1
|
Majekodunmi T, Britton D, Montclare JK. Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:9113-9135. [PMID: 39008623 PMCID: PMC11327963 DOI: 10.1021/acs.chemrev.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The incorporation of noncanonical amino acids into proteins and protein-based materials has significantly expanded the repertoire of available protein structures and chemistries. Through residue-specific incorporation, protein properties can be globally modified, resulting in the creation of novel proteins and materials with diverse and tailored characteristics. In this review, we highlight recent advancements in residue-specific incorporation techniques as well as the applications of the engineered proteins and materials. Specifically, we discuss their utility in bio-orthogonal noncanonical amino acid tagging (BONCAT), fluorescent noncanonical amino acid tagging (FUNCAT), threonine-derived noncanonical amino acid tagging (THRONCAT), cross-linking, fluorination, and enzyme engineering. This review underscores the importance of noncanonical amino acid incorporation as a tool for the development of tailored protein properties to meet diverse research and industrial needs.
Collapse
Affiliation(s)
- Temiloluwa Majekodunmi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
2
|
Glucose-Limited Fed-Batch Cultivation Strategy to Mimic Large-Scale Effects in Escherichia coli Linked to Accumulation of Non-Canonical Branched-Chain Amino Acids by Combination of Pyruvate Pulses and Dissolved Oxygen Limitation. Microorganisms 2021; 9:microorganisms9061110. [PMID: 34063744 PMCID: PMC8223794 DOI: 10.3390/microorganisms9061110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
Insufficient mixing in large-scale bioreactors provokes gradient zones of substrate, dissolved oxygen (DO), pH, and other parameters. E. coli responds to a high glucose, low oxygen feeding zone with the accumulation of mixed acid fermentation products, especially formate, but also with the synthesis of non-canonical amino acids, such as norvaline, norleucine and β-methylnorleucine. These amino acids can be mis-incorporated into recombinant products, which causes a problem for pharmaceutical production whose solution is not trivial. While these effects can also be observed in scale down bioreactor systems, these are challenging to operate. Especially the high-throughput screening of clone libraries is not easy, as fed-batch cultivations would need to be controlled via repeated glucose pulses with simultaneous oxygen limitation, as has been demonstrated in well controlled robotic systems. Here we show that not only glucose pulses in combination with oxygen limitation can provoke the synthesis of these non-canonical branched-chain amino acids (ncBCAA), but also that pyruvate pulses produce the same effect. Therefore, we combined the enzyme-based glucose delivery method Enbase® in a PALL24 mini-bioreactor system and combined repeated pyruvate pulses with simultaneous reduction of the aeration rate. These cultivation conditions produced an increase in the non-canonical branched chain amino acids norvaline and norleucine in both the intracellular soluble protein and inclusion body fractions with mini-proinsulin as an example product, and this effect was verified in a 15 L stirred tank bioreactor (STR). To our opinion this cultivation strategy is easy to apply for the screening of strain libraries under standard laboratory conditions if no complex robotic and well controlled parallel cultivation devices are available.
Collapse
|
3
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
4
|
Black DJ, Tran QK, Keightley A, Chinawalkar A, McMullin C, Persechini A. Evaluating Calmodulin-Protein Interactions by Rapid Photoactivated Cross-Linking in Live Cells Metabolically Labeled with Photo-Methionine. J Proteome Res 2019; 18:3780-3791. [PMID: 31483676 DOI: 10.1021/acs.jproteome.9b00510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work addresses the question of how the Ca2+ sensor protein calmodulin shapes cellular responses to Ca2+ signals. Proteins interacting with affinity tagged calmodulin were captured by rapid (t1/2 ≈ 7 s) photoactivated cross-linking under basal conditions, after brief removal of extracellular Ca2+ and during a cytosolic [Ca2+] transient in cells metabolically labeled with a photoreactive methionine analog. Tagged adducts were stringently enriched, and captured proteins were identified and quantified by LC-MS/MS. A set of 489 proteins including 27 known calmodulin interactors was derived. A threshold for fractional capture was applied to define a high specificity group of 170 proteins, including 22 known interactors, and a low specificity group of 319 proteins. Capture of ∼60% of the high specificity group was affected by manipulations of Ca2+, compared with ∼20% of the low specificity group. This suggests that the former is likely to contain novel interactors of physiological significance. The capture of 29 proteins, nearly all high specificity, was decreased by the removal of extracellular Ca2+, although this does not affect cytosolic [Ca2+]. Capture of half of these was unaffected by the cytosolic [Ca2+] transient, consistent with high local [Ca2+]. These proteins are hypothesized to reside in or near microdomains of high [Ca2+] supported by the Ca2+ influx.
