1
|
Ariffianto A, Deng L, Abe T, Matsui C, Ito M, Ryo A, Aly HH, Watashi K, Suzuki T, Mizokami M, Matsuura Y, Shoji I. Oxidative stress sensor Keap1 recognizes HBx protein to activate the Nrf2/ARE signaling pathway, thereby inhibiting hepatitis B virus replication. J Virol 2023; 97:e0128723. [PMID: 37800948 PMCID: PMC10617466 DOI: 10.1128/jvi.01287-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is one of the most important defense mechanisms against oxidative stress. We previously reported that a cellular hydrogen peroxide scavenger protein, peroxiredoxin 1, a target gene of transcription factor Nrf2, acts as a novel HBV X protein (HBx)-interacting protein and negatively regulates hepatitis B virus (HBV) propagation through degradation of HBV RNA. This study further demonstrates that the Nrf2/ARE signaling pathway is activated during HBV infection, eventually leading to the suppression of HBV replication. We provide evidence suggesting that Keap1 interacts with HBx, leading to Nrf2 activation and inhibition of HBV replication via suppression of HBV core promoter activity. This study raises the possibility that activation of the Nrf2/ARE signaling pathway is a potential therapeutic strategy against HBV. Our findings may contribute to an improved understanding of the negative regulation of HBV replication by the antioxidant response.
Collapse
Affiliation(s)
- Adi Ariffianto
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hussein Hassan Aly
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masashi Mizokami
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Phatak P, Tulapurkar ME, Burrows WM, Donahue JM. MiR-199a-5p Decreases Esophageal Cancer Cell Proliferation Partially through Repression of Jun-B. Cancers (Basel) 2023; 15:4811. [PMID: 37835506 PMCID: PMC10571772 DOI: 10.3390/cancers15194811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA (miR)-199a-5p has been shown to function as a tumor suppressor in some malignancies but its role in esophageal cancer is poorly understood. To further explore its role in esophageal cancer, we sought to investigate the interaction between miR-199a-5p and Jun-B, an important component of the AP1 transcription factor, which contains a potential binding site for miR-199a-5p in its mRNA. We found that levels of miR-199a-5p are reduced in both human esophageal cancer specimens and in multiple esophageal cancer cell lines compared to esophageal epithelial cells. Jun-B expression is correspondingly elevated in these tumor specimens and in several cell lines compared to esophageal epithelial cells. Jun-B mRNA expression and stability, as well as protein expression, are markedly decreased following miR-199a-5p overexpression. A direct interaction between miR-199a-5p and Jun-B mRNA was confirmed by a biotinylated RNA-pull down assay and luciferase reporter constructs. Either forced expression of miR-199a-5p or Jun-B silencing led to a significant decrease in cellular proliferation as well as in AP-1 promoter activity. Our results provide evidence that miR-199a-5p functions as a tumor suppressor in esophageal cancer cells by regulating cellular proliferation, partially through repression of Jun B.
