1
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Loughlin JO, Zinovjev K, Napolitano S, van der Kamp M, Rubini M. 4-Thiaproline accelerates the slow folding phase of proteins containing cis prolines in the native state by two orders of magnitude. Protein Sci 2024; 33:e4877. [PMID: 38115231 PMCID: PMC10804670 DOI: 10.1002/pro.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
The cis/trans isomerization of peptidyl-prolyl peptide bonds is often the bottleneck of the refolding reaction for proteins containing cis proline residues in the native state. Proline (Pro) analogues, especially C4-substituted fluoroprolines, have been widely used in protein engineering to enhance the thermodynamic stability of peptides and proteins and to investigate folding kinetics. 4-thiaproline (Thp) has been shown to bias the ring pucker of Pro, to increase the cis population percentage of model peptides in comparison to Pro, and to diminish the activation energy barrier for the cis/trans isomerization reaction. Despite its intriguing properties, Thp has been seldom incorporated into proteins. Moreover, the impact of Thp on the folding kinetics of globular proteins has never been reported. In this study, we show that upon incorporation of Thp at cisPro76 into the thioredoxin variant Trx1P the half-life of the refolding reaction decreased from ~2 h to ~35 s. A dramatic acceleration of the refolding rate could be observed also for the protein pseudo wild-type barstar upon replacement of cisPro48 with Thp. Quantum chemical calculations suggested that the replacement of the Cγ H2 group by a sulfur atom in the pyrrolidine ring, might lower the barrier for cis/trans rotation due to a weakened peptide bond. The protein variants retained their thermodynamic stability upon incorporation of Thp, while the catalytic and enzymatic activities of the modified Trx1P remained unchanged. Our results show that the Pro isostere Thp might accelerate the rate of the slow refolding reaction for proteins containing cis proline residues in the native state, independent from the local structural environment.
Collapse
Affiliation(s)
| | - Kirill Zinovjev
- School of Biochemistry, University of BristolBristolUK
- Department of Physical ChemistryUniversity of ValenciaValenciaSpain
| | - Silvia Napolitano
- Department of Molecular Biology and BiophysicsETH ZürichZürichSwitzerland
| | | | - Marina Rubini
- School of Chemistry, University College Dublin, BelfieldDublin 4Ireland
| |
Collapse
|
3
|
Schmidt T, Friedrich S, Golbik RP, Behrens SE. NF90-NF45 is a selective RNA chaperone that rearranges viral and cellular riboswitches: biochemical analysis of a virus host factor activity. Nucleic Acids Res 2017; 45:12441-12454. [PMID: 29040738 PMCID: PMC5716087 DOI: 10.1093/nar/gkx931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
The heterodimer NF90-NF45 is an RNA-binding protein complex that modulates the expression of various cellular mRNAs on the post-transcriptional level. Furthermore, it acts as a host factor that supports the replication of several RNA viruses. The molecular mechanisms underlying these activities have yet to be elucidated. Recently, we showed that the RNA-binding capabilities and binding specificity of NF90 considerably improves when it forms a complex with NF45. Here, we demonstrate that NF90 has a substrate-selective RNA chaperone activity (RCA) involving RNA annealing and strand displacement activities. The mechanism of the NF90-catalyzed RNA annealing was elucidated to comprise a combination of 'matchmaking' and compensation of repulsive charges, which finally results in the population of dsRNA products. Heterodimer formation with NF45 enhances 'matchmaking' of complementary ssRNAs and substantially increases the efficiency of NF90's RCA. During investigations of the relevance of the NF90-NF45 RCA, the complex was shown to stimulate the first step in the RNA replication process of hepatitis C virus (HCV) in vitro and to stabilize a regulatory element within the mRNA of vascular endothelial growth factor (VEGF) by protein-guided changes of the RNAs' structures. Thus, our study reveals how the intrinsic properties of an RNA-binding protein determine its biological activities.
Collapse
Affiliation(s)
- Tobias Schmidt
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
- To whom correspondence should be addressed. Tel: +49 3455 5249 60; Fax: +49 3455 5273 87; . Correspondence may also be addressed to Tobias Schmidt.
