1
|
Xiong Y, Li S, Bai Y, Chen T, Sun W, Chen L, Yu J, Sun L, Li C, Wang J, Wu B. Generating detailed intercellular communication patterns in psoriasis at the single-cell level using social networking, pattern recognition, and manifold learning methods to optimize treatment strategies. Aging (Albany NY) 2024; 16:2194-2231. [PMID: 38289616 PMCID: PMC10911347 DOI: 10.18632/aging.205478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/13/2023] [Indexed: 02/22/2024]
Abstract
Psoriasis, a complex and recurrent chronic inflammatory skin disease involving various inflammatory cell types, requires effective cell communication to maintain the homeostatic balance of inflammation. However, patterns of communication at the single-cell level have not been systematically investigated. In this study, we employed social network analysis tools, pattern recognition, and manifold learning to compare molecular communication features between psoriasis cells and normal skin cells. Utilizing a process that facilitates the discovery of cell type-specific regulons, we analyzed internal regulatory networks among different cells in psoriasis. Advanced techniques for the quantitative detection of non-targeted proteins in pathological tissue sections were employed to demonstrate protein expression. Our findings revealed a synergistic interplay among the communication signals of immune cells in psoriasis. B-cells were activated, while Langerhans cells shifted into the primary signaling output mode to fulfill antigen presentation, mediating T-cell immunity. In contrast to normal skin cells, psoriasis cells shut down numerous signaling pathways, influencing the balance of skin cell renewal and differentiation. Additionally, we identified a significant number of active cell type-specific regulons of resident immune cells around the hair follicle. This study unveiled the molecular communication features of the hair follicle cell-psoriasis axis, showcasing its potential for therapeutic targeting at the single-cell level. By elucidating the pattern of immune cell communication in psoriasis and identifying new molecular features of the hair follicle cell-psoriasis axis, our findings present innovative strategies for drug targeting to enhance psoriasis treatment.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Sidi Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yunmeng Bai
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Shenzhen People’s Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Ting Chen
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Wenwen Sun
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Lijie Chen
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Jia Yu
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Liwei Sun
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Chijun Li
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Jiajian Wang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen and Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Bo Wu
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| |
Collapse
|
2
|
Parihar N, Bhatt LK. Deubiquitylating enzymes: potential target in autoimmune diseases. Inflammopharmacology 2021; 29:1683-1699. [PMID: 34792672 DOI: 10.1007/s10787-021-00890-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
The ubiquitin-proteasome pathway is responsible for the turnover of different cellular proteins, such as transport proteins, presentation of antigens to the immune system, control of the cell cycle, and activities that promote cancer. The enzymes which remove ubiquitin, deubiquitylating enzymes (DUBs), play a critical role in central and peripheral immune tolerance to prevent the development of autoimmune diseases and thus present a potential therapeutic target for the treatment of autoimmune diseases. DUBs function by removing ubiquitin(s) from target protein and block ubiquitin chain elongation. The addition and removal of ubiquitin molecules have a significant impact on immune responses. DUBs and E3 ligases both specifically cleave target protein and modulate protein activity and expression. The balance between ubiquitylation and deubiquitylation modulates protein levels and also protein interactions. Dysregulation of the ubiquitin-proteasome pathway results in the development of various autoimmune diseases such as inflammatory bowel diseases (IBD), psoriasis, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This review summarizes the current understanding of ubiquitination in autoimmune diseases and focuses on various DUBs responsible for the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
3
|
H3K27Ac modification and gene expression in psoriasis. J Dermatol Sci 2021; 103:93-100. [PMID: 34281744 DOI: 10.1016/j.jdermsci.2021.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Numerous alterations in gene expression have been described in psoriatic lesions compared to uninvolved or healthy skin. However, the mechanisms which induce this altered expression remain unclear. Epigenetic modifications play a key role in regulating genes' expression. Only three studies compared the whole-genome DNA methylation of psoriasis versus healthy skin. The present is the first study of genome-wide comparison of histone modifications between psoriatic to healthy skins. OBJECTIVE Our objective was to explore the pattern of H3K27Ac modifications in psoriatic lesions compared to uninvolved psoriatic and healthy skin, in order to identify new genes involved in the pathogenesis of psoriasis. METHOD Using ChIP-seq with anti H3K27Ac we compared the acetylation of lysine 27 on histone 3 (H3K27Ac) modification between psoriatic to healthy skins, combined with mRNA array. RESULTS We found a differential H3K27Ac pattern between psoriatic compared to uninvolved or healthy skins. We found that many of the overexpressed and H3K27Ac enriched genes in psoriasis, harbor a putative GRHL transcription factor-binding site. CONCLUSIONS In the most overexpressed genes in psoriasis, there is an enrichment of H3K27Ac. However, the loss of H3K27 acetylation modification does not correlate with decreased gene expression. GRHL appears to play an important role in the pathogenesis of psoriasis and therefore, might be a new target for psoriasis therapeutics.