Collapse
Affiliation(s)
- Pornima Phatak
- Birmingham Veterans Affairs Health Care System, Birmingham, AL 35233, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mohan E. Tulapurkar
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Whitney M. Burrows
- Department of Surgery Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - James M. Donahue
- Birmingham Veterans Affairs Health Care System, Birmingham, AL 35233, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
3
|
Pan Y, Xia H, He Y, Zeng S, Shen Z, Huang W. The progress of molecules and strategies for the treatment of HBV infection. Front Cell Infect Microbiol 2023; 13:1128807. [PMID: 37009498 PMCID: PMC10053227 DOI: 10.3389/fcimb.2023.1128807] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatitis B virus infections have always been associated with high levels of mortality. In 2019, hepatitis B virus (HBV)-related diseases resulted in approximately 555,000 deaths globally. In view of its high lethality, the treatment of HBV infections has always presented a huge challenge. The World Health Organization (WHO) came up with ambitious targets for the elimination of hepatitis B as a major public health threat by 2030. To accomplish this goal, one of the WHO's strategies is to develop curative treatments for HBV infections. Current treatments in a clinical setting included 1 year of pegylated interferon alpha (PEG-IFNα) and long-term nucleoside analogues (NAs). Although both treatments have demonstrated outstanding antiviral effects, it has been difficult to develop a cure for HBV. The reason for this is that covalently closed circular DNA (cccDNA), integrated HBV DNA, the high viral burden, and the impaired host immune responses all hinder the development of a cure for HBV. To overcome these problems, there are clinical trials on a number of antiviral molecules being carried out, all -showing promising results so far. In this review, we summarize the functions and mechanisms of action of various synthetic molecules, natural products, traditional Chinese herbal medicines, as clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas)-based systems, zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), all of which could destroy the stability of the HBV life cycle. In addition, we discuss the functions of immune modulators, which can enhance or activate the host immune system, as well some representative natural products with anti-HBV effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Tsuge M. The association between hepatocarcinogenesis and intracellular alterations due to hepatitis B virus infection. Liver Int 2021; 41:2836-2848. [PMID: 34559952 DOI: 10.1111/liv.15065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide health problem leading to severe liver dysfunction, including liver cirrhosis and hepatocellular carcinoma. Although current antiviral therapies for chronic HBV infection have been improved and can lead to a strong suppression of viral replication, it is difficult to completely eliminate the virus with these therapies once chronic HBV infection is established in the host. Furthermore, chronic HBV infection alters intracellular metabolism and signalling pathways, resulting in the activation of carcinogenesis in the liver. HBV produces four viral proteins: hepatitis B surface-, hepatitis B core-, hepatitis B x protein, and polymerase; each plays an important role in HBV replication and the intracellular signalling pathways associated with hepatocarcinogenesis. In vitro and in vivo experimental models for analyzing HBV infection and replication have been established, and gene expression analyses using microarrays or next-generation sequencing have also been developed. Thus, it is possible to clarify the molecular mechanisms for intracellular alterations, such as endoplasmic reticulum stress, oxidative stress, and epigenetic modifications. In this review, the impact of HBV viral proteins and intracellular alterations in HBV-associated hepatocarcinogenesis are discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan.,Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021; 712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, 18014, Spain.
| | - Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; School of Medicine, University of Crete, 70013, Herakleion, Crete, Greece.
| |
Collapse
|
6
|