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
- To whom correspondence should be addressed. Tel: +49 3455 5249 60; Fax: +49 3455 5273 87; . Correspondence may also be addressed to Tobias Schmidt.
| |
Collapse
|
4
|
The properties of the RNA-binding protein NF90 are considerably modulated by complex formation with NF45. Biochem J 2016; 474:259-280. [PMID: 28062840 DOI: 10.1042/bcj20160790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Nuclear factor 90 (NF90) is an RNA-binding protein (RBP) that regulates post-transcriptionally the expression of various mRNAs. NF90 was recently shown to be capable of discriminating between different RNA substrates. This is mediated by an adaptive and co-operative interplay between three RNA-binding motifs (RBMs) in the protein's C-terminus. In many cell types, NF90 exists predominantly in a complex with NF45. Here, we compared the RNA-binding properties of the purified NF90 monomer and the NF90-NF45 heterodimer by biophysical and biochemical means, and demonstrate that the interaction with NF45 considerably affects the characteristics of NF90. Along with a thermodynamic stabilization, complex formation substantially improves the RNA-binding capacity of NF90 by modulating its binding mode and by enhancing its affinity for single- and double-stranded RNA substrates. Our data suggest that features of both the N- and C-termini of NF90 participate in the heterodimerization with NF45 and that the formation of NF90-NF45 changes the conformation of NF90's RBMs to a status in which the co-operative interplay of the RBMs is optimal. NF45 is considered to act as a conformational scaffold for NF90's RBMs, which alters the RNA-binding specificity of NF90. Accordingly, the monomeric NF90 and the NF90-NF45 heterodimer may exert different functions in the cell.
Collapse
|
5
|
Roderer D, Glockshuber R, Rubini M. Acceleration of the Rate-Limiting Step of Thioredoxin Folding by Replacement of its Conserved cis-Proline with (4 S)-Fluoroproline. Chembiochem 2015; 16:2162-6. [PMID: 26382254 DOI: 10.1002/cbic.201500342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 11/09/2022]
Abstract
The incorporation of the non-natural amino acids (4R)- and (4S)-fluoroproline (Flp) has been successfully used to improve protein stability, but little is known about their effect on protein folding kinetics. Here we analyzed the influence of (4R)- and (4S)-Flp on the rate-limiting trans-to-cis isomerization of the Ile75-Pro76 peptide bond in the folding of Escherichia coli thioredoxin (Trx). While (4R)-Flp at position 76 had essentially no effect on the isomerization rate in the context of the intact tertiary structure, (4S)-Flp accelerated the folding reaction ninefold. Similarly, tenfold faster trans-to-cis isomerization of Ile75-(4S)-Flp76 relative to Ile75-Pro76 was observed in the unfolded state of Trx. Our results show that the replacement of cis prolines by non-natural proline analogues can be used for modulating the folding rates of proteins with cis prolyl-peptide bonds in the native state.
Collapse
Affiliation(s)
- Daniel Roderer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland.,Max-Planck-Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Rudi Glockshuber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Marina Rubini
- Department of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany.
| |
Collapse
|
6
|
Native state dynamics affects the folding transition of porcine pancreatic phospholipase A2. Biophys Chem 2015; 206:12-21. [PMID: 26117657 DOI: 10.1016/j.bpc.2015.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 11/23/2022]
Abstract
Porcine pancreatic phospholipase A2, a small and disulfide rich protein, is extremely resistant against chemically or thermally induced unfolding. Despite this marked resistance, the protein displays broad unfolding transitions resulting in comparatively low apparent thermodynamic stability. Broad unfolding transitions may result from undetected folding intermediates, residual structures in the unfolded state or an inhomogeneity of the native state. Using circular dichroism, fluorescence, and NMR spectroscopy, we ruled out the existence of stably populated folding intermediates, whereas UV absorbance measurements hinted at stable residual structures in the unfolded state. These residual structures proved, however, to have no impact on the folding parameters. Studies by limited proteolysis, CD, and NMR spectroscopy under non-denaturing conditions suggested pronounced dynamics of the protein in the native state, which as long as unrestrained by acidic pH or bound Ca(2+) ions exert considerable influence on the unfolding transition.
