targets of the transcriptional regulator SvtR from the hyperthermophilic archaeal virus SIRV1. J Biol Chem 2009; 284:22222-22237. [PMID: 19535331 PMCID: PMC2755947 DOI: 10.1074/jbc.m109.029850] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 06/04/2009] [Indexed: 11/06/2022] Open
Abstract
We have characterized the structure and the function of the 6.6-kDa protein SvtR (formerly called gp08) from the rod-shaped virus SIRV1, which infects the hyperthermophilic archaeon Sulfolobus islandicus that thrives at 85 degrees C in hot acidic springs. The protein forms a dimer in solution. The NMR solution structure of the protein consists of a ribbon-helix-helix (RHH) fold between residues 13 and 56 and a disordered N-terminal region (residues 1-12). The structure is very similar to that of bacterial RHH proteins despite the low sequence similarity. We demonstrated that the protein binds DNA and uses its beta-sheet face for the interaction like bacterial RHH proteins. To detect all the binding sites on the 32.3-kb SIRV1 linear genome, we designed and performed a global genome-wide search of targets based on a simplified electrophoretic mobility shift assay. Four targets were recognized by the protein. The strongest binding was observed with the promoter of the gene coding for a virion structural protein. When assayed in a host reconstituted in vitro transcription system, the protein SvtR (Sulfolobus virus transcription regulator) repressed transcription from the latter promoter, as well as from the promoter of its own gene.
Collapse
Affiliation(s)
- Florence Guillière
- From the Institut Pasteur, Unité de RMN des Biomolécules, CNRS URA 2185, 75015 Paris
| | - Nuno Peixeiro
- the Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris
| | - Alexandra Kessler
- the Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris
| | - Bertrand Raynal
- the Institut Pasteur, Plate-forme de Biophysique des Macromolécules et de leurs Interactions, 75015 Paris
| | - Nicole Desnoues
- the Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris
| | - Jenny Keller
- the Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, CNRS-UMR 8619, Université Paris 11, IFR115, Bâtiment 430, 91405 Orsay, and
| | - Muriel Delepierre
- From the Institut Pasteur, Unité de RMN des Biomolécules, CNRS URA 2185, 75015 Paris
| | - David Prangishvili
- the Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris
| | - Guennadi Sezonov
- the Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris
- the Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France
| | - J. Iñaki Guijarro
- From the Institut Pasteur, Unité de RMN des Biomolécules, CNRS URA 2185, 75015 Paris
| |
Collapse
|
23
|
Halouska S, Zhou Y, Becker DF, Powers R. Solution structure of the Pseudomonas putida protein PpPutA45 and its DNA complex. Proteins 2009; 75:12-27. [PMID: 18767154 DOI: 10.1002/prot.22217] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proline utilization A (PutA) is a membrane-associated multifunctional enzyme that catalyzes the oxidation of proline to glutamate in a two-step process. In certain, gram-negative bacteria such as Pseudomonas putida, PutA also acts as an auto repressor in the cytoplasm, when an insufficient concentration of proline is available. Here, the N-terminal residues 1-45 of PutA from P. putida (PpPutA45) are shown to be responsible for DNA binding and dimerization. The solution structure of PpPutA45 was determined using NMR methods, where the protein is shown to be a symmetrical homodimer (12 kDa) consisting of two ribbon-helix-helix (RHH) structures. DNA sequence recognition by PpPutA45 was determined using DNA gel mobility shift assays and NMR chemical shift perturbations (CSPs). PpPutA45 was shown to bind a 14 base-pair DNA oligomer (5'-GCGGTTGCACCTTT-3'). A model of the PpPutA45-DNA oligomer complex was generated using Haddock 2.1. The antiparallel beta-sheet that results from PpPutA45 dimerization serves as the DNA recognition binding site by inserting into the DNA major groove. The dimeric core of four alpha-helices provides a structural scaffold for the beta-sheet from which residues Thr5, Gly7, and Lys9 make sequence-specific contacts with the DNA. The structural model implies flexibility of Lys9 which can make hydrogen bond contacts with either guanine or thymine. The high sequence and structure conservation of the PutA RHH domain suggest interdomain interactions play an important role in the evolution of the protein.