Collapse
|
4
|
Review-Current Concepts in Inflammatory Skin Diseases Evolved by Transcriptome Analysis: In-Depth Analysis of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2020; 21:ijms21030699. [PMID: 31973112 PMCID: PMC7037913 DOI: 10.3390/ijms21030699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
During the last decades, high-throughput assessment of gene expression in patient tissues using microarray technology or RNA-Seq took center stage in clinical research. Insights into the diversity and frequency of transcripts in healthy and diseased conditions provide valuable information on the cellular status in the respective tissues. Growing with the technique, the bioinformatic analysis toolkit reveals biologically relevant pathways which assist in understanding basic pathophysiological mechanisms. Conventional classification systems of inflammatory skin diseases rely on descriptive assessments by pathologists. In contrast to this, molecular profiling may uncover previously unknown disease classifying features. Thereby, treatments and prognostics of patients may be improved. Furthermore, disease models in basic research in comparison to the human disease can be directly validated. The aim of this article is not only to provide the reader with information on the opportunities of these techniques, but to outline potential pitfalls and technical limitations as well. Major published findings are briefly discussed to provide a broad overview on the current findings in transcriptomics in inflammatory skin diseases.
Collapse
|
5
|
Takeoka S, Shimizu T, Kamata M, Hau CS, Fukaya S, Hayashi K, Fukuyasu A, Tanaka T, Ishikawa T, Ohnishi T, Tada Y. Calcipotriol and betamethasone dipropionate exhibit different immunomodulatory effects on imiquimod‐induced murine psoriasiform dermatitis. J Dermatol 2019; 47:155-162. [DOI: 10.1111/1346-8138.15155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Shintaro Takeoka
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Teruo Shimizu
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Masahiro Kamata
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Carren Sy Hau
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Saki Fukaya
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Kotaro Hayashi
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Atsuko Fukuyasu
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Takamitsu Tanaka
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Takeko Ishikawa
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Takamitsu Ohnishi
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Yayoi Tada
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| |
Collapse
|
6
|
Xie XJ, Di TT, Wang Y, Wang MX, Meng YJ, Lin Y, Xu XL, Li P, Zhao JX. Indirubin ameliorates imiquimod-induced psoriasis-like skin lesions in mice by inhibiting inflammatory responses mediated by IL-17A-producing γδ T cells. Mol Immunol 2018; 101:386-395. [PMID: 30064075 DOI: 10.1016/j.molimm.2018.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 05/13/2018] [Accepted: 07/07/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Indirubin (IR) is a bisindole compound extracted from the leaves of Chinese herb Indigo Naturalis. Indigo Naturalis has been widely used in traditional Chinese medicine to treat inflammatory and autoimmune diseases. Psoriasis is a chronic immune-mediated inflammatory skin disease in which γδ T cells play an important role. This study aims to determine the immunoregulatory effects and the underlying mechanisms of Indirubin in psoriasis-related inflammatory responses. METHODS BALB/c mice with imiquimod (IMQ)-induced psoriasis-like dermatitis were treated with saline (Model), 1 mg/kg methotrexate (MTX) that serves as a positive control, or 12.5, 25 and 50 mg/kg Indirubin(IR) intragastrically. Keratinocytes proliferation, inflammatory cells infiltration, the expression of inflammatory cytokines and Jak/Stat pathway-related proteins in the skin lesion were examined. The abundance of γδ T cells in lymph nodes and spleen was determined by flow cytometry. The IL-17 expression and secretion, and the activation of Jak3/Stat3 pathways in in vitro cultured γδ T cell were tested. RESULTS Indirubin ameliorated keratinocyte proliferation, reduced the infiltration of CD3+ T cells, IL-17 A-producing γδ T cells, and CD11b+ neutrophils, inhibited the mRNA expression of Il1, Il6, Il23, Il17a and Il22, and the protein expression of Jak/Stat pathway-related molecules in the skin lesion. Indirubin also reduced the abundance of γδ T cell and CCR6+ γδ T cells (the major IL-17 A producer) in spleen and lymph nodes. In cultured γδ T cells, Indirubin inhibited the mRNA expression of Il17a and Ifng, and the secretion of IL-17 A, while suppressed the activation of Jak3/Stat3 pathways. CONCLUSION Indirubin alleviates IMQ-induced psoriasis-like dermatitis mainly through reducing the inflammatory responses mediated by IL-17 A-producing γδ T cells involving Jak3/Stat3 activation. Our results highlighted the novel mechanisms by which Indirubin ameliorates psoriasis-related inflammatory responses, supporting its therapeutic potential.
