1
|
Yang C, Chen X, Li M, Yuan W, Li S, Han D, Feng J, Luo H, Zheng M, Liang J, Chen C, Qu P, Li S. Genomic epidemiology and phenotypic characterization of Staphylococcus aureus isolated from atopic dermatitis patients in South China. Sci Rep 2025; 15:4773. [PMID: 39922832 PMCID: PMC11807149 DOI: 10.1038/s41598-025-87317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/17/2025] [Indexed: 02/10/2025] Open
Abstract
Atopic dermatitis (AD) is a multifactorial, chronic relapsing disease. Staphylococcus aureus is the key microbial factor in AD, linked to disease activity. However, there is limited knowledge of genomic prevalence characteristics and phenotypic features of S. aureus in AD patients in China. We investigated 108 S. aureus of AD in China and globally publicly available genome sequences of 579 S. aureus of AD. Sequence type (ST) 7, ST15 and ST188 were the major lineages in China. Genes esaC, esxB, and sea were only detected in ST7, potentially contributing to its prevalence in AD. ST188 exhibited high virulence and adhesion, possibly due to the cna gene. Phylogenetic and population structure analysis revealed that 579 strains of global AD were classified into 15 sequence clusters (SCs), with SC5, SC2, and SC7 dominating. S. aureus of Chinese AD patients was mainly distributed in SC2, SC7, and SC12. Comparative genomic highlighted genes linked to AD, including enterotoxins (seh, selk, selq, entH), adhesion genes (fnbA, fnbB, sdrD, map, fib, narH). From China and global perspectives, we analyzed S. aureus's genomic epidemic traits, phylogeny, and population structure in AD skin. These findings contribute to understanding S. aureus-host interactions and genomic diversity in AD.
Collapse
Affiliation(s)
- Chao Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaowei Chen
- Department of Laboratory Medicine, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Li
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Shunguang Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dexing Han
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junhui Feng
- Guangzhou Kingmylab Pharmaceutical Research Co., Ltd., Guangzhou, China
| | - Haimin Luo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Minling Zheng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jiaqi Liang
- Guangzhou Panyu District Health Management Center (Panyu District Rehabilitation Hospital), Guangzhou, China
| | - Cha Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Pinghua Qu
- School of Medicine, Foshan University, Foshan, China.
| | - Song Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Kashi M, Noei M, Chegini Z, Shariati A. Natural compounds in the fight against Staphylococcus aureus biofilms: a review of antibiofilm strategies. Front Pharmacol 2024; 15:1491363. [PMID: 39635434 PMCID: PMC11615405 DOI: 10.3389/fphar.2024.1491363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Staphylococcus aureus is an important pathogen due to its ability to form strong biofilms and antibiotic resistance. Biofilms play an important role in bacterial survival against the host immune system and antibiotics. Natural compounds (NCs) have diverse bioactive properties with a low probability of resistance, making them promising candidates for biofilm control. NC such as curcumin, cinnamaldehyde, carvacrol, eugenol, thymol, citral, linalool, 1,8-cineole, pinene, cymene, terpineol, quercetin, and limonene have been widely utilized for the inhibition and destruction of S. aureus biofilms. NCs influence biofilm formation through several procedures. Some of the antibiofilm mechanisms of NCs are direct bactericidal effect, disrupting the quorum sensing system, preventing bacteria from aggregation and attachment to surfaces, reducing the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), interfering with sortase A enzyme, and altering the expression of biofilm-associated genes such as icaADBC, agr, and sarA. Furthermore, these compounds affect extracellular polymeric substances (EPS) and their components, such as polysaccharide intercellular adhesin (PIA) and eDNA. However, some disadvantages, such as low water solubility and bioavailability, limit their clinical usage. Therefore, scientists have considered using nanotechnology and drug platforms to improve NC's efficacy. Some NC, such as thymol and curcumin, can also enhance photodynamic therapy against S. aurous biofilm community. This article evaluates the anti-biofilm potential of NC, their mechanisms of action against S. aureus biofilms, and various aspects of their application.