Collapse
|
7
|
Albrecht M, Lippach A, Exner MP, Jerbi J, Springborg M, Budisa N, Wenz G. Site-specific conjugation of 8-ethynyl-BODIPY to a protein by [2 + 3] cycloaddition. Org Biomol Chem 2015; 13:6728-36. [DOI: 10.1039/c5ob00505a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a straightforward synthesis of 8-ethynyl-BODIPY derivatives and their potential as fluorescent labeling compounds using an alkyne–azide click chemistry approach.
Collapse
Affiliation(s)
- Marcel Albrecht
- Organic Macromolecular Chemistry
- Campus Saarbrücken C4.2
- Saarland University
- D-66123 Saarbrücken
- Germany
| | - Andreas Lippach
- Organic Macromolecular Chemistry
- Campus Saarbrücken C4.2
- Saarland University
- D-66123 Saarbrücken
- Germany
| | | | - Jihene Jerbi
- Physical and Theoretical Chemistry
- Campus Saarbrücken B2.2
- Saarland University
- D-66123 Saarbrücken
- Germany
| | - Michael Springborg
- Physical and Theoretical Chemistry
- Campus Saarbrücken B2.2
- Saarland University
- D-66123 Saarbrücken
- Germany
| | - Nediljko Budisa
- Department of Chemistry-Biocatalysis
- TU Berlin
- D-10623 Berlin
- Germany
| | - Gerhard Wenz
- Organic Macromolecular Chemistry
- Campus Saarbrücken C4.2
- Saarland University
- D-66123 Saarbrücken
- Germany
| |
Collapse
|
8
|
Hoesl MG, Budisa N. Expanding and Engineering the Genetic Code in a Single Expression Experiment. Chembiochem 2011; 12:552-5. [DOI: 10.1002/cbic.201000586] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Indexed: 12/31/2022]
|
9
|
Gutierrez LJ, Baldoni HA, Enriz RD. Conformational and electronic study of cis-peptides (non-proline residues) occurring in natural proteins. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Candel AM, Cobos ES, Conejero-Lara F, Martinez JC. Evaluation of folding co-operativity of a chimeric protein based on the molecular recognition between polyproline ligands and SH3 domains. Protein Eng Des Sel 2009; 22:597-606. [PMID: 19617233 DOI: 10.1093/protein/gzp041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In previous work, we designed a chimeric protein, named SPCp41, to evaluate the thermodynamics of the interaction between SH3 domains and proline-rich ligands by combining thermal unfolding measurements and mutagenesis. Here, we have investigated the energetic integrity of the chain extension corresponding to the ligand sequence into the native structure, since the opposite will produce changes in the folding mechanism of the SH3 domain that may give rise to undesirable contributions to the thermodynamic parameters. We have analysed the folding-unfolding kinetics under standard conditions (50 mM phosphate pH 7). Kinetic evolutions are well described by a bi-exponential where, on top of the main kinetic phase, a low-populated slower phase appears as a consequence of cis-trans isomerisation of Pro39, as demonstrated by the influence of prolyl isomerases and by mutational analysis. There is also a burst phase possibly due to a productive formation of some helical ensembles. The main evolution, accounting for the true folding kinetics of SPCp41, can be considered as a two-state process, where the folding transition state produces essentially the same picture shown by the circular permutant S19-P20s (the 'nucleus' of the design) and the ligand will dock at the latter stages of the two-state process. Thus, all conclusions argue in favour of the effectiveness of SPCp41 to study energetic, dynamic and structural aspects of SH3-ligand interactions.
Collapse
Affiliation(s)
- Adela M Candel
- Departamento de Quimica Fisica e Instituto de Biotecnologia, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | |
Collapse
|
11
|
|
12
|
Hofmann H, Weininger U, Löw C, Golbik RP, Balbach J, Ulbrich-Hofmann R. Fast amide proton exchange reveals close relation between native-state dynamics and unfolding kinetics. J Am Chem Soc 2009; 131:140-6. [PMID: 19061322 DOI: 10.1021/ja8048942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has long been recognized that many proteins fold and unfold via partially structured intermediates, but it is still unclear why some proteins unfold in a two-state fashion while others do not. Here we compare the unfolding pathway of the small one-domain protein barstar with its dynamics under native conditions. Using very fast proton-exchange experiments, extensive dynamic heterogeneity within the native-state ensemble could be identified. Especially the dynamics of helix 3, covering the hydrophobic core of the molecule, is found to be clearly cooperative but decoupled from the global dynamics. Moreover, an initial unfolding of this helix followed by the breakdown of the remaining tertiary structure can be concluded from the comparison of the proton exchange experiments with unfolding kinetics detected by stopped-flow fluorescence. We infer that the unfolding pathway of barstar is closely coupled to its native-state dynamics.