Collapse
Affiliation(s)
- Xiang-Jiang Xie
- Beijing Hospital of Traditional Chinese Medicine, Affiliated With Capital Medical University, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, No.23 Mei shu guan Back Road, DongCheng District, Beijing, 100010, China
| | - Ting-Ting Di
- Beijing Hospital of Traditional Chinese Medicine, Affiliated With Capital Medical University, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, No.23 Mei shu guan Back Road, DongCheng District, Beijing, 100010, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Affiliated With Capital Medical University, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, No.23 Mei shu guan Back Road, DongCheng District, Beijing, 100010, China
| | - Ming-Xing Wang
- Beijing Hospital of Traditional Chinese Medicine, Affiliated With Capital Medical University, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, No.23 Mei shu guan Back Road, DongCheng District, Beijing, 100010, China
| | - Yu-Jiao Meng
- Beijing Hospital of Traditional Chinese Medicine, Affiliated With Capital Medical University, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, No.23 Mei shu guan Back Road, DongCheng District, Beijing, 100010, China
| | - Yan Lin
- Beijing Hospital of Traditional Chinese Medicine, Affiliated With Capital Medical University, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, No.23 Mei shu guan Back Road, DongCheng District, Beijing, 100010, China
| | - Xiao-Long Xu
- Beijing Hospital of Traditional Chinese Medicine, Affiliated With Capital Medical University, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, No.23 Mei shu guan Back Road, DongCheng District, Beijing, 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Affiliated With Capital Medical University, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, No.23 Mei shu guan Back Road, DongCheng District, Beijing, 100010, China
| | - Jing-Xia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Affiliated With Capital Medical University, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, No.23 Mei shu guan Back Road, DongCheng District, Beijing, 100010, China.
| |
Collapse
|
7
|
Yang L, Guo W, Zhang S, Wang G. Ubiquitination-proteasome system: A new player in the pathogenesis of psoriasis and clinical implications. J Dermatol Sci 2017; 89:219-225. [PMID: 29279285 DOI: 10.1016/j.jdermsci.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
Ubiquitination is an important post-translational modification that regulates a myriad of biological processes such as inflammation, immune response, cell differentiation and proliferation. During the last decade, progress in proteomics contributed to the identification of new E3 ligases and their substrates. Hence, deregulated ubiquitination events are found to be involved in several inflammatory disorders, exemplifying by systemic lupus erythematosus (SLE), type 1 diabetes, rheumatoid arthritis (RA) and psoriasis. Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation and differentiation. Through regulation of key transcriptional factors or signaling members, ubiquitination is viewed as a key regulator in psoriasis. Thus, targeting ubiquitination pathway holds potential for the treatment of psoriasis. Herein, we summarize the current understanding of ubiquitination in psoriasis, and discuss the prospects for targeting ubiquitination in the treatment of psoriasis.
Collapse
Affiliation(s)
- Luting Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaolong Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Pouliot-Bérubé C, Zaniolo K, Guérin SL, Pouliot R. Tissue-engineered human psoriatic skin supplemented with cytokines as an in vitro model to study plaque psoriasis. Regen Med 2016; 11:545-57. [PMID: 27513102 DOI: 10.2217/rme-2016-0037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Psoriasis is a chronic inflammatory skin disease. To study its complex etiology, a psoriatic skin substitute model supplemented with a cytokine cocktail has been used. MATERIALS & METHODS Reconstructed psoriatic skin substitutes were supplemented with a cocktail of four cytokines: TNF-α, IL-1α, IL-6 and IL-17A, to monitor their impact on gene expression by DNA microarray. RESULTS Gene profiling analyses identified several deregulated genes reported as being also deregulated in psoriasis skin in vivo (S100A12, IL-8, DEFB4A and KYNU). The expression of those genes was dramatically increased compared with basal levels of controls (p < 0.005 to < 0.05). CONCLUSION Psoriatic substitutes supplemented with a cocktail of TNF-α, IL-1α, IL-6 and IL-17A showed similar transcriptome alterations to those found in psoriasis.