Van Damme E, Vanhove J, Severyn B, Verschueren L, Pauwels F. The Hepatitis B Virus Interactome: A Comprehensive Overview. Front Microbiol 2021; 12:724877. [PMID: 34603251 PMCID: PMC8482013 DOI: 10.3389/fmicb.2021.724877] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of a prophylactic vaccine, chronic hepatitis B (CHB) caused by the hepatitis B virus (HBV) is a major health problem affecting an estimated 292 million people globally. Current therapeutic goals are to achieve functional cure characterized by HBsAg seroclearance and the absence of HBV-DNA after treatment cessation. However, at present, functional cure is thought to be complicated due to the presence of covalently closed circular DNA (cccDNA) and integrated HBV-DNA. Even if the episomal cccDNA is silenced or eliminated, it remains unclear how important the high level of HBsAg that is expressed from integrated HBV DNA is for the pathology. To identify therapies that could bring about high rates of functional cure, in-depth knowledge of the virus' biology is imperative to pinpoint mechanisms for novel therapeutic targets. The viral proteins and the episomal cccDNA are considered integral for the control and maintenance of the HBV life cycle and through direct interaction with the host proteome they help create the most optimal environment for the virus whilst avoiding immune detection. New HBV-host protein interactions are continuously being identified. Unfortunately, a compendium of the most recent information is lacking and an interactome is unavailable. This article provides a comprehensive review of the virus-host relationship from viral entry to release, as well as an interactome of cccDNA, HBc, and HBx.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jolien Vanhove
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium.,Early Discovery Biology, Charles River Laboratories, Beerse, Belgium
| | - Bryan Severyn
- Janssen Research & Development, Janssen Pharmaceutical Companies, Springhouse, PA, United States
| | - Lore Verschueren
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| |
Collapse
|
7
|
Tsuge M. Are Humanized Mouse Models Useful for Basic Research of Hepatocarcinogenesis through Chronic Hepatitis B Virus Infection? Viruses 2021; 13:v13101920. [PMID: 34696350 PMCID: PMC8541657 DOI: 10.3390/v13101920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global health problem that can lead to liver dysfunction, including liver cirrhosis and hepatocellular carcinoma (HCC). Current antiviral therapies can control viral replication in patients with chronic HBV infection; however, there is a risk of HCC development. HBV-related proteins may be produced in hepatocytes regardless of antiviral therapies and influence intracellular metabolism and signaling pathways, resulting in liver carcinogenesis. To understand the mechanisms of liver carcinogenesis, the effect of HBV infection in human hepatocytes should be analyzed. HBV infects human hepatocytes through transfer to the sodium taurocholate co-transporting polypeptide (NTCP). Although the NTCP is expressed on the hepatocyte surface in several animals, including mice, HBV infection is limited to human primates. Due to this species-specific liver tropism, suitable animal models for analyzing HBV replication and developing antivirals have been lacking since the discovery of the virus. Recently, a humanized mouse model carrying human hepatocytes in the liver was developed based on several immunodeficient mice; this is useful for analyzing the HBV life cycle, antiviral effects of existing/novel antivirals, and intracellular signaling pathways under HBV infection. Herein, the usefulness of human hepatocyte chimeric mouse models in the analysis of HBV-associated hepatocarcinogenesis is discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Department of Biomedical Science, Research and Development Division, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; ; Tel.: +81-82-257-1510
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
8
|
Bernard BJ, Nigam N, Burkitt K, Saloura V. SMYD3: a regulator of epigenetic and signaling pathways in cancer. Clin Epigenetics 2021; 13:45. [PMID: 33637115 PMCID: PMC7912509 DOI: 10.1186/s13148-021-01021-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Chromatin modifiers and their implications in oncogenesis have been an exciting area of cancer research. These are enzymes that modify chromatin via post-translational modifications such as methylation, acetylation, sumoylation, phosphorylation, in addition to others. Depending on the modification, chromatin modifiers can either promote or repress transcription. SET and MYN-domain containing 3 (SMYD3) is a chromatin modifier that has been implicated in the development and progression of various cancer types. It was first reported to tri-methylate Histone 3 Lysine 4 (H3K4), a methylation mark known to promote transcription. However, since this discovery, other histone (H4K5 and H4K20, for example) and non-histone (VEGFR, HER2, MAP3K2, ER, and others) substrates of SMYD3 have been described, primarily in the context of cancer. This review aims to provide a background on basic characteristics of SMYD3, such as its protein structure and tissue expression profiles, discuss reported histone and non-histone substrates of SMYD3, and underscore prognostic and functional implications of SMYD3 in cancer. Finally, we briefly discuss ongoing efforts to develop inhibitors of SMYD3 for future therapeutic use. It is our hope that this review will help synthesize existing research on SMYD3 in an effort to propel future discovery.
Collapse
Affiliation(s)
- Benjamin J Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | - Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | | | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA.