Collapse
Affiliation(s)
- Steven Halouska
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | |
Collapse
|
24
|
Schuermann JP, White TA, Srivastava D, Karr DB, Tanner JJ. Three crystal forms of the bifunctional enzyme proline utilization A (PutA) from Bradyrhizobium japonicum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:949-53. [PMID: 18931443 DOI: 10.1107/s174430910802842x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 09/05/2008] [Indexed: 11/11/2022]
Abstract
Proline utilization A proteins (PutAs) are large (1000-1300 residues) membrane-associated bifunctional flavoenzymes that catalyze the two-step oxidation of proline to glutamate by the sequential action of proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase domains. Here, the first successful crystallization efforts for a PutA protein are described. Three crystal forms of PutA from Bradyrhizobium japonicum are reported: apparent tetragonal, hexagonal and centered monoclinic. The apparent tetragonal and hexagonal crystals were grown in the presence of PEG 3350 and sodium formate near pH 7. The apparent tetragonal form diffracted to 2.7 A resolution and exhibited pseudo-merohedral twinning such that the true space group is P2(1)2(1)2(1) with four molecules in the asymmetric unit. The hexagonal form diffracted to 2.3 A resolution and belonged to space group P6(2)22 with one molecule in the asymmetric unit. Centered monoclinic crystals were grown in ammonium sulfate, diffracted to 2.3 A resolution and had two molecules in the asymmetric unit. Removing the histidine tag was important in order to obtain the C2 crystal form.
Collapse
|
25
|
Zhou Y, Larson JD, Bottoms CA, Arturo EC, Henzl MT, Jenkins JL, Nix JC, Becker DF, Tanner JJ. Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA. J Mol Biol 2008; 381:174-88. [PMID: 18586269 DOI: 10.1016/j.jmb.2008.05.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/22/2008] [Accepted: 05/31/2008] [Indexed: 10/22/2022]
Abstract
The multifunctional Escherichia coli proline utilization A (PutA) flavoprotein functions both as a membrane-associated proline catabolic enzyme and as a transcriptional repressor of the proline utilization genes putA and putP. To better understand the mechanism of transcriptional regulation by PutA, we have mapped the put-regulatory region, determined a crystal structure of the PutA ribbon-helix-helix domain (PutA52, a polypeptide corresponding to residues 1-52 of E. coli PutA) complexed with DNA, and examined the thermodynamics of DNA binding to PutA52. Five operator sites, each containing the sequence motif 5'-GTTGCA-3', were identified using gel-shift analysis. Three of the sites are shown to be critical for repression of putA, whereas the two other sites are important for repression of putP. The 2.25-A-resolution crystal structure of PutA52 bound to one of the operators (operator 2; 21 bp) shows that the protein contacts a 9-bp fragment corresponding to the GTTGCA consensus motif plus three flanking base pairs. Since the operator sequences differ in flanking bases, the structure implies that PutA may have different affinities for the five operators. This hypothesis was explored using isothermal titration calorimetry. The binding of PutA52 to operator 2 is exothermic, with an enthalpy of -1.8 kcal/mol and a dissociation constant of 210 nM. Substitution of the flanking bases of operator 4 into operator 2 results in an unfavorable enthalpy of 0.2 kcal/mol and a 15-fold-lower affinity, showing that base pairs outside of the consensus motif impact binding. Structural and thermodynamic data suggest that hydrogen bonds between Lys9 and bases adjacent to the GTTGCA motif contribute to transcriptional regulation by fine-tuning the affinity of PutA for put control operators.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The proline catabolic enzymes proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase catalyze the 4-electron oxidation of proline to glutamate. These enzymes play important roles in cellular redox control, superoxide generation, apoptosis and cancer. In some bacteria, the two enzymes are fused into the bifunctional enzyme, proline utilization A. Here we review the three-dimensional structural information that is currently available for proline catabolic enzymes. Crystal structures have been determined for bacterial monofunctional proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase, as well as the proline dehydrogenase and DNA-binding domains of proline utilization A. Some of the functional insights provided by analyses of these structures are discussed, including substrate recognition, catalytic mechanism, biochemical basis of inherited proline catabolic disorders and DNA recognition by proline utilization A.