Collapse
Affiliation(s)
- Claudia Pouliot-Bérubé
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC, Canada.,Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Karine Zaniolo
- Centre Universitaire d'Ophtalmologie-Recherche, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie-Recherche, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC, Canada.,Département d'Ophtalmologie, Université Laval, Québec, QC, Canada
| | - Roxane Pouliot
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC, Canada.,Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| |
Collapse
|
10
|
Li K, Yang W, Li Z, Jia W, Li J, Zhang P, Xiao T. Bitter apricot essential oil induces apoptosis of human HaCaT keratinocytes. Int Immunopharmacol 2016; 34:189-198. [PMID: 26971222 DOI: 10.1016/j.intimp.2016.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
Abstract
Psoriasis is a chronic skin disease that affects approximately 2% of the world's population. Conventional therapeutic approaches are not effective or necessarily safe for treating symptoms due to the serious side effects and resistance to currently prescribed drugs. Traditionally, in oriental medicine, apricot seed (Semen Armeniacae amarum) is used to treat skin diseases. However, the underlying mechanism of action has not been systematically elucidated. In the present study, the anti-proliferative effect of bitter apricot essential oil (BAEO) on cultured HaCaT cells was evaluated and the mechanism of action investigated. BAEO was isolated by hydrodistillation, and gas chromatography-mass spectrometry (GC-MS) analysis identified benzaldehyde (75.35%), benzoic acid (6.21%) and mandelonitrile (5.38%). HaCaT cell growth, measured by sulforhodamine B assay (SRB), was inhibited by BAEO with an IC50 value of 142.45 μg/ml. Apoptosis of HaCaT cells treated with BAEO was detected by cell cycle, flow cytometry, and western blot analyses. These measurements revealed G0/G1 cell cycle arrest, elevated numbers of early and late stage apoptotic cells, and caspases-3/8/9 and PARP activation. Z-VAD-FMK, a broad-spectrum caspase inhibitor, attenuated BAEO-induced apoptosis. Also, increased Bax and decreased Bcl-2 levels suggest that BAEO-induced apoptosis is mediated through both death receptor and mitochondrial pathways. Moreover, reduced Rel/NF-κB levels suggest that BAEO-mediated apoptosis is also associated with inhibition of the NF-κB pathway. These data suggest that BAEO is a naturally occurring material that functions as a potent pro-apoptotic factor for human keratinocytes. Thus, it is a promising candidate to treat psoriasis.
Collapse
Affiliation(s)
- Keyou Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wenhua Yang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhe Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wangwang Jia
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiazhou Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Pengfei Zhang
- Guangzhou Boxabio Tech Ltd., Guangzhou Hi-Tech Development Zone, Guangzhou 510663, China.
| | - Tiancun Xiao
- Guangzhou Boxabio Tech Ltd., Guangzhou Hi-Tech Development Zone, Guangzhou 510663, China; Inorganic Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QR Oxford, UK.