| |
Collapse
|
9
|
Alexopoulou A, Vasilieva L, Karayiannis P. New Approaches to the Treatment of Chronic Hepatitis B. J Clin Med 2020; 9:jcm9103187. [PMID: 33019573 PMCID: PMC7601587 DOI: 10.3390/jcm9103187] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The currently recommended treatment for chronic hepatitis B virus (HBV) infection achieves only viral suppression whilst on therapy, but rarely hepatitis B surface antigen (HBsAg) loss. The ultimate therapeutic endpoint is the combination of HBsAg loss, inhibition of new hepatocyte infection, elimination of the covalently closed circular DNA (cccDNA) pool, and restoration of immune function in order to achieve virus control. This review concentrates on new antiviral drugs that target different stages of the HBV life cycle (direct acting antivirals) and others that enhance both innate and adaptive immunity against HBV (immunotherapy). Drugs that block HBV hepatocyte entry, compounds that silence or deplete the cccDNA pool, others that affect core assembly, agents that degrade RNase-H, interfering RNA molecules, and nucleic acid polymers are likely interventions in the viral life cycle. In the immunotherapy category, molecules that activate the innate immune response such as Toll-like-receptors, Retinoic acid Inducible Gene-1 (RIG-1) and stimulator of interferon genes (STING) agonists or checkpoint inhibitors, and modulation of the adaptive immunity by therapeutic vaccines, vector-based vaccines, or adoptive transfer of genetically-engineered T cells aim towards the restoration of T cell function. Future therapeutic trends would likely be a combination of one or more of the aforementioned drugs that target the viral life cycle and at least one immunomodulator.
Collapse
Affiliation(s)
- Alexandra Alexopoulou
- Department of Medicine, Medical School, National & Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-2132-088-178; Fax: +30-2107-706-871
| | - Larisa Vasilieva
- Department of Medicine, Medical School, National & Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece;
| | - Peter Karayiannis
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Engomi, CY-1700 Nicosia, Cyprus;
| |
Collapse
|
10
|
Binh MT, Hoan NX, Giang DP, Tong HV, Bock CT, Wedemeyer H, Toan NL, Bang MH, Kremsner PG, Meyer CG, Song LH, Velavan TP. Upregulation of SMYD3 and SMYD3 VNTR 3/3 polymorphism increase the risk of hepatocellular carcinoma. Sci Rep 2020; 10:2797. [PMID: 32071406 PMCID: PMC7029004 DOI: 10.1038/s41598-020-59667-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
SMYD3 (SET and MYND domain-containing protein 3) is involved in histone modification, which initiates oncogenesis by activating transcription of multiple downstream genes. To investigate associations of variable numbers of tandem repeats (VNTR) variants in the SMYD3 gene promoter, SMYD3 serum levels and SMYD3 mRNA expression in hepatitis B virus (HBV) infection and clinical progression of related liver disease. SMYD3 VNTRs were genotyped in 756 HBV patients and 297 healthy controls. SMYD3 serum levels were measured in 293 patients and SMYD3 mRNA expression was quantified in 48 pairs of hepatocellular tumor and adjacent non-tumor liver tissues. Genotype SYMD3 VNTR 3/3 was more frequent among HCC patients than in controls (Padjusted = 0.037). SMYD3 serum levels increased according to clinical progression of liver diseases (P = 0.01); HCC patients had higher levels than non-HCC patients (P = 0.04). Among patients with SMYD3 VNTR 3/3, HCC patients had higher SMYD3 levels than others (P < 0.05). SMYD3 mRNA expression was up-regulated in HCC tumor tissues compared to other tissues (P = 0.008). In conclusion, upregulation of SMYD3 correlates with the occurrence of HCC and SMYD3 VNTR 3/3 appears to increase the risk of HCC through increasing SMYD3 levels. SMYD3 may be an indicator for HCC development in HBV patients.
