1
|
Chen X, Zhang D, Wang T, Ma W. Ruxolitinib Treatment During Myelofibrosis Leads to Cutaneous Mycobacterium marinum Infection: A Case Report. Clin Cosmet Investig Dermatol 2023; 16:1499-1503. [PMID: 37333514 PMCID: PMC10276565 DOI: 10.2147/ccid.s413592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023]
Abstract
Mycobacterium marinum is an atypical bacterium, and skin infections caused by it are relatively rare, usually occurring in workers engaged in seafood processing and housewives who clean and prepare fish for consumption. The infection often occurs after the skin is punctured by fish scales, spines, etc. The JAK/STAT signaling pathway is closely related to the human immune response to infections. Therefore, JAK inhibitors may induce and exacerbate various infections in clinical practice. This article reports a case of mycobacterium marinum skin infection in the left upper limb of a female patient with chronic idiopathic myelofibrosis during treatment with ruxolitinib. The patient denied being punctured or scratched by fish scales or spines. Clinical manifestations included multiple infiltrative erythemas and subcutaneous nodules in the thumb and forearm. Histopathological examination showed infiltration of mixed acute and chronic inflammatory cells in the subcutaneous tissue. The diagnosis was ultimately confirmed by NGS sequencing. The patient was cured after taking moxifloxacin and clarithromycin for 10 months. Infection is a common adverse reaction of JAK inhibitors, but no literature has reported on mycobacterium marinum skin infections occurring during JAK inhibitor treatment, which is relatively rare. As the clinical application of JAK inhibitors becomes more widespread, the skin infections they cause may present in various forms and require the attention of clinicians.
Collapse
Affiliation(s)
- Xiaonan Chen
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China
| | - Dong Zhang
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China
| | - Teng Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China
| |
Collapse
|
2
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
3
|
Han L, Lu Y, Wang X, Zhang S, Wang Y, Wu F, Zhang W, Wang X, Zhang L. Regulatory role and mechanism of the inhibition of the Mcl-1 pathway during apoptosis and polarization of H37Rv-infected macrophages. Medicine (Baltimore) 2020; 99:e22438. [PMID: 33080678 PMCID: PMC7572003 DOI: 10.1097/md.0000000000022438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Myeloid cell leukemia-1 (Mcl-1) plays an important role in the clearance of Mycobacterium tuberculosis (MTB) infection. It has the effect of anti-apoptosis, protecting macrophages that have engulfed pathogens and preventing pathogen clearance. Meanwhile, the MAPK signaling pathway plays a significant role in regulating Mcl-1 expression during tuberculosis infection. In the case of latent infection and active infection, the apoptosis and polarization of macrophages have a great influence during MTB infection, so we discussed the effect of Mcl-1 on apoptosis and polarization. Then, further discussed its mechanism. METHODS An infected RAW264.7 macrophage model was established to investigate the regulatory role and mechanism of the Mcl-1 pathway inhibition during apoptosis and polarization of H37Rv infection. First, Mcl-1 protein and mRNA was identified by western blotting and Real-Time Polymerase Chain Reaction (RT-PCR). RAW264.7 macrophage apoptosis was detected by flow cytometry. RT-PCR was utilized to detect Bax, Caspase-3, Cyt-c and Bcl-2 mRNA expression. Next, Then the expression levels of inflammation factors CD86, CD206, iNOS, Fizz1, IL-6, IL-10, TNF-α, and TGF-β was detected by ELISA. SEM was used to observe macrophages phenotype. Finally, Bax, Bcl-2 and Bcl-xl the expression was detected by western blotting. Confocal microscopy was used to analyze mitochondrial membrane potential using the JC-10 kit. RESULTS In this study, we found that inhibiting the Mcl-1 expression signaling pathway led to infection by different virulence Mycobacterium tuberculosis, as well as changes in Mcl-1 protein and mRNA expression. Concomitantly macrophage apoptosis rate also changed, While, two phenotypic states of M1 and M2 appeared in the infected cells. We also found that the mitochondrial pathway was activated, the expression of its related genes Bax, casepase3, and Cyt-c, increased, whereas that of Bcl-2 decreased, and the mitochondrial membrane depolarization function was changed. CONCLUSIONS We found that Mcl-1 affected the apoptosis and polarization of macrophages infected by Mycobacterium tuberculosis, mainly M1 in the early stage and M2 in the later stage. In addition, mitochondria played a crucial role in this process.