| |
Collapse
|
11
|
Di TT, Ruan ZT, Zhao JX, Wang Y, Liu X, Wang Y, Li P. Astilbin inhibits Th17 cell differentiation and ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice via Jak3/Stat3 signaling pathway. Int Immunopharmacol 2016; 32:32-38. [DOI: 10.1016/j.intimp.2015.12.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 02/06/2023]
|
12
|
Furue M, Kadono T. Psoriasis: Behind the scenes. J Dermatol 2016; 43:4-8. [DOI: 10.1111/1346-8138.13186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Masutaka Furue
- Department of Dermatology; Kyushu University; Fukuoka Japan
| | - Takafumi Kadono
- Department of Dermatology; St Marianna University School of Medicine; Kawasaki Japan
| |
Collapse
|
13
|
Sevimoglu T, Arga KY. Computational Systems Biology of Psoriasis: Are We Ready for the Age of Omics and Systems Biomarkers? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:669-87. [PMID: 26480058 DOI: 10.1089/omi.2015.0096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Computational biology and 'omics' systems sciences are greatly impacting research on common diseases such as cancer. By contrast, dermatology covering an array of skin diseases with high prevalence in society, has received relatively less attention from 'omics' and computational biosciences. We are focusing on psoriasis, a common and debilitating autoimmune disease involving skin and joints. Using computational systems biology and reconstruction, topological, modular, and a novel correlational analyses (based on fold changes) of biological and transcriptional regulatory networks, we analyzed and integrated data from a total of twelve studies from the Gene Expression Omnibus (sample size = 534). Samples represented a comprehensive continuum from lesional and nonlesional skin, as well as bone marrow and dermal mesenchymal stem cells. We identified and propose here a JAK/STAT signaling pathway significant for psoriasis. Importantly, cytokines, interferon-stimulated genes, antimicrobial peptides, among other proteins, were involved in intrinsic parts of the proposed pathway. Several biomarker and therapeutic candidates such as SUB1 are discussed for future experimental studies. The integrative systems biology approach presented here illustrates a comprehensive perspective on the molecular basis of psoriasis. This also attests to the promise of systems biology research in skin diseases, with psoriasis as a systemic component. The present study reports, to the best of our knowledge, the largest set of microarray datasets on psoriasis, to offer new insights into the disease mechanisms with a proposal of a disease pathway. We call for greater computational systems biology research and analyses in dermatology and skin diseases in general.
Collapse
Affiliation(s)
- Tuba Sevimoglu
- Department of Bioengineering, Marmara University , Istanbul, Turkey
| | | |
Collapse
|
14
|
Swindell WR, Sarkar MK, Stuart PE, Voorhees JJ, Elder JT, Johnston A, Gudjonsson JE. Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites. Clin Transl Med 2015; 4:13. [PMID: 25883770 PMCID: PMC4392043 DOI: 10.1186/s40169-015-0054-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/26/2015] [Indexed: 12/22/2022] Open
Abstract
Background Psoriasis is a cytokine-mediated skin disease that can be treated effectively with immunosuppressive biologic agents. These medications, however, are not equally effective in all patients and are poorly suited for treating mild psoriasis. To develop more targeted therapies, interfering with transcription factor (TF) activity is a promising strategy. Methods Meta-analysis was used to identify differentially expressed genes (DEGs) in the lesional skin from psoriasis patients (n = 237). We compiled a dictionary of 2935 binding sites representing empirically-determined binding affinities of TFs and unconventional DNA-binding proteins (uDBPs). This dictionary was screened to identify “psoriasis response elements” (PREs) overrepresented in sequences upstream of psoriasis DEGs. Results PREs are recognized by IRF1, ISGF3, NF-kappaB and multiple TFs with helix-turn-helix (homeo) or other all-alpha-helical (high-mobility group) DNA-binding domains. We identified a limited set of DEGs that encode proteins interacting with PRE motifs, including TFs (GATA3, EHF, FOXM1, SOX5) and uDBPs (AVEN, RBM8A, GPAM, WISP2). PREs were prominent within enhancer regions near cytokine-encoding DEGs (IL17A, IL19 and IL1B), suggesting that PREs might be incorporated into complex decoy oligonucleotides (cdODNs). To illustrate this idea, we designed a cdODN to concomitantly target psoriasis-activated TFs (i.e., FOXM1, ISGF3, IRF1 and NF-kappaB). Finally, we screened psoriasis-associated SNPs to identify risk alleles that disrupt or engender PRE motifs. This identified possible sites of allele-specific TF/uDBP binding and showed that PREs are disproportionately disrupted by psoriasis risk alleles. Conclusions We identified new TF/uDBP candidates and developed an approach that (i) connects transcriptome informatics to cdODN drug development and (ii) enhances our ability to interpret GWAS findings. Disruption of PRE motifs by psoriasis risk alleles may contribute to disease susceptibility. Electronic supplementary material The online version of this article (doi:10.1186/s40169-015-0054-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William R Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Philip E Stuart
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - James T Elder
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Andrew Johnston
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| |
Collapse
|
15
|
Zhao H, Li S, Luo F, Tan Q, Li H, Zhou W. Portulaca oleracea L. aids calcipotriol in reversing keratinocyte differentiation and skin barrier dysfunction in psoriasis through inhibition of the nuclear factor κB signaling pathway. Exp Ther Med 2014; 9:303-310. [PMID: 25574190 PMCID: PMC4280941 DOI: 10.3892/etm.2014.2116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/02/2014] [Indexed: 12/22/2022] Open
Abstract