Collapse
Affiliation(s)
- Hagen Hofmann
- Institute of Biochemistry and Biotechnology, Institute of Physics, Biophysics group and Mitteldeutsches Zentrum für Struktur and Dynamik der Proteine (MZP), Martin-Luther University Halle-Wittenberg, 06099 Halle
| | | | | | | | | | | |
Collapse
|
13
|
Dong S, Merkel L, Moroder L, Budisa N. Convenient syntheses of homopropargylglycine. J Pept Sci 2008; 14:1148-50. [DOI: 10.1002/psc.1065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Merkel L, Beckmann HSG, Wittmann V, Budisa N. Efficient N-Terminal Glycoconjugation of Proteins by the N-End Rule. Chembiochem 2008; 9:1220-4. [DOI: 10.1002/cbic.200800050] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Steiner T, Hess P, Bae JH, Wiltschi B, Moroder L, Budisa N. Synthetic biology of proteins: tuning GFPs folding and stability with fluoroproline. PLoS One 2008; 3:e1680. [PMID: 18301757 PMCID: PMC2243022 DOI: 10.1371/journal.pone.0001680] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/27/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Proline residues affect protein folding and stability via cis/trans isomerization of peptide bonds and by the C(gamma)-exo or -endo puckering of their pyrrolidine rings. Peptide bond conformation as well as puckering propensity can be manipulated by proper choice of ring substituents, e.g. C(gamma)-fluorination. Synthetic chemistry has routinely exploited ring-substituted proline analogs in order to change, modulate or control folding and stability of peptides. METHODOLOGY/PRINCIPAL FINDINGS In order to transmit this synthetic strategy to complex proteins, the ten proline residues of enhanced green fluorescent protein (EGFP) were globally replaced by (4R)- and (4S)-fluoroprolines (FPro). By this approach, we expected to affect the cis/trans peptidyl-proline bond isomerization and pyrrolidine ring puckering, which are responsible for the slow folding of this protein. Expression of both protein variants occurred at levels comparable to the parent protein, but the (4R)-FPro-EGFP resulted in irreversibly unfolded inclusion bodies, whereas the (4S)-FPro-EGFP led to a soluble fluorescent protein. Upon thermal denaturation, refolding of this variant occurs at significantly higher rates than the parent EGFP. Comparative inspection of the X-ray structures of EGFP and (4S)-FPro-EGFP allowed to correlate the significantly improved refolding with the C(gamma)-endo puckering of the pyrrolidine rings, which is favored by 4S-fluorination, and to lesser extents with the cis/trans isomerization of the prolines. CONCLUSIONS/SIGNIFICANCE We discovered that the folding rates and stability of GFP are affected to a lesser extent by cis/trans isomerization of the proline bonds than by the puckering of pyrrolidine rings. In the C(gamma)-endo conformation the fluorine atoms are positioned in the structural context of the GFP such that a network of favorable local interactions is established. From these results the combined use of synthetic amino acids along with detailed structural knowledge and existing protein engineering methods can be envisioned as a promising strategy for the design of complex tailor-made proteins and even cellular structures of superior properties compared to the native forms.