Collapse
Affiliation(s)
- Mai Thanh Binh
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam.,108 Military Central Hospital, Hanoi, Vietnam
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam.,108 Military Central Hospital, Hanoi, Vietnam
| | - Dao Phuong Giang
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam.,108 Military Central Hospital, Hanoi, Vietnam
| | - Hoang Van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam.,Vietnam Military Medical University, Hanoi, Vietnam
| | - C-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nguyen Linh Toan
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam.,Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam.,Duy Tan University, Da Nang, Vietnam
| | - Le Huu Song
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam.,108 Military Central Hospital, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany. .,Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam. .,Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
11
|
Chen J, He Z, Yuan Y, Huang F, Luo B, Zhang J, Pan T, Zhang H, Zhang J. Host factor SMYD3 is recruited by Ebola virus nucleoprotein to facilitate viral mRNA transcription. Emerg Microbes Infect 2020; 8:1347-1360. [PMID: 31516086 PMCID: PMC6758638 DOI: 10.1080/22221751.2019.1662736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polymerase complex of Ebola virus (EBOV) is the functional unit for transcription and replication of viral genome. Nucleoprotein (NP) is a multifunctional protein with high RNA binding affinity and recruits other viral proteins to form functional polymerase complex. In our study, we investigated host proteins associated with EBOV polymerase complex using NP as bait in a transcription and replication competent minigenome system by mass spectrometry analysis and identified SET and MYND domain-containing protein 3 (SMYD3) as a novel host protein which was required for the replication of EBOV. SMYD3 specifically interacted with NP and was recruited to EBOV inclusion bodies through NP. The depletion of SMYD3 dramatically suppressed EBOV mRNA production. A mimic of non-phosphorylated VP30, which is a transcription activator, could partially rescue the viral mRNA production downregulated by the depletion of SMYD3. In addition, SMYD3 promoted NP-VP30 interaction in a dose-dependent manner. These results revealed that SMYD3 was a novel host factor recruited by NP to supporting EBOV mRNA transcription through increasing the binding of VP30 to NP. Thus, our study provided a new understanding of mechanism underlying the transcription of EBOV genome, and a novel anti-EBOV drug design strategy by targeting SMYD3.
Collapse
Affiliation(s)
- Jingliang Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Zhangping He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Feng Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China.,Department of Respiration, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Baohong Luo
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Jianhua Zhang
- CAS Key Laboratory for Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Junsong Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| |
Collapse
|
12
|
Mirzaei H, Khodadad N, Karami C, Pirmoradi R, Khanizadeh S. The AP-1 pathway; A key regulator of cellular transformation modulated by oncogenic viruses. Rev Med Virol 2019; 30:e2088. [PMID: 31788897 DOI: 10.1002/rmv.2088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Cancer progression is critically associated with modulation of host cell signaling pathways. Activator protein-1 (AP-1) signaling is one such pathway whose deregulation renders the host more susceptible to cancer development. Oncogenic viruses, including hepatitis B virus, hepatitis C virus, human papilloma virus, Epstein-Barr virus, human T-cell lymphotropic virus type 1, and Kaposi's sarcoma-associated herpes virus, are common causes of cancer. This review discusses how these oncoviruses by acting through various aspects of the host cell signaling machinery such as the AP-1 pathway might affect oncoviral tumorigenesis, replication, and pathogenesis. The review also briefly considers how the pathway might be targeted during infections with these oncogenic viruses.
Collapse
Affiliation(s)
- Habibollah Mirzaei
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Khodadad
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Disease Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Chiman Karami
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Disease Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Pirmoradi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Bloom K, Kaldine H, Cathomen T, Mussolino C, Ely A, Arbuthnot P. Inhibition of replication of hepatitis B virus using transcriptional repressors that target the viral DNA. BMC Infect Dis 2019; 19:802. [PMID: 31510934 PMCID: PMC6739920 DOI: 10.1186/s12879-019-4436-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic infection with hepatitis B virus (HBV) is a serious global health problem. Persistence of the virus occurs as a result of stability of the replication intermediate comprising covalently closed circular DNA (cccDNA). Development of drugs that are capable of disabling this cccDNA is vital. METHODS To investigate an epigenetic approach to inactivating viral DNA, we engineered transcriptional repressors that comprise an HBV DNA-binding domain of transcription activator like effectors (TALEs) and a fused Krüppel Associated Box (KRAB). These repressor TALEs (rTALEs) targeted the viral surface open reading frame and were placed under transcription control of constitutively active or liver-specific promoters. RESULTS Evaluation in cultured cells and following hydrodynamic injection of mice revealed that the rTALEs significantly inhibited production of markers of HBV replication without evidence of hepatotoxicity. Increased methylation of HBV DNA at CpG island II showed that the rTALEs caused intended epigenetic modification. CONCLUSIONS Epigenetic modification of HBV DNA is a new and effective means of inactivating the virus in vivo. The approach has therapeutic potential and avoids potentially problematic unintended mutagenesis of gene editing.