Collapse
Affiliation(s)
- D J Black
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | | | - Andrew Keightley
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | - Ameya Chinawalkar
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | - Cole McMullin
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | - Anthony Persechini
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , 5007 Rockhill Road , Kansas City , Missouri 64110-2499 , United States
| |
Collapse
|
5
|
Neu J, Nikonow H, Schmuttenmaer CA. Terahertz Spectroscopy and Density Functional Theory Calculations of dl-Norleucine and dl-Methionine. J Phys Chem A 2018; 122:5978-5982. [DOI: 10.1021/acs.jpca.8b04978] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jens Neu
- Yale University, Department of Chemistry, New Haven, Connecticut 06520, United States
| | - Heinrich Nikonow
- Yale University, Department of Chemistry, New Haven, Connecticut 06520, United States
| | - Charles A. Schmuttenmaer
- Yale University, Department of Chemistry, New Haven, Connecticut 06520, United States
- Yale University, Energy Science Institute (ESI), New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Kelly KL, Dalton SR, Wai RB, Ramchandani K, Xu RJ, Linse S, Londergan CH. Conformational Ensembles of Calmodulin Revealed by Nonperturbing Site-Specific Vibrational Probe Groups. J Phys Chem A 2018; 122:2947-2955. [PMID: 29400461 PMCID: PMC5867645 DOI: 10.1021/acs.jpca.8b00475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Seven native residues on the regulatory
protein calmodulin, including
three key methionine residues, were replaced (one by one) by the vibrational
probe amino acid cyanylated cysteine, which has a unique CN stretching
vibration that reports on its local environment. Almost no perturbation
was caused by this probe at any of the seven sites, as reported by
CD spectra of calcium-bound and apo calmodulin and
binding thermodynamics for the formation of a complex between calmodulin
and a canonical target peptide from skeletal muscle myosin light chain
kinase measured by isothermal titration. The surprising lack of perturbation
suggests that this probe group could be applied directly in many protein–protein
binding interfaces. The infrared absorption bands for the probe groups
reported many dramatic changes in the probes’ local environments
as CaM went from apo- to calcium-saturated to target
peptide-bound conditions, including large frequency shifts and a variety
of line shapes from narrow (interpreted as a rigid and invariant local
environment) to symmetric to broad and asymmetric (likely from multiple
coexisting and dynamically exchanging structures). The fast intrinsic
time scale of infrared spectroscopy means that the line shapes report
directly on site-specific details of calmodulin’s variable
structural distribution. Though quantitative interpretation of the
probe line shapes depends on a direct connection between simulated
ensembles and experimental data that does not yet exist, formation
of such a connection to data such as that reported here would provide
a new way to evaluate conformational ensembles from data that directly
contains the structural distribution. The calmodulin probe sites developed
here will also be useful in evaluating the binding mode of calmodulin
with many uncharacterized regulatory targets.