Collapse
Affiliation(s)
- Thomas Steiner
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Hess
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jae Hyun Bae
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Luis Moroder
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
16
|
Hofmann H, Golbik RP, Ott M, Hübner CG, Ulbrich-Hofmann R. Coulomb Forces Control the Density of the Collapsed Unfolded State of Barstar. J Mol Biol 2008; 376:597-605. [DOI: 10.1016/j.jmb.2007.11.083] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
17
|
Abstract
The conformational study on Ac-Ala-NHMe (the alanine dipeptide) and Ac-Pro-NHMe (the proline dipeptide) is carried out using ab initio HF and density functional methods with the self-consistent reaction field method to explore the differences in the backbone conformational preference and the cis-trans isomerization for the non-prolyl and prolyl residues in the gas phase and in the solutions (chloroform and water). For the alanine and proline dipeptides, with the increase of solvent polarity, the populations of the conformation tC with an intramolecular C(7) hydrogen bond significantly decrease, and those of the polyproline II-like conformation tF and the alpha-helical conformation tA increase, which is in good agreement with the results from circular dichroism and NMR experiments. For both the dipeptides, as the solvent polarity increases, the relative free energy of the cis conformer to the trans conformer decreases and the rotational barrier to the cis-trans isomerization increases. It is found that the cis-trans isomerization proceeds in common through only the clockwise rotation with omega' approximately +120 degrees about the non-prolyl and prolyl peptide bonds in both the gas phase and the solutions. The pertinent distance d(N...H-N(NHMe)) can successfully describe the increase in the rotational barriers for the non-prolyl and prolyl trans-cis isomerization as the solvent polarity increases and the higher barriers for the non-prolyl residue than for the prolyl residue, as seen in experimental and calculated results. By analysis of the contributions to rotational barriers, the cis-trans isomerization for the non-prolyl and prolyl peptide bonds is proven to be entirely enthalpy driven in the gas phase and in the solutions. The calculated cis populations and rotational barriers to the cis-trans isomerization for both the dipeptides in chloroform and/or water accord with the experimental values.
Collapse
Affiliation(s)
- Young Kee Kang
- Department of Chemistry and Basic Science Research Institute, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea.
| |
Collapse
|
18
|
Krushelnitsky A, Gogolev Y, Golbik R, Dahlquist F, Reichert D. Comparison of the internal dynamics of globular proteins in the microcrystalline and rehydrated lyophilized states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1639-45. [PMID: 17027351 DOI: 10.1016/j.bbapap.2006.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 08/28/2006] [Accepted: 08/31/2006] [Indexed: 11/26/2022]
Abstract
Natural abundance solid-state 13C-NMR spin-lattice relaxation experiments in the laboratory (T1) and off-resonance rotating (T(1rho)) frames were applied for qualitative comparison of the internal molecular dynamics of barstar, hen egg white lysozyme and bacteriophage T4 lysozyme in both the microcrystalline and the rehydrated (water content is 50% of the protein mass) lyophilized states. The microcrystalline state of proteins provides a better spectral resolution; however, less is known about the local structure and dynamics in the different states. We found by visual comparison of both T1 and T(1rho) relaxation decays of various resonance bands of the CPMAS spectra that within the ns-mus range of correlation times there is no appreciable difference in the internal dynamics between rehydrated lyophilized and crystalline states for all three proteins tested. This suggests that the internal conformational dynamics depends weakly if at all on inter-protein interactions in the solid state. Hence, physical properties of globular proteins in a fully hydrated solid state seem to be similar to those in solution. This result at least partly removes concerns about biological relevance of studies of globular proteins in the solid state.
Collapse
|
19
|
Rubini M, Lepthien S, Golbik R, Budisa N. Aminotryptophan-containing barstar: structure--function tradeoff in protein design and engineering with an expanded genetic code. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1147-58. [PMID: 16782415 DOI: 10.1016/j.bbapap.2006.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 03/11/2006] [Accepted: 04/18/2006] [Indexed: 11/20/2022]
Abstract
The indole ring of the canonical amino acid tryptophan (Trp) possesses distinguished features, such as sterical bulk, hydrophobicity and the nitrogen atom which is capable of acting as a hydrogen bond donor. The introduction of an amino group into the indole moiety of Trp yields the structural analogs 4-aminotryptophan ((4-NH(2))Trp) and 5-aminotryptophan ((5-NH(2))Trp). Their hydrophobicity and spectral properties are substantially different when compared to those of Trp. They resemble the purine bases of DNA and share their capacity for pH-sensitive intramolecular charge transfer. The Trp --> aminotryptophan substitution in proteins during ribosomal translation is expected to result in related protein variants that acquire these features. These expectations have been fulfilled by incorporating (4-NH(2))Trp and (5-NH(2))Trp into barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens. The crystal structure of (4-NH(2))Trp-barstar is similar to that of the parent protein, whereas its spectral and thermodynamic behavior is found to be remarkably different. The T(m) value of (4-NH(2))Trp- and (5-NH(2))Trp-barstar is lowered by about 20 degrees Celsius, and they exhibit a strongly reduced unfolding cooperativity and substantial loss of free energy in folding. Furthermore, folding kinetic study of (4-NH(2))Trp-barstar revealed that the denatured state is even preferred over native one. The combination of structural and thermodynamic analyses clearly shows how structures of substituted barstar display a typical structure-function tradeoff: the acquirement of unique pH-sensitive charge transfer as a novel function is achieved at the expense of protein stability. These findings provide a new insight into the evolution of the amino acid repertoire of the universal genetic code and highlight possible problems regarding protein engineering and design by using an expanded genetic code.