Collapse
|
27
|
Zhou Y, Zhu W, Bellur PS, Rewinkel D, Becker DF. Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli. Amino Acids 2008; 35:711-8. [PMID: 18324349 DOI: 10.1007/s00726-008-0053-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
The control of gene expression by enzymes provides a direct pathway for cells to respond to fluctuations in metabolites and nutrients. One example is the proline utilization A (PutA) protein from Escherichia coli. PutA is a membrane-associated enzyme that catalyzes the oxidation of L: -proline to glutamate using a flavin containing proline dehydrogenase domain and a NAD(+) dependent Delta(1)-pyrroline-5-carboxylate dehydrogenase domain. In some Gram-negative bacteria such as E. coli, PutA is also endowed with a ribbon-helix-helix DNA-binding domain and acts as a transcriptional repressor of the proline utilization genes. PutA switches between transcriptional repressor and enzymatic functions in response to proline availability. Molecular insights into the redox-based mechanism of PutA functional switching from recent studies are reviewed. In addition, new results from cell-based transcription assays are presented which correlate PutA membrane localization with put gene expression levels. General membrane localization of PutA, however, is not sufficient to activate the put genes.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Department of Biochemistry, University of Nebraska-Lincoln, N258 Beadle Center, 19th and Vine Street, Lincoln, NE 68588, USA
| | | | | | | | | |
Collapse
|
28
|
Schumacher MA, Glover TC, Brzoska AJ, Jensen SO, Dunham TD, Skurray RA, Firth N. Segrosome structure revealed by a complex of ParR with centromere DNA. Nature 2008; 450:1268-71. [PMID: 18097417 DOI: 10.1038/nature06392] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 09/18/2007] [Indexed: 11/09/2022]
Abstract
The stable inheritance of genetic material depends on accurate DNA partition. Plasmids serve as tractable model systems to study DNA segregation because they require only a DNA centromere, a centromere-binding protein and a force-generating ATPase. The centromeres of partition (par) systems typically consist of a tandem arrangement of direct repeats. The best-characterized par system contains a centromere-binding protein called ParR and an ATPase called ParM. In the first step of segregation, multiple ParR proteins interact with the centromere repeats to form a large nucleoprotein complex of unknown structure called the segrosome, which binds ParM filaments. pSK41 ParR binds a centromere consisting of multiple 20-base-pair (bp) tandem repeats to mediate both transcription autoregulation and segregation. Here we report the structure of the pSK41 segrosome revealed in the crystal structure of a ParR-DNA complex. In the crystals, the 20-mer tandem repeats stack pseudo-continuously to generate the full-length centromere with the ribbon-helix-helix (RHH) fold of ParR binding successive DNA repeats as dimer-of-dimers. Remarkably, the dimer-of-dimers assemble in a continuous protein super-helical array, wrapping the DNA about its positive convex surface to form a large segrosome with an open, solenoid-shaped structure, suggesting a mechanism for ParM capture and subsequent plasmid segregation.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Unit 1000, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci U S A 2008; 105:1014-9. [PMID: 18195355 DOI: 10.1073/pnas.0709949105] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bacillus subtilis GlnR repressor controls gene expression in response to nitrogen availability. Because all GlnR-regulated genes are expressed constitutively in mutants lacking glutamine synthetase (GS), GS is required for repression by GlnR. Feedback-inhibited GS (FBI-GS) was shown to activate GlnR DNA binding with an in vitro electophoretic mobility shift assay (EMSA). The activation of GlnR DNA binding by GS in these experiments depended on the feedback inhibitor glutamine and did not occur with mutant GS proteins defective in regulating GlnR activity in vivo. Although stable GS-GlnR-DNA ternary complexes were not observed in the EMSA experiments, cross-linking experiments showed that a protein-protein interaction occurs between GlnR and FBI-GS. This interaction was reduced in the absence of the feedback inhibitor glutamine and with mutant GS proteins. Because FBI-GS significantly reduced the dissociation rate of the GlnR-DNA complexes, the stability of these complexes is enhanced by FBI-GS. These results argue that FBI-GS acts as a chaperone that activates GlnR DNA binding through a transient protein-protein interaction that stabilizes GlnR-DNA complexes. GS was shown to control the activity of the B. subtilis nitrogen transcription factor TnrA by forming a stable complex between FBI-GS and TnrA that inhibits TnrA DNA binding. Thus, B. subtilis GS is an enzyme with dual catalytic and regulatory functions that uses distinct mechanisms to control the activity of two different transcription factors.