Collapse
Affiliation(s)
- Kristen L Kelly
- Department of Chemistry , Haverford College , Haverford , Pennsylvania 19041 , United States
| | - Shannon R Dalton
- Department of Chemistry , Haverford College , Haverford , Pennsylvania 19041 , United States
| | - Rebecca B Wai
- Department of Chemistry , Haverford College , Haverford , Pennsylvania 19041 , United States
| | - Kanika Ramchandani
- Department of Chemistry , Haverford College , Haverford , Pennsylvania 19041 , United States
| | - Rosalind J Xu
- Department of Chemistry , Haverford College , Haverford , Pennsylvania 19041 , United States
| | - Sara Linse
- Department of Biochemistry and Structural Biology , Lund University , 221 00 Lund , Sweden
| | - Casey H Londergan
- Department of Chemistry , Haverford College , Haverford , Pennsylvania 19041 , United States
| |
Collapse
|
7
|
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:507-521. [PMID: 29247668 DOI: 10.1016/j.bbamcr.2017.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
8
|
Membranous adenylyl cyclase 1 activation is regulated by oxidation of N- and C-terminal methionine residues in calmodulin. Biochem Pharmacol 2014; 93:196-209. [PMID: 25462816 DOI: 10.1016/j.bcp.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 12/19/2022]
Abstract
Membranous adenylyl cyclase 1 (AC1) is associated with memory and learning. AC1 is activated by the eukaryotic Ca(2+)-sensor calmodulin (CaM), which contains nine methionine residues (Met) important for CaM-target interactions. During ageing, Met residues are oxidized to (S)- and (R)-methionine sulfoxide (MetSO) by reactive oxygen species arising from an age-related oxidative stress. We examined how oxidation by H2O2 of Met in CaM regulates CaM activation of AC1. We employed a series of thirteen mutant CaM proteins never assessed before in a single study, where leucine is substituted for Met, in order to analyze the effects of oxidation of specific Met. CaM activation of AC1 is regulated by oxidation of all of the C-terminal Met in CaM, and by two N-terminal Met, M36 and M51. CaM with all Met oxidized is unable to activate AC1. Activity is fully restored by the combined catalytic activities of methionine sulfoxide reductases A and B (MsrA and B), which catalyze reduction of the (S)- and (R)-MetSO stereoisomers. A small change in secondary structure is observed in wild-type CaM upon oxidation of all nine Met, but no significant secondary structure changes occur in the mutant proteins when Met residues are oxidized by H2O2, suggesting that localized polarity, flexibility and structural changes promote the functional changes accompanying oxidation. The results signify that AC1 catalytic activity can be delicately adjusted by mediating CaM activation of AC1 by reversible Met oxidation in CaM. The results are important for memory, learning and possible therapeutic routes for regulating AC1.
Collapse
|
9
|
Speight LC, Muthusamy AK, Goldberg JM, Warner JB, Wissner RF, Willi TS, Woodman BF, Mehl RA, Petersson EJ. Efficient synthesis and in vivo incorporation of acridon-2-ylalanine, a fluorescent amino acid for lifetime and Förster resonance energy transfer/luminescence resonance energy transfer studies. J Am Chem Soc 2013; 135:18806-14. [PMID: 24303933 DOI: 10.1021/ja403247j] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The amino acid acridon-2-ylalanine (Acd) can be a valuable probe of protein conformational change because it is a long lifetime, visible wavelength fluorophore that is small enough to be incorporated during ribosomal biosynthesis. Incorporation of Acd into proteins expressed in Escherichia coli requires efficient chemical synthesis to produce large quantities of the amino acid and the generation of a mutant aminoacyl tRNA synthetase that can selectively charge the amino acid onto a tRNA. Here, we report the synthesis of Acd in 87% yield over five steps from Tyr and the identification of an Acd synthetase by screening candidate enzymes previously evolved from Methanococcus janaschii Tyr synthetase for unnatural amino acid incorporation. Furthermore, we characterize the photophysical properties of Acd, including quenching interactions with select natural amino acids and Förster resonance energy transfer (FRET) interactions with common fluorophores such as methoxycoumarin (Mcm). Finally, we demonstrate the value of incorporation of Acd into proteins, using changes in Acd fluorescence lifetimes, Mcm/Acd FRET, or energy transfer to Eu(3+) to monitor protein folding and binding interactions.