Collapse
Affiliation(s)
- Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| | - Haajira Kaldine
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa.
| |
Collapse
|
14
|
Chen Z, Yu W, Zhou Q, Zhang J, Jiang H, Hao D, Wang J, Zhou Z, He C, Xiao Z. A Novel lncRNA IHS Promotes Tumor Proliferation and Metastasis in HCC by Regulating the ERK- and AKT/GSK-3β-Signaling Pathways. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:707-720. [PMID: 31128422 PMCID: PMC6535504 DOI: 10.1016/j.omtn.2019.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in a variety of biological processes such as tumor proliferation and metastasis. A close relationship between hepatitis B virus X protein (HBx) and SMYD3 in promoting the proliferation and metastasis of hepatocellular carcinoma (HCC) was recently reported. However, the exact oncogenic mechanism of HBx-SMYD3 remains unknown. In this study, by performing lncRNA microarray analysis, we identified a novel lncRNA that was regulated by both HBx and SMYD3, and we named it lncIHS (lncRNA intersection between HBx microarray and SMYD3 microarray). lncIHS was overexpressed in HCC and decreased the survival rate of HCC patients. Knockdown of lncIHS inhibited HCC cell migration, invasion, and proliferation, and vice versa. Further study showed that lncIHS positively regulated the expression of epithelial mesenchymal transition (EMT)-related markers c-Myc and Cyclin D1, as well as the activation of the ERK- and AKT-signaling pathways. lncIHS exerted its oncogenic effect through ERK and AKT signaling. Moreover, results from transcriptome-sequencing analysis and mass spectrometry showed that lncIHS regulated multiple genes that were the upstream molecules of the ERK- and AKT-signaling pathways. Therefore, our findings suggest a regulatory network of ERK and AKT signaling through lncIHS, which is downstream of HBx-SMYD3, and they indicate that lncIHS may be a potential target for treating HCC.
Collapse
Affiliation(s)
- Zheng Chen
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Yu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiming Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jianlong Zhang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hai Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Jie Wang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhenyu Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Chuanchao He
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Zhiyu Xiao
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
15
|
Peroxiredoxin 1, a Novel HBx-Interacting Protein, Interacts with Exosome Component 5 and Negatively Regulates Hepatitis B Virus (HBV) Propagation through Degradation of HBV RNA. J Virol 2019; 93:JVI.02203-18. [PMID: 30567989 DOI: 10.1128/jvi.02203-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor for the development of chronic liver diseases, including cirrhosis and hepatocellular carcinoma (HCC). A growing body of evidence suggests that HBV X protein (HBx) plays a crucial role in viral replication and HCC development. Here, we identified peroxiredoxin 1 (Prdx1), a cellular hydrogen peroxide scavenger, as a novel HBx-interacting protein. Coimmunoprecipitation analysis coupled with site-directed mutagenesis revealed that the region from amino acids 17 to 20 of the HBx, particularly HBx Cys17, is responsible for the interaction with Prdx1. Knockdown of Prdx1 by siRNA significantly increased the levels of intracellular HBV RNA, HBV antigens, and extracellular HBV DNA, whereas knockdown of Prdx1 did not increase the activities of HBV core, enhancer I (Enh1)/X, preS1, and preS2/S promoters. Kinetic analysis of HBV RNA showed that knockdown of Prdx1 inhibited HBV RNA decay, suggesting that Prdx1 reduces HBV RNA levels posttranscriptionally. The RNA coimmunoprecipitation assay revealed that Prdx1 interacted with HBV RNA. The exosome component 5 (Exosc5), a member of the RNA exosome complexes, was coimmunoprecipitated with Prdx1, suggesting its role in regulation of HBV RNA stability. Taken together, these results suggest that Prdx1 and Exosc5 play crucial roles in host defense mechanisms against HBV infection.IMPORTANCE Hepatitis B virus (HBV) infection is a major global health problem. HBx plays important roles in HBV replication and viral carcinogenesis through its interaction with host factors. In this study, we identified Prdx1 as a novel HBx-binding protein. We provide evidence suggesting that Prdx1 promotes HBV RNA decay through interaction with HBV RNA and Exosc5, leading to downregulation of HBV RNA. These results suggest that Prdx1 negatively regulates HBV propagation. Our findings may shed new light on the roles of Prdx1 and Exosc5 in host defense mechanisms in HBV infection.