Collapse
Affiliation(s)
- Ling Han
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yang Lu
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Xiaofang Wang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Shujun Zhang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yingzi Wang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Fang Wu
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Wanjiang Zhang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Xinmin Wang
- Department of Urinary Surgery, The First Affiliated Hospital, Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Le Zhang
- Department of Pathophysiology, the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| |
Collapse
|
4
|
Fontaine MAC, Westra MM, Bot I, Jin H, Franssen AJPM, Bot M, de Jager SCA, Dzhagalov I, He YW, van Vlijmen BJM, Gijbels MJJ, Reutelingsperger CP, van Berkel TJC, Sluimer JC, Temmerman L, Biessen EAL. Low human and murine Mcl-1 expression leads to a pro-apoptotic plaque phenotype enriched in giant-cells. Sci Rep 2019; 9:14547. [PMID: 31601924 PMCID: PMC6787218 DOI: 10.1038/s41598-019-51020-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
The anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) plays an important role in survival and differentiation of leukocytes, more specifically of neutrophils. Here, we investigated the impact of myeloid Mcl-1 deletion in atherosclerosis. Western type diet fed LDL receptor-deficient mice were transplanted with either wild-type (WT) or LysMCre Mcl-1fl/fl (Mcl-1−/−) bone marrow. Mcl-1 myeloid deletion resulted in enhanced apoptosis and lipid accumulation in atherosclerotic plaques. In vitro, Mcl-1 deficient macrophages also showed increased lipid accumulation, resulting in increased sensitivity to lipid-induced cell death. However, plaque size, necrotic core and macrophage content were similar in Mcl-1−/− compared to WT mice, most likely due to decreased circulating and plaque-residing neutrophils. Interestingly, Mcl-1−/− peritoneal foam cells formed up to 45% more multinucleated giant cells (MGCs) in vitro compared to WT, which concurred with an increased MGC presence in atherosclerotic lesions of Mcl-1−/− mice. Moreover, analysis of human unstable atherosclerotic lesions also revealed a significant inverse correlation between MGC lesion content and Mcl-1 gene expression, coinciding with the mouse data. Taken together, these findings suggest that myeloid Mcl-1 deletion leads to a more apoptotic, lipid and MGC-enriched phenotype. These potentially pro-atherogenic effects are however counteracted by neutropenia in circulation and plaque.
Collapse
Affiliation(s)
- Margaux A C Fontaine
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marijke M Westra
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Han Jin
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Aimée J P M Franssen
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Martine Bot
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Saskia C A de Jager
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands.,Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ivan Dzhagalov
- Institue of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - You-Wen He
- Institue of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Bart J M van Vlijmen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Marion J J Gijbels
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Theo J C van Berkel
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Judith C Sluimer
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.,Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lieve Temmerman
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Erik A L Biessen
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
5
|
Lu Y, Wang X, Dong H, Wang X, Yang P, Han L, Wang Y, Zheng Z, Zhang W, Zhang L. Bioinformatics analysis of microRNA expression between patients with and without latent tuberculosis infections. Exp Ther Med 2019; 17:3977-3988. [PMID: 30988779 PMCID: PMC6447890 DOI: 10.3892/etm.2019.7424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is a globally prevalent infectious disease. The mechanisms of latent TB infection (LTBI) remain to be fully elucidated and may provide novel approaches for diagnosis. As therapeutic targets and molecular diagnostic markers, microRNAs (miRs) have been studied and utilized in various diseases. In the present study, the differentially expressed miRs (DEMs) in LTBI were screened and analyzed to determine the underlying mechanisms and identify potential biomarkers, thereby contributing to the diagnosis of LTBI. The GSE25435 and GSE29190 datasets from Gene Expression Omnibus were selected for analysis. The 2 datasets were analyzed individually using the Bioconductor package to screen the DEMs with specific cut-off criteria [P<0.01 and |log (fold change)|≥1]. Target gene prediction and interaction network construction were performed using Targetscan, the Search Tool for the Retrieval of Interacting Genes and Proteins and Cytoscape individually, and were merged using the latter tool. The hub genes were finally selected based on their degree of connectivity (DC). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the KEGG and GENCLIP. A total of 144 DEMs were identified from the 2 datasets. By exploring the overlapping miRs in the two datasets, Homo sapiens (hsa)-miR-29a and hsa-miR-15b were identified to be decreased, while hsa-miR-576-5p, hsa-miR-500 and hsa-miR-155 were identified to be upregulated. hsa-miR-500a-3p and hsa-miR-29a-3p, as well as 4 genes, namely cell division cycle (CDC)42, actin α1, skeletal muscle (ACTA1), phosphatase and tensin homolog (PTEN) and fos proto-oncogene (FOS), were selected as the key factors in this regulatory network. A total of 9 signaling pathways, including phosphoinositide-3 kinase (PI3K)/AKT and 11 biological processes, were identified to be associated with LTBI. In conclusion, the present analysis identified hsa-miR-500a-3p and hsa-miR-29a-3p, as well as CDC42, ACTA1, PTEN and FOS, as the most promising biomarkers and therapeutic candidates for LTBI. The PI3K/AKT signaling pathway is the key signaling pathway implicated in LTBI, and an in-depth investigation of the efficiency of PI3K/AKT signaling inhibitors may be used to prevent a chronic state of infection in LTBI.