Collapse
Affiliation(s)
- Lee C Speight
- University of Pennsylvania , Department of Chemistry, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fazary AE, Hernowo E, Angkawijaya AE, Chou TC, Lin CH, Taha M, Ju YH. Complex Formation Between Ferric(III), Chromium(III), and Cupric(II) Metal Ions and (O,N) and (O,O) Donor Ligands with Biological Relevance in Aqueous Solution. J SOLUTION CHEM 2011. [DOI: 10.1007/s10953-011-9768-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Isvoran A, Badel A, Craescu CT, Miron S, Miteva MA. Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions. BMC STRUCTURAL BIOLOGY 2011; 11:24. [PMID: 21569443 PMCID: PMC3116463 DOI: 10.1186/1472-6807-11-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/12/2011] [Indexed: 02/04/2023]
Abstract
Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Adriana Isvoran
- MTi, Inserm U973 - University Paris Diderot, 35 rue Helene Brion, Bat, Lamarck, 75013 Paris, France
| | | | | | | | | |
Collapse
|
12
|
Yamniuk AP, Ishida H, Lippert D, Vogel HJ. Thermodynamic effects of noncoded and coded methionine substitutions in calmodulin. Biophys J 2009; 96:1495-507. [PMID: 19217866 PMCID: PMC2717255 DOI: 10.1016/j.bpj.2008.10.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/28/2008] [Indexed: 11/16/2022] Open
Abstract
The methionine residues in the calcium (Ca2+) regulatory protein calmodulin (CaM) are structurally and functionally important. They are buried within the N- and C-domains of apo-CaM but become solvent-exposed in Ca2+-CaM, where they interact with numerous target proteins. Previous structural studies have shown that methionine substitutions to the noncoded amino acids selenomethionine, ethionine, or norleucine, or mutation to leucine do not impact the main chain structure of CaM. Here we used differential scanning calorimetry to show that these substitutions enhance the stability of both domains, with the largest increase in melting temperature (19-26 degrees C) achieved with leucine or norleucine in the apo-C-domain. Nuclear magnetic resonance spectroscopy experiments also revealed the loss of a slow conformational exchange process in the Leu-substituted apo-C-domain. In addition, isothermal titration calorimetry experiments revealed considerable changes in the enthalpy and entropy of target binding to apo-CaM and Ca2+-CaM, but the free energy of binding was largely unaffected due to enthalpy-entropy compensation. Collectively, these results demonstrate that noncoded and coded methionine substitutions can be accommodated in CaM because of the structural plasticity of the protein. However, adjustments in side-chain packing and dynamics lead to significant differences in protein stability and the thermodynamics of target binding.
Collapse
Affiliation(s)
- Aaron P. Yamniuk
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hiroaki Ishida
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Dustin Lippert
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hans J. Vogel
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Valeyev NV, Bates DG, Heslop-Harrison P, Postlethwaite I, Kotov NV. Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach. BMC SYSTEMS BIOLOGY 2008; 2:48. [PMID: 18518982 PMCID: PMC2435525 DOI: 10.1186/1752-0509-2-48] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 06/02/2008] [Indexed: 12/23/2022]
Abstract
BACKGROUND Calmodulin is an important multifunctional molecule that regulates the activities of a large number of proteins in the cell. Calcium binding induces conformational transitions in calmodulin that make it specifically active to particular target proteins. The precise mechanisms underlying calcium binding to calmodulin are still, however, quite poorly understood. RESULTS In this study, we adopt a structural systems biology approach and develop a mathematical model to investigate various types of cooperative calcium-calmodulin interactions. We compare the predictions of our analysis with physiological dose-response curves taken from the literature, in order to provide a quantitative comparison of the effects of different mechanisms of cooperativity on calcium-calmodulin interactions. The results of our analysis reduce the gap between current understanding of intracellular calmodulin function at the structural level and physiological calcium-dependent calmodulin target activation experiments. CONCLUSION Our model predicts that the specificity and selectivity of CaM target regulation is likely to be due to the following factors: variations in the target-specific Ca2+ dissociation and cooperatively effected dissociation constants, and variations in the number of Ca2+ ions required to bind CaM for target activation.