Collapse
Affiliation(s)
- Marina Rubini
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
20
|
Budisa N, Pal PP. Designing novel spectral classes of proteins with a tryptophan-expanded genetic code. Biol Chem 2005; 385:893-904. [PMID: 15551863 DOI: 10.1515/bc.2004.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluorescence methods are now well-established and powerful tools to study biological macromolecules. The canonical amino acid tryptophan (Trp), encoded by a single UGG triplet, is the main reporter of intrinsic fluorescence properties of most natural proteins and peptides and is thus an attractive target for tailoring their spectral properties. Recent advances in research have provided substantial evidence that the natural protein translational machinery can be genetically reprogrammed to introduce a large number of non-coded (i.e. noncanonical) Trp analogues and surrogates into various proteins. Especially attractive targets for such an engineering approach are fluorescent proteins in which the chromophore is formed post-translationally from an amino acid sequence, like the green fluorescent protein from Aequorea victoria. With the currently available translationally active fluoro-, hydroxy-, amino-, halogen-, and chalcogen-containing Trp analogues and surrogates, the traditional methods for protein engineering and design can be supplemented or even fully replaced by these novel approaches. Future research will provide a further increase in the number of Trp-like amino acids that are available for redesign (by engineering of the genetic code) of native Trp residues and enable novel strategies to generate proteins with tailored spectral properties.
Collapse
Affiliation(s)
- Nediljko Budisa
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, D-82152 Martinsried, Germany.
| | | |
Collapse
|
21
|
Sánchez IE, Morillas M, Zobeley E, Kiefhaber T, Glockshuber R. Fast folding of the two-domain semliki forest virus capsid protein explains co-translational proteolytic activity. J Mol Biol 2004; 338:159-67. [PMID: 15050831 DOI: 10.1016/j.jmb.2004.02.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 02/13/2004] [Accepted: 02/13/2004] [Indexed: 11/22/2022]
Abstract
The capsid protein of Semliki Forest virus constitutes the N-terminal part of a large viral polyprotein. It consists of an unstructured basic segment (residues 1-118) and a 149 residue serine protease module (SFVP, residues 119-267) comprised of two beta-barrel domains. Previous in vivo and in vitro translation experiments have demonstrated that SFVP folds co-translationally during synthesis of the viral polyprotein and rapidly cleaves itself off the nascent chain. To test whether fast co-translation folding of SFVP is an intrinsic property of the polypeptide chain or whether folding is accelerated by cellular components, we investigated spontaneous folding of recombinant SFVP in vitro. The results show that the majority of unfolded SFVP molecules fold faster than any previously studied two-domain protein (tau=50 ms), and that folding of the N-terminal domain precedes structure formation of the C-terminal domain. This shows that co-translational folding of SFVP does not require additional cellular components and suggests that rapid folding is the result of molecular evolution towards efficient virus biogenesis.