Collapse
Affiliation(s)
- Yang Lu
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Xinmin Wang
- Department of Urinary Surgery, The First Affiliated Hospital, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Hongchang Dong
- Department of Biochemistry, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Xiaofang Wang
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Pu Yang
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Ling Han
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yingzi Wang
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Zhihong Zheng
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Wanjiang Zhang
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Le Zhang
- Department of Pathophysiology, The Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
6
|
Fu Y, Wang J, Qiao J, Yi Z. Signature of circular RNAs in peripheral blood mononuclear cells from patients with active tuberculosis. J Cell Mol Med 2018; 23:1917-1925. [PMID: 30565391 PMCID: PMC6378186 DOI: 10.1111/jcmm.14093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022] Open
Abstract
The study was to characterize the expression profiles of circular RNAs (circRNAs) in peripheral blood mononuclear cells (PBMCs) from active tuberculosis (TB) patients and to investigate their function. Microarray was applied to detect circRNA expression and reverse transcription‐quantitative polymerase chain reaction was conducted to validate the microarray results. Meanwhile, receiver operating characteristic curve (ROC) curve was calculated to evaluate the predictive power of the selected circRNAs for TB diagnosis. Additionally, circRNA/miRNA interaction was predicted based on miRNA target prediction software, and gene ontology as well as Kyoto Encyclopedia of Genes and Genomes pathway analysis were used to predict their biological function. In total, 171 circRNAs were found to be dysregulated in TB samples. Specifically, circRNA_103017, circRNA_059914 and circRNA_101128 were confirmed to be increased, while circRNA_062400 was decreased in TB samples. ROC analysis revealed that circRNA_103017 had potential value for TB diagnosis, followed by circRNA_059914 and circRNA_101128. Moreover, circRNA_101128 expression in TB samples was negatively correlated with the level of its possible target let‐7a and bioinformatics analysis showed that circRNA_101128 was potentially involved in MAPK and P13K‐Akt pathway possibly via modulation of let‐7a. Taken together, our results indicated that some dysregulated circRNAs were potential biomarkers for the diagnosis of TB and circRNA_101128‐let‐7a interplay may play considerable role in PBMCs response to Mtb infection.
Collapse
Affiliation(s)
- Yurong Fu
- Department of Medical Microbiology of Clinical Medicine College, Weifang Medical University, Weifang, Shandong Province, China.,Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong Province, China
| | - Jindong Wang
- Department of Medical Microbiology of Clinical Medicine College, Weifang Medical University, Weifang, Shandong Province, China
| | - Jinjuan Qiao
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong Province, China
| | - Zhengjun Yi
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
7
|
Zhang D, Yi Z, Fu Y. Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation. J Cell Biochem 2018; 120:5889-5896. [PMID: 30378171 DOI: 10.1002/jcb.27874] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb). The interaction between Mtb and macrophages, which is regulated by microRNAs, determines the development of TB. However, the function of microRNA-20b-5p (miR-20b-5p) in RAW 264.7 macrophages against Mtb remains unknown. In this study, we analyzed the expression level of miR-20b-5p in macrophage responses to Mtb infection and exosomes derived from macrophages after Mtb infection. MiR-20b-5p mimics and inhibitor were, respectively, transfected to evaluate the effect of miR-20b-5p on Mtb and macrophages. In addition, the targets of miR-20b-5p were predicted by a bioinformatics analysis. The macrophages were respectively transfected with miR-20b-5p mimics and inhibitor to determine the messenger RNA expression levels of the targets by reverse transcription-polymerase chain reaction assay. The results revealed that the miR-20b-5p expression level was decreased in the infected macrophages at different times. MiR-20b-5p was shown in the exosomes released from macrophages infected with Mtb. Upregulation of the miR-20b-5p level suppressed the survival of Mtb in macrophages, while downregulation of the miR-20b-5p level enhanced the survival of Mtb in macrophages. Overexpression of miR-20b-5p decreased the cell viability and induced apoptosis in Mtb-infected macrophages, while underexpression of miR-20b-5p increased the cell vitality and attenuated apoptosis in Mtb-infected macrophages. The bioinformatics analysis revealed that Mcl-1 was a target of miR-20b-5p. MiR-20b-5p negatively regulated the expression of Mcl-1. Overall, this study is the first to demonstrate the effect of miR-20b-5p on Mtb infection and present miR-20b-5p and exosomes as the potential therapeutic targets of TB.