Collapse
Affiliation(s)
- Najl V Valeyev
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Declan G Bates
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Pat Heslop-Harrison
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, UK
- Systems Biology Lab, Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Ian Postlethwaite
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Nikolay V Kotov
- Biophysics & Bionics Lab, Department of Physics, Kazan State University, Kazan 420008, Russia
| |
Collapse
|
14
|
Ishida H, Huang H, Yamniuk AP, Takaya Y, Vogel HJ. The solution structures of two soybean calmodulin isoforms provide a structural basis for their selective target activation properties. J Biol Chem 2008; 283:14619-28. [PMID: 18347016 DOI: 10.1074/jbc.m801398200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular calcium ion is one of the most important secondary messengers in eukaryotic cells. Ca(2+) signals are translated into physiological responses by EF-hand calcium-binding proteins such as calmodulin (CaM). Multiple CaM isoforms occur in plant cells, whereas only a single CaM protein is found in animals. Soybean CaM isoform 1 (sCaM1) shares 90% amino acid sequence identity with animal CaM (aCaM), whereas sCaM4 is only 78% identical. These two sCaM isoforms have distinct target-enzyme activation properties and physiological functions. sCaM4 is highly expressed during the self-defense reaction of the plant and activates the enzyme nitric-oxide synthase (NOS), whereas sCaM1 is incapable of activating NOS. The mechanism of selective target activation by plant CaM isoforms is poorly understood. We have determined high resolution NMR solution structures of Ca(2+)-sCaM1 and -sCaM4. These were compared with previously determined Ca(2+)-aCaM structures. For the N-lobe of the protein, the solution structures of Ca(2+)-sCaM1, -sCaM4, and -aCaM all closely resemble each other. However, despite the high sequence identity with aCaM, the C-lobe of Ca(2+)-sCaM1 has a more open conformation and consequently a larger hydrophobic target-protein binding pocket than Ca(2+)-aCaM or -sCaM4, the presence of which was further confirmed through biophysical measurements. The single Val-144 --> Met substitution in the C-lobe of Ca(2+)-sCaM1, which restores its ability to activate NOS, alters the structure of the C-lobe to a more closed conformation resembling Ca(2+)-aCaM and -sCaM4. The relationships between the structural differences in the two Ca(2+)-sCaM isoforms and their selective target activation properties are discussed.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
15
|
Newman RA, Van Scyoc WS, Sorensen BR, Jaren OR, Shea MA. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II. Proteins 2008; 71:1792-812. [DOI: 10.1002/prot.21861] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Sycheva EV, Yampol’skaya TA, Preobrajenskaya ES, Novikova AE, Matrosov NG, Stoynova NV. Overproduction of noncanonical amino acids by Escherichia coli cells. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707060094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Grabarek Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 2006; 359:509-25. [PMID: 16678204 DOI: 10.1016/j.jmb.2006.03.066] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/25/2006] [Accepted: 03/30/2006] [Indexed: 12/31/2022]
Abstract
The calcium binding proteins of the EF-hand super-family are involved in the regulation of all aspects of cell function. These proteins exhibit a great diversity of composition, structure, Ca2+-binding and target interaction properties. Here, our current understanding of the Ca2+-binding mechanism is assessed. The structures of the EF-hand motifs containing 11-14 amino acid residues in the Ca2+-binding loop are analyzed within the framework of the recently proposed two-step Ca2+-binding mechanism. A hypothesis is put forward that in all EF-hand proteins the Ca2+-binding and the resultant conformational responses are governed by the central structure connecting the Ca2+-binding loops in the two-EF-hand domain. This structure, named EFbeta-scaffold, defines the position of the bound Ca2+, and coordinates the function of the N-terminal (variable and flexible) with the C-terminal (invariable and rigid) parts of the Ca2+-binding loop. It is proposed that the nature of the first ligand of the Ca2+-binding loop is an important determinant of the conformational change. Additional factors, including the interhelical contacts, the length, structure and flexibility of the linker connecting the EF-hand motifs, and the overall energy balance provide the fine-tuning of the Ca2+-induced conformational change in the EF-hand proteins.
Collapse
Affiliation(s)
- Zenon Grabarek
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| |
Collapse
|
18
|
Sheehan JH, Bunick CG, Hu H, Fagan PA, Meyn SM, Chazin WJ. Structure of the N-terminal Calcium Sensor Domain of Centrin Reveals the Biochemical Basis for Domain-specific Function. J Biol Chem 2006; 281:2876-81. [PMID: 16317001 DOI: 10.1074/jbc.m509886200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Centrin is an essential component of microtubule-organizing centers in organisms ranging from algae and yeast to humans. It is an EF-hand calcium-binding protein with homology to calmodulin but distinct calcium binding properties. In a previously proposed model, the C-terminal domain of centrin serves as a constitutive anchor to target proteins, and the N-terminal domain serves as the sensor of calcium signals. The three-dimensional structure of the N-terminal domain of Chlamydomonas rheinhardtii centrin has been determined in the presence of calcium by solution NMR spectroscopy. The domain is found to occupy an open conformation typical of EF-hand calcium sensors. Comparison of the N- and C-terminal domains of centrin reveals a structural and biochemical basis for the domain specificity of interactions with its cellular targets and the distinct nature of centrin relative to other EF-hand proteins. An NMR titration of the centrin N-terminal domain with a fragment of the known centrin target Sfi1 reveals binding of the peptide to a discrete site on the protein, which supports the proposal that the N-terminal domain serves as a calcium sensor in centrin.