Psoriasis affects 2-4% of the population worldwide and its treatment is currently far from satisfactory. Calcipotriol and Portulaca oleracea have been reported to exhibit the capacity to inhibit inflammation in psoriatic patients and improve their clinical condition. However, the efficacy of a combination regimen of these two components remains unknown. The aim of the present study was to explore the therapeutic efficacy of P. oleracea extract combined with calcipotriol on plaque psoriasis and its potential mechanism. Eleven patients with plaque psoriasis were treated with humectant containing the active ingredients of P. oleracea extract, with or without 0.005% calcipotriol ointment in a right-left bilateral lesion self-control study. Differences were evaluated by investigation of the clinical efficacy, adverse effects, skin barrier function, histological structure, expression and proliferation of keratinocytes, differentiation markers (cytokeratin 10, filaggrin and loricrin), inflammatory factors [tumor necrosis factor (TNF)-α and interleukin (IL)-8], as well as the status of the nuclear factor κB (NF-κB) pathway. The combination of P. oleracea and calcipotriol was revealed to decrease adverse effects, reduce transepidermal water loss, potently reverse keratinocyte differentiation dysfunction, and inhibit the expression of TNF-α and IL-8 and the phosphorylation of the NF-κB inhibitor IκBα. This treatment is therefore anticipated to be suitable for use as a novel adjuvant therapy for psoriatic patients.
Collapse
Affiliation(s)
- Hengguang Zhao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shuang Li
- Department of Dermatology, Chongqing Third People's Hospital, Chongqing 400014, P.R. China
| | - Fuling Luo
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qian Tan
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hui Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weikang Zhou
- Department of Dermatology, Chongqing Third People's Hospital, Chongqing 400014, P.R. China
| |
Collapse
|
16
|
Swindell WR, Xing X, Voorhees JJ, Elder JT, Johnston A, Gudjonsson JE. Integrative RNA-seq and microarray data analysis reveals GC content and gene length biases in the psoriasis transcriptome. Physiol Genomics 2014; 46:533-46. [PMID: 24844236 DOI: 10.1152/physiolgenomics.00022.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gene expression profiling of psoriasis has driven research advances and may soon provide the basis for clinical applications. For expression profiling studies, RNA-seq is now a competitive technology, but RNA-seq results may differ from those obtained by microarray. We therefore compared findings obtained by RNA-seq with those from eight microarray studies of psoriasis. RNA-seq and microarray datasets identified similar numbers of differentially expressed genes (DEGs), with certain genes uniquely identified by each technology. Correspondence between platforms and the balance of increased to decreased DEGs was influenced by mRNA abundance, GC content, and gene length. Weakly expressed genes, genes with low GC content, and long genes were all biased toward decreased expression in psoriasis lesions. The strength of these trends differed among array datasets, most likely due to variations in RNA quality. Gene length bias was by far the strongest trend and was evident in all datasets regardless of the expression profiling technology. The effect was due to differences between lesional and uninvolved skin with respect to the genome-wide correlation between gene length and gene expression, which was consistently more negative in psoriasis lesions. These findings demonstrate the complementary nature of RNA-seq and microarray technology and show that integrative analysis of both data types can provide a richer view of the transcriptome than strict reliance on a single method alone. Our results also highlight factors affecting correspondence between technologies, and we have established that gene length is a major determinant of differential expression in psoriasis lesions.
Collapse
Affiliation(s)
- William R Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Xianying Xing
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - John J Voorhees
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - James T Elder
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Andrew Johnston
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
17
|
Mimoso C, Blumenberg M. Looking within the lesion: Large scale transcriptional profiling of psoriatic plaques. World J Dermatol 2014; 3:28-35. [DOI: 10.5314/wjd.v3.i2.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/23/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a lifelong, chronic, recurring and highly variable skin disease. Psoriatic plaques are formed through induction of inflammation in the epidermis and deregulation of keratinocyte proliferation and differentiation. This results in red or silvery scaly patches on the surface of the epidermis. To look within the lesions and define the changes in gene expression in psoriasis, investigators compared the transcriptomes of psoriatic plaques, of uninvolved skin of patients and of skin from healthy individuals. In several large studies with many patients, the genes expressed at much higher level in psoriatic plaques included those responsible for the cell cycle, keratinocyte differentiation, and response to wounding; conversely, lipid and fatty acid metabolism enzymes were expressed at reduced levels. The nonlesional and healthy skin appeared fairly similar. The largest study included paired biopsies from 85 individual patients. The same group used transcription profiling to follow the course of treatment in a set of patients, and correlated changes in the transcriptome of blood samples of psoriatic patients. Importantly, a noninvasive technique involving tape-stripping of skin, has been shown effective in transcriptional studies of psoriasis. Current efforts are focused on deconvoluting the contributions of various cell types in psoriasis, keratinocytes, lymphocytes, fibroblasts etc. Taken as a whole, these efforts will lead to personalized medicine, i.e., to specific, individualized treatments of patients with psoriasis.