Collapse
|
16
|
Bloom K, Maepa MB, Ely A, Arbuthnot P. Gene Therapy for Chronic HBV-Can We Eliminate cccDNA? Genes (Basel) 2018; 9:E207. [PMID: 29649127 PMCID: PMC5924549 DOI: 10.3390/genes9040207] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) is a global health concern and accounts for approximately 1 million deaths annually. Amongst other limitations of current anti-HBV treatment, failure to eliminate the viral covalently closed circular DNA (cccDNA) and emergence of resistance remain the most worrisome. Viral rebound from latent episomal cccDNA reservoirs occurs following cessation of therapy, patient non-compliance, or the development of escape mutants. Simultaneous viral co-infections, such as by HIV-1, further complicate therapeutic interventions. These challenges have prompted development of novel targeted hepatitis B therapies. Given the ease with which highly specific and potent nucleic acid therapeutics can be rationally designed, gene therapy has generated interest for antiviral application. Gene therapy strategies developed for HBV include gene silencing by harnessing RNA interference, transcriptional inhibition through epigenetic modification of target DNA, genome editing by designer nucleases, and immune modulation with cytokines. DNA-binding domains and effectors based on the zinc finger (ZF), transcription activator-like effector (TALE), and clustered regularly interspaced short palindromic repeat (CRISPR) systems are remarkably well suited to targeting episomal cccDNA. This review discusses recent developments and challenges facing the field of anti-HBV gene therapy, its potential curative significance and the progress towards clinical application.
Collapse
Affiliation(s)
- Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa.
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa.
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa.
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa.
| |
Collapse
|
17
|
Minami N, Abe T, Deng L, Matsui C, Fukuhara T, Matsuura Y, Shoji I. Unconjugated interferon-stimulated gene 15 specifically interacts with the hepatitis C virus NS5A protein via domain I. Microbiol Immunol 2017; 61:287-292. [PMID: 28543875 DOI: 10.1111/1348-0421.12493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022]
Abstract
Interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein, is induced by type I INF. Although several groups have reported ISGylation of the HCV NS5A protein, it is still unclear whether ISGylation of NS5A has anti- or pro-viral effects in hepatitis C virus (HCV) infection. In the present study, the role of ISGylation-independent, unconjugated ISG15 in HCV infection was examined. Immunoprecipitation analyses revealed that ISG15 interacts specifically with NS5A domain I. ISG15 mutants lacking the C-terminal glycine residue that is essential for ISGylation still interacted with NS5A protein. Taken together, these results suggest that unconjugated ISG15 affects the functions of HCV NS5A through protein-protein interaction.