Collapse
Affiliation(s)
- Jonathan H Sheehan
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8725, USA
| | | | | | | | | | | |
Collapse
|
19
|
Li S, Xie L, Ma Z, Zhang R. cDNA cloning and characterization of a novel calmodulin-like protein from pearl oyster Pinctada fucata. FEBS J 2005; 272:4899-910. [PMID: 16176264 DOI: 10.1111/j.1742-4658.2005.04899.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calcium metabolism in oysters is a very complicated and highly controlled physiological and biochemical process. However, the regulation of calcium metabolism in oyster is poorly understood. Our previous study showed that calmodulin (CaM) seemed to play a regulatory role in the process of oyster calcium metabolism. In this study, a full-length cDNA encoding a novel calmodulin-like protein (CaLP) with a long C-terminal sequence was identified from pearl oyster Pinctada fucata, expressed in Escherichia coli and characterized in vitro. The oyster CaLP mRNA was expressed in all tissues tested, with the highest levels in the mantle that is a key organ involved in calcium secretion. In situ hybridization analysis reveals that CaLP mRNA is expressed strongly in the outer and inner epithelial cells of the inner fold, the outer epithelial cells of the middle fold, and the dorsal region of the mantle. The oyster CaLP protein, with four putative Ca(2+)-binding domains, is highly heat-stable and has a potentially high affinity for calcium. CaLP also displays typical Ca(2+)-dependent electrophoretic shift, Ca(2+)-binding activity and significant Ca(2+)-induced conformational changes. Ca(2+)-dependent affinity chromatography analysis demonstrated that oyster CaLP was able to interact with some different target proteins from those of oyster CaM in the mantle and the gill. In summary, our results have demonstrated that the oyster CaLP is a novel member of the CaM superfamily, and suggest that the oyster CaLP protein might play a different role from CaM in the regulation of oyster calcium metabolism.
Collapse
Affiliation(s)
- Shuo Li
- Institute of Marine Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
20
|
Bhattacharya S, Bunick CG, Chazin WJ. Target selectivity in EF-hand calcium binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1742:69-79. [PMID: 15590057 DOI: 10.1016/j.bbamcr.2004.09.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 08/30/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
EF-hand calcium binding proteins have remarkable sequence homology and structural similarity, yet their response to binding of calcium is diverse and they function in a wide range of biological processes. Knowledge of the fine-tuning of EF-hand protein sequences to optimize specific biochemical properties has been significantly advanced over the past 10 years by determination of atomic resolution structures. These data lay the foundation for addressing how functional selectivity is generated from a generic ionic signal. This review presents current ideas about the structural mechanisms that provide the selectivity of different EF-hand proteins for specific cellular targets, using S100 and calmodulin family proteins to demonstrate the critical concepts. Three factors contribute significantly to target selectivity: molecular architecture, response to binding of Ca(2+) ions, and the characteristics of target binding surfaces. Comparisons of calmodulin and S100 proteins provide insights into the role these factors play in facilitating the variety of binding configurations necessary for recognizing a diverse set of targets.
Collapse
Affiliation(s)
- Shibani Bhattacharya
- Department of Biochemistry, Center for Structural Biology, 5140 BIOSCI/MRBIII, Vanderbilt University, Nashville, TN 37232-8725, USA
| | | | | |
Collapse
|
21
|
Cirino PC, Tang Y, Takahashi K, Tirrell DA, Arnold FH. Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity. Biotechnol Bioeng 2003; 83:729-34. [PMID: 12889037 DOI: 10.1002/bit.10718] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study we have replaced all 13 methionine residues in the cytochrome P450 BM-3 heme domain (463 amino acids) with the isosteric methionine analog norleucine. This experiment has provided a means of testing the functional limits of globally incorporating into an enzyme an unnatural amino acid in place of its natural analog, and also an efficient way to test whether inactivation during peroxide-driven P450 catalysis involves methionine oxidation. Although there was no increase in the stability of the P450 under standard reaction conditions (in 10 mM hydrogen peroxide), complete substitution with norleucine resulted in nearly two-fold-increased peroxygenase activity. Thermostability was significantly reduced. The fact that the enzyme can tolerate such extensive amino acid replacement suggests that we can engineer enzymes with unique chemical properties via incorporation of unnatural amino acids while retaining or improving catalytic properties. This system also provides a platform for directing enzyme evolution using an extended set of protein building blocks.