Collapse
|
18
|
Shen Y, Xu J, Jin J, Tang H, Liang J. Cyclin D1 expression in Bowen's disease and cutaneous squamous cell carcinoma. Mol Clin Oncol 2014; 2:545-548. [PMID: 24940492 DOI: 10.3892/mco.2014.273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/01/2014] [Indexed: 12/16/2022] Open
Abstract
Cyclin D1 is a member of the G1 cyclin family that regulates the transition through the G1 phase of the cell cycle and is involved in the neoplastic transformation of certain tumors. This study was designed to investigate the expression of cyclin D1 in Bowen's disease (BD) and cutaneous squamous cell carcinoma (SCC). Biopsies of 30 cases with BD and 24 cases with SCC confirmed by histopathology were obtained from the Department of Dermatology of Huashan Hospital, Shanghai, China. EnVision immunohistochemical technology with a semiquantitative immunohistochemical score was applied to detect the expression of cyclin D1. Of the 24 specimens with SCC, cyclin D1 was found to be positive in 17 (70.8%), whereas of the 30 specimens with BD, cyclin D1 was found to be positive in 13 (43.3%). The expression of cyclin D1 was significantly higher in the SCC compared to that in the BD group. We did not observe a significant association of cyclin D1 expression with different pathological grades of SCC. In conclusion, cyclin D1 plays a significant role as a diagnostic marker in skin tumors and its overexpression was not found to be correlated with the degree of differentiation of SCC.
Collapse
Affiliation(s)
- Yanyun Shen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jin Jin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hui Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
19
|
Swindell WR, Johnston A, Xing X, Voorhees JJ, Elder JT, Gudjonsson JE. Modulation of epidermal transcription circuits in psoriasis: new links between inflammation and hyperproliferation. PLoS One 2013; 8:e79253. [PMID: 24260178 PMCID: PMC3829857 DOI: 10.1371/journal.pone.0079253] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/19/2013] [Indexed: 12/16/2022] Open
Abstract
Background Whole-genome expression profiling has been used to characterize molecular-level differences between psoriasis lesions and normal skin. Pathway analysis, however, is complicated by the fact that expression profiles have been derived from bulk skin biopsies with RNA derived from multiple cell types. Results We analyzed gene expression across a large sample of psoriatic (PP) and uninvolved/normal (PN) skin biopsies (n = 215 patients). We identified 1975 differentially expressed genes, including 8 associated with psoriasis susceptibility loci. To facilitate pathway analysis, PP versus PN differences in gene expression were analyzed with respect to 235 gene modules, each containing genes with a similar expression pattern in keratinocytes and epidermis. We identified 30 differentially expressed modules (DEMs) biased towards PP-increased or PP-decreased expression. These DEMs were associated with regulatory axes involving cytokines (e.g., IFN-γ, IL-17A, TNF-α), transcription factors (e.g., STAT1, NF-κB, E2F, RUNX1) and chromatin modifiers (SETDB1). We identified an interferon-induced DEM with genes encoding anti-viral proteins (designated “STAT1-57”), which was activated in psoriatic epidermis but repressed following biologic therapy. Genes within this DEM shared a motif near the transcription start site resembling the interferon-stimulated response element (ISRE). Conclusions We analyzed a large patient cohort and developed a new approach for delineating epidermis-specific pathways and regulatory mechanisms that underlie altered gene expression in psoriasis. Our findings highlight previously unrecognized “transcription circuits” that can provide targets for development of non-systemic therapies.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Andrew Johnston
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Xianying Xing
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - John J. Voorhees
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - James T. Elder
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| |
Collapse
|