Collapse
Affiliation(s)
- Ignacio E Sánchez
- Biozentrum der Universität Basel, Abteilung Biophysikalische Chemie, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Gast K, Modler AJ, Damaschun H, Kröber R, Lutsch G, Zirwer D, Golbik R, Damaschun G. Effect of environmental conditions on aggregation and fibril formation of barstar. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:710-23. [PMID: 12898068 DOI: 10.1007/s00249-003-0336-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Accepted: 06/18/2003] [Indexed: 11/29/2022]
Abstract
The dependence on environmental conditions of the assembly of barstar into amyloid fibrils was investigated starting from the nonnative, partially folded state at low pH (A-state). The kinetics of this process was monitored by CD spectroscopy and static and dynamic light scattering. The morphology of the fibrils was visualized by electron microscopy, while the existence of the typical cross-beta structure substantiated by solution X-ray scattering. At room temperature, barstar in the A-state is unable to form amyloid fibrils, instead amorphous aggregation is observed at high ionic strength. Further destabilization of the structure is required to transform the polypeptide chain into an ensemble of conformations capable of forming amyloid fibrils. At moderate ionic strength (75 mM NaCl), the onset and the rate of fibril formation can be sensitively tuned by increasing the temperature. Two types of fibrils can be detected differing in their morphology, length distribution and characteristic far UV CD spectrum. The formation of the different types depends on the particular environmental conditions. The sequence of conversion: A-state-->fibril type I-->fibril type II appears to be irreversible. The transition into fibrils is most effective when the protein chain fulfills particular requirements concerning secondary structure, structural flexibility and tendency to cluster.
Collapse
Affiliation(s)
- K Gast
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- F X Schmid
- Biochemisches Laboratorium, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
24
|
Killenberg-Jabs M, Kern G, Hübner G, Golbik R. Folding and stability of different oligomeric states of thiamin diphosphate dependent homomeric pyruvate decarboxylase. Biophys Chem 2002; 96:259-71. [PMID: 12034445 DOI: 10.1016/s0301-4622(02)00017-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The folding and stability of recombinant homomeric (alpha-only) pyruvate decarboxylase from yeast was investigated. Different oligomeric states (tetramers, dimers and monomers) of the enzyme occur under defined conditions. The enzymatic activity is used as a sensitive probe for structural differences between the active and inactive form (mis-assembled forms, aggregates) of the folded protein. Unfolding kinetics starting from the native protein comprise both the dissociation of the oligomers into monomers and their subsequent denaturation, which could be monitored by stopped-flow kinetics. In the course of unfolding, the tetramers do not directly dissociate into monomers, but via a stable dimeric state. Starting from the unfolded state, a reactivation of homomeric pyruvate decarboxylase requires both refolding to monomers and their correct association to enzymatically active dimers or tetramers. The reactivation yield under the in vitro conditions used follows an optimum behavior.
Collapse
|
25
|
Budisa N, Alefelder S, Bae JH, Golbik R, Minks C, Huber R, Moroder L. Proteins with beta-(thienopyrrolyl)alanines as alternative chromophores and pharmaceutically active amino acids. Protein Sci 2001; 10:1281-92. [PMID: 11420430 PMCID: PMC2374119 DOI: 10.1110/ps.51601] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
L-beta-(Thieno[3,2-b]pyrrolyl)alanine and L-beta-(thieno[2,3-b]pyrrolyl)alanine are mutually isosteric and pharmaceutically active amino acids that mimic tryptophan with the benzene ring in the indole moiety replaced by thiophene. Sulfur as a heteroatom causes physicochemical changes in these tryptophan surrogates that bring about completely new properties not found in the indole moiety. These synthetic amino acids were incorporated into recombinant proteins in response to the Trp UGG codons by fermentation in a Trp-auxotrophic Escherichia coli host strain using the selective pressure incorporation method. Related protein mutants expectedly retain the secondary structure of the native proteins but show significantly changed optical and thermodynamic properties. In this way, new spectral windows, fluorescence, polarity, thermodynamics, or pharmacological properties are inserted into proteins. Such an engineering approach by translational integration of synthetic amino acids with a priori defined properties, as shown in this study, proved to be a novel and useful tool for protein rational design.
Collapse
Affiliation(s)
- N Budisa
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bae JH, Alefelder S, Kaiser JT, Friedrich R, Moroder L, Huber R, Budisa N. Incorporation of beta-selenolo[3,2-b]pyrrolyl-alanine into proteins for phase determination in protein X-ray crystallography. J Mol Biol 2001; 309:925-36. [PMID: 11399069 DOI: 10.1006/jmbi.2001.4699] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
beta-Selenolo[3,2-b]pyrrolyl-L-alanine that mimics tryptophan with the benzene ring of the indole moiety replaced by selenophene, was incorporated into human annexin V and barstar. This was achieved by fermentation and expression in a Trp-auxotrophic Escherichia coli host strain using the selective pressure incorporation method. The seleno- proteins were obtained in yields comparable to those of the wild-type proteins and exhibit full crystallographic isomorphism to the parent proteins, but expectedly show altered absorbance profiles and quenched tryptophan fluorescence. Since the occurrence of tryptophan residues in proteins is rare, incorporation of the electron-rich selenium-containing tryptophan surrogate into proteins represents a useful supplementation and even a promising novel alternative to selenomethionine for solving the phase problem in protein X-ray crystallography.