Collapse
Affiliation(s)
- Patrick C Cirino
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
22
|
Gustavsson N, Kokke BP, Anzelius B, Boelens WC, Sundby C. Substitution of conserved methionines by leucines in chloroplast small heat shock protein results in loss of redox-response but retained chaperone-like activity. Protein Sci 2001; 10:1785-93. [PMID: 11514669 PMCID: PMC2253196 DOI: 10.1110/ps.11301] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
During evolution of land plants, a specific motif occurred in the N-terminal domain of the chloroplast-localized small heat shock protein, Hsp21: a sequence with highly conserved methionines, which is predicted to form an amphipathic alpha-helix with the methionines situated along one side. The functional role of these conserved methionines is not understood. We have found previously that treatment, which causes methionine sulfoxidation in Hsp21, also leads to structural changes and loss of chaperone-like activity. Here, mutants of Arabidopsis thaliana Hsp21 protein were created by site-directed mutagenesis, whereby conserved methionines were substituted by oxidation-resistant leucines. Mutants lacking the only cysteine in Hsp21 were also created. Protein analyses by nondenaturing electrophoresis, size exclusion chromatography, and circular dichroism proved that sulfoxidation of the four highly conserved methionines (M49, M52, M55, and M59) is responsible for the oxidation-induced conformational changes in the Hsp21 oligomer. In contrast, the chaperone-like activity was not ultimately dependent on the methionines, because it was retained after methionine-to-leucine substitution. The functional role of the conserved methionines in Hsp21 may be to offer a possibility for redox control of chaperone-like activity and oligomeric structure dynamics.
Collapse
Affiliation(s)
- N Gustavsson
- Department of Biochemistry, Lund University, S-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|
23
|
Abstract
Of all the nonbonded interactions, hydrogen bond, because of its geometry involving polar atoms, is the most easily recognizable. Here we characterize two interactions involving the divalent sulfur of methionine (Met) residues that do not need any participation of proton. In one an oxygen atom of the main-chain carbonyl group or a carboxylate side chain is used. In another an aromatic atom interacting along the face of the ring is utilized. In these, the divalent sulfur behaves as an electrophile and the other electron-rich atom, a nucleophile. The stereochemistry of the interaction is such that the nucleophile tends to approach approximately along the extension of one of the covalent bonds to S. The nitrogen atom of histidine side chain is extensively used in these nonbonded contacts. There is no particular geometric pattern in the interaction of S with the edge of an aromatic ring, except when an N-H group in involved, which is found within 40 degrees from the perpendicular to the sulfide plane, thus defining the geometry of hydrogen bond interaction involving the sulfur atom. As most of the Met residues which partake in such stereospecific interactions are buried, these would be important for the stability of the protein core, and their incorporation in the binding site would be useful for molecular recognition and optimization of the site's affinity for partners (especially containing aromatic and heteroaromatic groups). Mutational studies aimed at replacing Met by other residues would benefit from the delineation of these interactions.
Collapse
Affiliation(s)
- D Pal
- Department of Biochemistry, Bose Institute, Calcutta, India
| | | |
Collapse
|
24
|
Kiick KL, Weberskirch R, Tirrell DA. Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett 2001; 502:25-30. [PMID: 11478942 DOI: 10.1016/s0014-5793(01)02657-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Amino acid incorporation into proteins in vivo is controlled most stringently by the aminoacyl-tRNA synthetases. Here we report the incorporation of several new methionine analogues into protein by increasing the rate of their activation by the methionyl-tRNA synthetase (MetRS) of Escherichia coli. cis-Crotylglycine (4), 2-aminoheptanoic acid (7), norvaline (8), 2-butynylglycine (11), and allylglycine (12) will each support protein synthesis in methionine-depleted cultures of E. coli when MetRS is overexpressed and the medium is supplemented with the analogue at millimolar concentrations. These investigations suggest important opportunities for protein engineering, as expansion of the translational apparatus toward other amino acid analogues by similar strategies should also be possible.