Collapse
Affiliation(s)
- Defeng Zhang
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong, China
| | - Zhengjun Yi
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong, China.,Department of Medical Microbiology, Clinical Medicine College, Weifang Medical University, Weifang, Shandong, China
| | - Yurong Fu
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
8
|
E3 ligase FBXW7 aggravates TMPD-induced systemic lupus erythematosus by promoting cell apoptosis. Cell Mol Immunol 2018; 15:1057-1070. [PMID: 30275535 DOI: 10.1038/s41423-018-0167-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, and the pathogenesis of SLE has not been fully elucidated. The E3 ubiquitin ligase FBXW7 has been well characterized in cancer as a tumor suppressor that can promote the ubiquitination and subsequent degradation of various oncoproteins; however, the potential role of FBXW7 in autoimmune diseases is unclear. In the present study, we identified that FBXW7 is a crucial exacerbating factor for SLE development and progression in a mouse model induced by 2, 6, 10, 14-tetramethylpentadecane (TMPD). Myeloid cell-specific FBXW7-deficient (Lysm+FBXW7f/f) C57BL/6 mice showed decreased immune complex accumulation, glomerulonephritis, glomerular mesangial cell proliferation, and base-membrane thickness in the kidney. Lysm+FBXW7f/f mice produced fewer anti-Sm/RNP and anti-ANA autoantibodies and showed a decreased MHC II expression in B cells. In Lysm+FBXW7f/f mice, we observed that cell apoptosis was reduced and that fewer CD11b+Ly6Chi inflammatory monocytes were recruited to the peritoneal cavity. Consistently, diffuse pulmonary hemorrhage (DPH) was also decreased in Lysm+FBXW7f/f mice. Mechanistically, we clarified that FBXW7 promoted TMPD-induced cell apoptosis by catalyzing MCL1 degradation through K48-linked ubiquitination. Our work revealed that FBXW7 expression in myeloid cells played a crucial role in TMPD-induced SLE progression in mice, which may provide novel ideas and theoretical support for understanding the pathogenesis of SLE.
Collapse
|
9
|
Stutz MD, Pellegrini M. Mycobacterium tuberculosis: prePPARing and Maintaining the Replicative Niche. Trends Microbiol 2018; 26:813-814. [PMID: 30119946 DOI: 10.1016/j.tim.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Abstract
Mycobacterium tuberculosis interferes with the ability of its host cell to undergo apoptosis. Arnett et al. report that the pathogen promotes macrophage survival by engaging the nuclear receptor PPARγ to induce the antiapoptotic protein MCL-1, yielding insights into the pathogenesis of tuberculosis and potentially unlocking new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Michael D Stutz
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Lu Y, Wang XM, Yang P, Han L, Wang YZ, Zheng ZH, Wu F, Zhang WJ, Zhang L. Effect of gap junctions on RAW264.7 macrophages infected with H37Rv. Medicine (Baltimore) 2018; 97:e12125. [PMID: 30170447 PMCID: PMC6392813 DOI: 10.1097/md.0000000000012125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Apoptosis and inflammation have been shown to play an important role in the mechanisms involved in the pathogenesis of Mycobacterium tuberculosis (MTB) infection. When macrophages undergo apoptosis and polarization, gap junctions (GJs) may be needed to provide conditions for their functions. Connexin 43 (Cx43) and connexin 37 (Cx37) are the main connexins in macrophages that participate in the formation of GJ channels. METHODS An H37Rv infection RAW264.7 macrophage model was established to investigate the associate between connexins and host macrophage immune defense response after MTB infection. First, Real-time Polymerase Chian Reaction (RT-PCR) was used to detect the mRNA expression of Cx43 and Cx37. Cx43 protein expression and location was detected by western blotting and immunofluorescence. Confocal microscope was used to assay the gap junctional intercellular communication (GJIC). Then, electron microscope used to observe the morphology of macrophages. Finally, RAW264.7 macrophage apoptosis and mitochondrial membrane potential was detected by flow cytometry, and the expression of inflammation factors such as CD86, CD206, and IL-6, IL-10, TNF-α, and TGF-β were detected by Real-time PCR and enzyme-linked-immunosorbent serologic assay (ELISA). RESULTS H37Rv infection significantly promoted host macrophage Cx43 mRNA and protein expression (increased 1.6-fold and 0.3-fold respectively), and enhanced host macrophage GJIC. When host macrophage cell-to-cell communication induced by H37Rv infection, the apoptosis rate and inflammatory factors expression also increased. CONCLUSIONS The results confirm that H37Rv infection can obviously induce host macrophage Cx43 expression and enhance GJIC, which may implicated in host macrophage inflammatory reaction, to regulate the release of inflammatory factors and/or initiate apoptosis to activate host immune defense response.