Collapse
Affiliation(s)
- J H Bae
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, 82152, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Renner C, Alefelder S, Bae JH, Budisa N, Huber R, Moroder L. Fluoroprolines as Tools for Protein Design and Engineering. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3773(20010302)40:5<923::aid-anie923>3.0.co;2-%23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christian Renner
- Max‐Planck‐Institut für Biochemie Am Klopferspitz 18 A, 82152 Martinsried (Germany) Fax: (+49) 89‐8578‐2847
| | - Stefan Alefelder
- Max‐Planck‐Institut für Biochemie Am Klopferspitz 18 A, 82152 Martinsried (Germany) Fax: (+49) 89‐8578‐2847
| | - Jae H. Bae
- Max‐Planck‐Institut für Biochemie Am Klopferspitz 18 A, 82152 Martinsried (Germany) Fax: (+49) 89‐8578‐2847
| | - Nediljko Budisa
- Max‐Planck‐Institut für Biochemie Am Klopferspitz 18 A, 82152 Martinsried (Germany) Fax: (+49) 89‐8578‐2847
| | - Robert Huber
- Max‐Planck‐Institut für Biochemie Am Klopferspitz 18 A, 82152 Martinsried (Germany) Fax: (+49) 89‐8578‐2847
| | - Luis Moroder
- Max‐Planck‐Institut für Biochemie Am Klopferspitz 18 A, 82152 Martinsried (Germany) Fax: (+49) 89‐8578‐2847
| |
Collapse
|
29
|
Abstract
Influences on coenzyme preference are explored. Lysine 137 (192 in class 1/2 ALDH) lies close to the adenine ribose, directly interacting with the adenine ribose in NAD-specific ALDHs and the 2'-phosphate of NADP in NADP-specific ALDHs. Lys-137 in class 3 ALDH interacts with the adenine ribose indirectly through an intervening water molecule. However, this residue is present in all ALDHs and, as a result, is unlikely to directly influence coenzyme specificity. Glutamate 140 (195) coordinates the 2'- and 3'-hydroxyls of the adenine ribose of NAD in the class 3 tertiary structure. Thus, it appeared that this residue would influence coenzyme specificity. Mutation to aspartate, asparagine, glutamine or threonine shifts the coenzyme specificity towards NADP, but did not completely change the specificity. Still, the mutants show the 2'-phosphate of NADP is repelled by Glu-140 (195). Although Glu-140 (195) has a major influence on coenzyme specificity, it is not the only influence since class 3 ALDHs, can use both coenzymes, and class 2 ALDHs, which are NAD-specific, have a glutamate at this position. One explanation may be that the larger space between Lys-137 (192) and the adenine ribose hydroxyls in the class 3 ALDH:NAD binary structure may provide space to accommodate the 2'-phosphate of NADP. Also, a structural shift upon binding NADP may also occur in class 3 ALDHs to help accommodate the 2'-phosphate of NADP.
Collapse
Affiliation(s)
- J Perozich
- Department of Biological Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
The large enzyme families of protein disulfide isomerases and peptidyl prolyl cis/trans isomerases have been shown to assist polypeptide restructuring. Various folding states of polypeptides may serve as substrates of the catalysed reaction. Our understanding of the cellular function of these enzymes is increasing as a result of the availability of more specific inhibitors, the discovery of natural substrates and the use of genetically modified organisms. Further highlights of these studies include insights into the three-dimensional structures of enzyme-ligand complexes, as well as into the mechanism of slow folding phases on the atomic level.
Collapse
Affiliation(s)
- C Schiene
- Research Unit Enzymology of Protein Folding, Max-Planck Society, Halle/Saale, D-06120, Germany
| | | |
Collapse
|