Collapse
|
30
|
Abstract
The ribbon-helix-helix (RHH) superfamily of transcription factors uses a conserved three-dimensional structural motif to bind to DNA in a sequence-specific manner. This functionally diverse protein superfamily regulates the transcription of genes that are involved in the uptake of metals, amino-acid biosynthesis, cell division, the control of plasmid copy number, the lytic cycle of bacteriophages and, perhaps, many other cellular processes. In this Analysis, the structures of different RHH transcription factors are compared in order to evaluate the sequence motifs that are required for RHH-domain folding and DNA binding, as well as to identify conserved protein-DNA interactions in this superfamily.
Collapse
Affiliation(s)
- Eric R Schreiter
- Department of Chemistry and Protein Research Center, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico 00931, Puerto Rico.
| | | |
Collapse
|
31
|
White TA, Krishnan N, Becker DF, Tanner JJ. Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus. J Biol Chem 2007; 282:14316-27. [PMID: 17344208 PMCID: PMC2708979 DOI: 10.1074/jbc.m700912200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline dehydrogenase (PRODH) and Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyze the two-step oxidation of proline to glutamate. They are distinct monofunctional enzymes in all eukaryotes and some bacteria but are fused into bifunctional enzymes known as proline utilization A (PutA) in other bacteria. Here we report the first structure and biochemical data for a monofunctional PRODH. The 2.0-A resolution structure of Thermus thermophilus PRODH reveals a distorted (betaalpha)(8) barrel catalytic core domain and a hydrophobic alpha-helical domain located above the carboxyl-terminal ends of the strands of the barrel. Although the catalytic core is similar to that of the PutA PRODH domain, the FAD conformation of T. thermophilus PRODH is remarkably different and likely reflects unique requirements for membrane association and communication with P5CDH. Also, the FAD of T. thermophilus PRODH is highly solvent-exposed compared with PutA due to a 4-A shift of helix 8. Structure-based sequence analysis of the PutA/PRODH family led us to identify nine conserved motifs involved in cofactor and substrate recognition. Biochemical studies show that the midpoint potential of the FAD is -75 mV and the kinetic parameters for proline are K(m) = 27 mm and k(cat) = 13 s(-1). 3,4-Dehydro-l-proline was found to be an efficient substrate, and l-tetrahydro-2-furoic acid is a competitive inhibitor (K(I) = 1.0 mm). Finally, we demonstrate that T. thermophilus PRODH reacts with O(2) producing superoxide. This is significant because superoxide production underlies the role of human PRODH in p53-mediated apoptosis, implying commonalities between eukaryotic and bacterial monofunctional PRODHs.
Collapse
Affiliation(s)
- Tommi A. White
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211
| | - Navasona Krishnan
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE 68588
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE 68588
| | - John J. Tanner
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211
| |
Collapse
|
32
|
Zhang W, Zhang M, Zhu W, Zhou Y, Wanduragala S, Rewinkel D, Tanner JJ, Becker DF. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding. Biochemistry 2007; 46:483-91. [PMID: 17209558 PMCID: PMC2527739 DOI: 10.1021/bi061935g] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PutA is a novel flavoprotein in Escherichia coli that switches from a transcriptional repressor to a membrane-bound proline catabolic enzyme. Previous crystallographic studies of the PutA proline dehydrogenase (PRODH) domain under oxidizing conditions revealed that FAD N(5) and the ribityl 2'-OH group form hydrogen bonds with Arg431 and Arg556, respectively. Here we identify molecular interactions in the PutA PRODH active site that underlie redox-dependent functional switching of PutA. We report that reduction of the PRODH domain induces major structural changes in the FAD cofactor, including a 22 degrees bend of the isoalloxazine ring along the N(5)-N(10) axis, crankshaft rotation of the upper part of the ribityl chain, and formation of a new hydrogen bond network involving the ribityl 2'-OH group, FAD N(1), and Gly435. The roles of the FAD 2'-OH group and the FAD N(5)-Arg431 hydrogen bond pair in regulating redox-dependent PutA-membrane associations were tested using FAD analogues and site-directed mutagenesis. Kinetic membrane binding measurements and cell-based reporter gene assays of modified PutA proteins show that disrupting the FAD N(5)-Arg431 interaction impairs the reductive activation of PutA-membrane binding. We also show that the FAD 2'-OH group acts as a redox-sensitive toggle switch that controls PutA-membrane binding. These results illustrate a new versatility of the ribityl chain in flavoprotein mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donald F. Becker
- Address Correspondence to: Donald F. Becker, Phone: 402-472-9652; Fax: 402-472-472-7842. E-mail:
| |
Collapse
|