Collapse
Affiliation(s)
- Yang Lu
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Xin-min Wang
- Department of Urinary Surgery, The First Affiliated Hospital, Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Pu Yang
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Ling Han
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Ying-zi Wang
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Zhi-hong Zheng
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Fang Wu
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Wan-jiang Zhang
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Le Zhang
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| |
Collapse
|
11
|
Arnett E, Weaver AM, Woodyard KC, Montoya MJ, Li M, Hoang KV, Hayhurst A, Azad AK, Schlesinger LS. PPARγ is critical for Mycobacterium tuberculosis induction of Mcl-1 and limitation of human macrophage apoptosis. PLoS Pathog 2018; 14:e1007100. [PMID: 29928066 PMCID: PMC6013021 DOI: 10.1371/journal.ppat.1007100] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)γ is a global transcriptional regulator associated with anti-inflammatory actions. It is highly expressed in alveolar macrophages (AMs), which are unable to clear the intracellular pathogen Mycobacterium tuberculosis (M.tb). Although M.tb infection induces PPARγ in human macrophages, which contributes to M.tb growth, the mechanisms underlying this are largely unknown. We undertook NanoString gene expression analysis to identify novel PPARγ effectors that condition macrophages to be more susceptible to M.tb infection. This revealed several genes that are differentially regulated in response to PPARγ silencing during M.tb infection, including the Bcl-2 family members Bax (pro-apoptotic) and Mcl-1 (pro-survival). Apoptosis is an important defense mechanism that prevents the growth of intracellular microbes, including M.tb, but is limited by virulent M.tb. This suggested that M.tb differentially regulates Mcl-1 and Bax expression through PPARγ to limit apoptosis. In support of this, gene and protein expression analysis revealed that Mcl-1 expression is driven by PPARγ during M.tb infection in human macrophages. Further, 15-lipoxygenase (15-LOX) is critical for PPARγ activity and Mcl-1 expression. We also determined that PPARγ and 15-LOX regulate macrophage apoptosis during M.tb infection, and that pre-clinical therapeutics that inhibit Mcl-1 activity significantly limit M.tb intracellular growth in both human macrophages and an in vitro TB granuloma model. In conclusion, identification of the novel PPARγ effector Mcl-1 has determined PPARγ and 15-LOX are critical regulators of apoptosis during M.tb infection and new potential targets for host-directed therapy for M.tb.