Collapse
Affiliation(s)
- Nanae Minami
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017
| |
Collapse
|
18
|
Chen M, Gan X, Yoshino KI, Kitakawa M, Shoji I, Deng L, Hotta H. Hepatitis C virus NS5A protein interacts with lysine methyltransferase SET and MYND domain-containing 3 and induces activator protein 1 activation. Microbiol Immunol 2017; 60:407-17. [PMID: 27080060 DOI: 10.1111/1348-0421.12383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/10/2016] [Indexed: 12/27/2022]
Abstract
Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is a multifunctional protein that is involved in the HCV life cycle and pathogenesis. In this study, a host protein(s) interacting with NS5A by tandem affinity purification were searched for with the aim of elucidating the role of NS5A. An NS5A-interacting protein, SET and MYND domain-containing 3 (SMYD3), a lysine methyltransferase reportedly involved in the development of cancer, was identified. The interaction between NS5A and SMYD3 was confirmed in ectopically expressing, HCV RNA replicon-harboring and HCV-infected cells. The other HCV proteins did not bind to SMYD3. SMYD3 bound to NS5A of HCV genotypes 1b and 2a. Deletion mutational analysis revealed that domains II and III of NS5A (amino acids [aa] 250 to 447) and the MYND and N-SET domains of SMYD3 (aa 1 to 87) are involved in the full extent of NS5A-SMYD3 interaction. NS5A co-localized with SMYD3 exclusively in the cytoplasm, thereby inhibiting nuclear localization of SMYD3. Moreover, NS5A formed a complex with SMYD3 and heat shock protein 90 (HSP90), which is a positive regulator of SMYD3. The intensity of binding between SMYD3 and HSP90 was enhanced by NS5A. Luciferase reporter assay demonstrated that NS5A significantly induces activator protein 1 (AP-1) activity, this being potentiated by co-expression of SMYD3 with NS5A. Taken together, the present results suggest that NS5A interacts with SMYD3 and induces AP-1 activation, possibly by facilitating binding between HSP90 and SMYD3. This may be a novel mechanism of AP-1 activation in HCV-infected cells.
Collapse
Affiliation(s)
- Ming Chen
- Division of Microbiology.,Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Xiang Gan
- Division of Microbiology.,Institute of Biochemistry and Molecular Biology, Hubei University, Wuhan, China
| | | | | | - Ikuo Shoji
- Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Lin Deng
- Division of Microbiology.,Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Hak Hotta
- Division of Microbiology.,Department of Oral Vaccine and Drug Development, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
19
|
Rajajeyabalachandran G, Kumar S, Murugesan T, Ekambaram S, Padmavathy R, Jegatheesan SK, Mullangi R, Rajagopal S. Therapeutical potential of deregulated lysine methyltransferase SMYD3 as a safe target for novel anticancer agents. Expert Opin Ther Targets 2016; 21:145-157. [PMID: 28019723 DOI: 10.1080/14728222.2017.1272580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION SET and MYND domain containing-3 (SMYD3) is a member of the lysine methyltransferase family of proteins, and plays an important role in the methylation of various histone and non-histone targets. Proper functioning of SMYD3 is very important for the target molecules to determine their different roles in chromatin remodeling, signal transduction and cell cycle control. Due to the abnormal expression of SMYD3 in tumors, it is projected as a prognostic marker in various solid cancers. Areas covered: Here we elaborate on the general information, structure and the pathological role of SMYD3 protein. We summarize the role of SMYD3-mediated protein interactions in oncology pathways, mutational effects and regulation of SMYD3 in specific types of cancer. The efficacy and mechanisms of action of currently available SMYD3 small molecule inhibitors are also addressed. Expert opinion: The findings analyzed herein demonstrate that aberrant levels of SMYD3 protein exert tumorigenic effects by altering the epigenetic regulation of target genes. The partial involvement of SMYD3 in some distinct pathways provides a vital opportunity in targeting cancer effectively with fewer side effects. Further, identification and co-targeting of synergistic oncogenic pathways is suggested, which could provide much more beneficial effects for the treatment of solid cancers.
Collapse
Affiliation(s)
| | - Swetha Kumar
- a Bioinformatics, Jubilant Biosys Ltd ., Bangalore , India
| | | | | | | | | | | | | |
Collapse
|