Collapse
Affiliation(s)
- K L Kiick
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
25
|
Kiick KL, Tirrell DA. Protein Engineering by In Vivo Incorporation of Non-Natural Amino Acids: Control of Incorporation of Methionine Analogues by Methionyl-tRNA Synthetase. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00833-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Sun H, Squier TC. Ordered and cooperative binding of opposing globular domains of calmodulin to the plasma membrane Ca-ATPase. J Biol Chem 2000; 275:1731-8. [PMID: 10636869 DOI: 10.1074/jbc.275.3.1731] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the mechanisms of activation of the plasma membrane (PM) Ca-ATPase by calmodulin (CaM), which result in enhanced calcium transport rates and the maintenance of low intracellular calcium levels. We have isolated the amino- or carboxyl-terminal domains of CaM (i.e. CaMN or CaMC), permitting an identification of their relative specificity for binding to sites on either the PM Ca-ATPase or a peptide (C28W) corresponding to the CaM-binding sequence. We find that either CaMN or CaMC alone is capable of productive interactions with the PM Ca-ATPase that induces enzyme activation. There are, however, large differences in the affinity and specificity of binding between CaMN and CaMC and either C28W or the PM Ca-ATPase. The initial binding interaction between CaMC and the PM Ca-ATPase is highly specific, having approximately 10,000-fold greater affinity in comparison with CaMN. However, following the initial association of either CaMC or CaMN, there is a 300-fold enhancement in the affinity of CaMN for the secondary binding site. Thus, while CaMC binds with a high affinity to the two CaM-binding sites within the PM Ca-ATPase in a sequential manner, CaMN binds cooperatively with a lower affinity to both binding sites. These large differences in the binding affinities and specificities of the amino- and carboxyl-terminal domains ensure that CaM binding to the PM Ca-ATPase normally involves the formation of a specific complex in which the initial high affinity association of the carboxyl-terminal domain promotes the association of the amino-terminal domain necessary for enzyme activation.
Collapse
Affiliation(s)
- H Sun
- Biochemistry and Biophysics Section, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045-2106, USA
| | | |
Collapse
|
27
|
Weljie AM, Vogel HJ. Tryptophan fluorescence of calmodulin binding domain peptides interacting with calmodulin containing unnatural methionine analogues. PROTEIN ENGINEERING 2000; 13:59-66. [PMID: 10679531 DOI: 10.1093/protein/13.1.59] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The interactions between the abundant methionine residues of the calcium regulatory protein calmodulin (CaM) and several of its binding targets were probed using fluorescence spectroscopy. Tryptophan steady-state fluorescence from peptides encompassing the CaM-binding domains of the target proteins myosin light chain kinase (MLCK), cyclic nucleotide phosphodiesterase (PDE) and caldesmon site A and B (CaD A, CaD B), and the model peptide melittin showed Ca(2+)-dependent blue-shifts in their maximum emission wavelength when complexed with wild-type CaM. Blue-shifts were also observed for complexes in which the CaM methionine residues were replaced by selenomethionine, norleucine and ethionine, and when a quadruple methionine to leucine C-terminal mutant of CaM was studied. Quenching of the tryptophan fluorescence intensity was observed with selenomethionine, but not with norleucine or ethionine substituted protein. Fluorescence quenching studies with added potassium iodide (KI) demonstrate that the non-native proteins limit the solvent accessibility of the Trp in the MLCK peptide to levels close to that of the wild-type CaM-MLCK interaction. Our results show that the methionine residues from CaM are highly sensitive to the target peptide in question, confirming the importance of their role in binding interactions. In addition, we provide evidence that the nature of binding in the CaM-CaD B complex is unique compared with the other complexes studied, as the Trp residue of this peptide remains partially solvent exposed upon binding to CaM.
Collapse
Affiliation(s)
- A M Weljie
- Department of Biological Sciences, University of Calgary,2500 University Drive NW, Calgary, T2N 1N4, Canada
| | | |
Collapse
|