Collapse
Affiliation(s)
- Eusondia Arnett
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Ashlee M. Weaver
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
| | - Kiersten C. Woodyard
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
| | - Maria J. Montoya
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Michael Li
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
| | - Ky V. Hoang
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
| | - Andrew Hayhurst
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Abul K. Azad
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Larry S. Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| |
Collapse
|
12
|
Saha A, Basu M, Ukil A. Recent advances in understanding Leishmania donovani
infection: The importance of diverse host regulatory pathways. IUBMB Life 2018; 70:593-601. [PMID: 29684241 DOI: 10.1002/iub.1759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/02/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Amrita Saha
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Moumita Basu
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Anindita Ukil
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| |
Collapse
|
13
|
Xue M, Chen X, Guo Z, Liu X, Bi Y, Yin J, Hu H, Zhu P, Zhuang J, Cates C, Rousselle T, Li J. L-Carnitine Attenuates Cardiac Dysfunction by Ischemic Insults Through Akt Signaling Pathway. Toxicol Sci 2017; 160:341-350. [PMID: 28973678 PMCID: PMC5837463 DOI: 10.1093/toxsci/kfx193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We aim to investigate the cardioprotective effects of L-carnitine (LC) on cardiac function during ischemia and reperfusion (I/R) and contractile function of single cardiomyocyte. C57BL/6 J mice were randomly assigned to 5 groups: sham group; vehicle group, LC preconditioning group, LC preconditioning + LY294002 (a PI3K/Akt signaling pathway inhibitor) group (LC + LY), and LY294002 group (LY). The sham group was exposed to the open heart operation but not I/R, the other groups received 45 min ischemia/48 h reperfusion. At the end of reperfusion, echocardiography was performed on every mouse. In order to determine whether LC's cardioprotection could act directly at the level of cardiomyocytes, we also tested its effects on isolated cardiomyocytes under hypoxia condition. The expressions of p-PI3K, PI3K, Akt, p-Akt, Bax and Bcl-2 proteins were detected by immunoblotting. The results showed that LC preconditioning remarkably improved cardiac function after I/R, but the cardioprotective effect of LC was significantly weakened after the application of LY294002. We also found that LC could directly improve the contractile function of cardiomyocytes under hypoxia condition. The immunoblotting results showed that LC administration restrained myocardial apoptosis as evidenced by decreasing the level of Bax expression, increasing the levels of phosphorylation of Akt, PI3K, and Bcl-2 protein expression, but these were blocked by LYC94002. Thus, the cardioprotective effects of LC against myocardial ischemic damage and its effect on single cardiomyocyte under hypoxia may be associated with the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Mei Xue
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan 250014, China
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Xu Chen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Zhija Guo
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Xiaoqian Liu
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Yanping Bi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Jie Yin
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan 250014, China
| | - Haiyan Hu
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Ping Zhu
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Jian Zhuang
- Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Courtney Cates
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Thomas Rousselle
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
14
|
Pandey RK, Mehrotra S, Sharma S, Gudde RS, Sundar S, Shaha C. Leishmania donovani-Induced Increase in Macrophage Bcl-2 Favors Parasite Survival. Front Immunol 2016; 7:456. [PMID: 27826299 PMCID: PMC5078497 DOI: 10.3389/fimmu.2016.00456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022] Open
Abstract
Members of the Bcl-2 family are major regulators of apoptosis in mammalian cells, and hence infection-induced perturbations in their expression could result into elimination of the parasites or creation of a niche favoring survival. In this investigation, we uncover a novel role of host Bcl-2 in sustaining Leishmania donovani infection. A rapid twofold increase in Bcl-2 expression occurred in response to parasite challenge. Downregulation of post infection Bcl-2 increase using siRNA or functional inhibition using Bcl-2 small molecule inhibitors interfered with intracellular parasite survival confirming the necessity of elevated Bcl-2 during infection. An increased nitric oxide (NO) response and reduced parasitic burden was observed upon Bcl-2 inhibition, where restitution of the NO response accounted for parasite mortality. Mechanistic insights revealed a major role of elevated Th2 cytokine IL-13 in parasite-induced Bcl-2 expression via the transcription factor STAT-3, where blocking at the level of IL-13 receptor or downstream kinase JAK-2 dampened Bcl-2 induction. Increase in Bcl-2 was orchestrated through Toll like receptor (TLR)-2-MEK-ERK signaling, and changes in TLR-2 levels affected parasite uptake. In a mouse model of visceral leishmaniasis (VL), Bcl-2 inhibitors partially restored the antimicrobial NO response by at least a twofold increase that resulted in significantly reduced parasite burden. Interestingly, monocytes derived from the peripheral blood of six out of nine human VL subjects demonstrated Bcl-2 expression at significantly higher levels, and sera from these patients showed only marginally quantifiable nitrites. Collectively, our study for the first time reveals a pro-parasitic role of host Bcl-2 and the capacity of host-derived IL-13 to modulate NO levels during infection via Bcl-2. Here, we propose Bcl-2 inhibition as a possible therapeutic intervention for VL.
Collapse
Affiliation(s)
- Rajeev Kumar Pandey
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology , New Delhi , India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University , Amritsar , India
| | - Smriti Sharma
- Department of Medicine, Institute of Medical Sciences, Infectious Disease Research Laboratory, Banaras Hindu University , Varanasi , India
| | | | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Infectious Disease Research Laboratory, Banaras Hindu University , Varanasi , India
| | - Chandrima Shaha
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology , New Delhi , India
| |
Collapse
|