Collapse
Affiliation(s)
- Milad Kashi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
3
|
Ferreira RM, Dos Santos Silva DH, Silva KF, de Melo Monteiro J, Ferreira GF, Silva MRC, da Silva LCN, de Castro Oliveira L, Monteiro AS. Draft genome sequence of Staphylococcus aureus sequence type 5 SA01 isolated from bloodstream infection and comparative analysis with reference strains. Funct Integr Genomics 2023; 23:288. [PMID: 37653266 DOI: 10.1007/s10142-023-01204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
A Staphylococcus aureus isolate (SA01) obtained from bloodstream infection exhibited a remarkable drug resistance profile. In this study, we report the draft genome sequence of S. aureus ST 5 SA01, a multidrug-resistant isolate, and analyzed the genes associated with drug resistance and virulence. The genome sketch of S. aureus ST5 SA01 was sequenced with Illumina and annotated using the Prokka software. Rapid Annotation Subsystem Technology (RAST) was used to verify the gene functions in the genome subsystems. The Comprehensive Antibiotic Resistance Database (CARD) and Virulence Factor Database (VFDB) were used in the analysis. The RAST indicated a contribution of 25 proteins to host adenine, fibronectin-binding protein A (FnbA), and biofilm formation as an intercellular polysaccharide adhesive system (PIA). The MLST indicated that S. aureus ST 5 SA01 belongs to ST5 (CC5). In silico analyses also showed an extensive repertoire of genes associated with toxins, such as LukGH leukocidin, enterotoxins, and superantigen staphylococcal classes (SSL). The 11 genes for antimicrobial resistance in S. aureus ST 5 SA01 showed similarity and identity above ≥ 99% with nucleotide sequences deposited in GenBank. Although studies on ST5 clones in Brazil are scarce, monitoring the clone of S. aureus ST 5 SA01 is essential, as it has become a problem in pediatrics in several countries.
Collapse
Affiliation(s)
- Romulo Maia Ferreira
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís, 65075-120, MA, Brasil
| | | | - Karinny Farias Silva
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís, 65075-120, MA, Brasil
| | | | - Gabriella Freitas Ferreira
- Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, CEP 35010-180, Juiz de Fora, MG, Brasil
| | | | | | - Letícia de Castro Oliveira
- Departamento de Microbiologia, Universidade Federal Do Triângulo Mineiro, Imunologia E Parasitologia, 38025180, Uberaba, MG, Brasil
| | - Andrea Souza Monteiro
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís, 65075-120, MA, Brasil
| |
Collapse
|
4
|
Alabbosh KF, Zmantar T, Bazaid AS, Snoussi M, Noumi E. Antibiotics Resistance and Adhesive Properties of Clinical Staphylococcus aureus Isolated from Wound Infections. Microorganisms 2023; 11:1353. [PMID: 37317326 DOI: 10.3390/microorganisms11051353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a ubiquitous pathogen responsible for several severe infections. This study aimed to investigate the adhesive properties and antibiotic resistance among clinical S. aureus isolated from Hail Hospital Province, Kingdom of Saudi Arabia (KSA), using molecular approaches. This study was conducted according to the ethical committee at Hail's guidelines on twenty-four S. aureus isolates. A polymerase chain reaction (PCR) was performed to identify genes encoding the β-lactamase resistance (blaZ), methicillin resistance (mecA), fluoroquinolone resistance (norA), nitric oxide reductase (norB), fibronectin (fnbA and fnbB), clumping factor (clfA) and intracellular adhesion factors (icaA and icaD). This qualitative study tested adhesion based on exopolysaccharide production on Congo red agar (CRA) medium and biofilm formation on polystyrene by S. aureus strains. Among 24 isolates, the cna and blaz were the most prevalent (70.8%), followed by norB (54.1%), clfA (50.0%), norA (41.6%), mecA and fnbB (37.5%) and fnbA (33.3%). The presence of icaA/icaD genes was demonstrated in almost all tested strains in comparison to the reference strain, S. aureus ATCC 43300. The phenotypic study of adhesion showed that all tested strains had moderate biofilm-forming capacity on polystyrene and represented different morphotypes on a CRA medium. Five strains among the twenty-four harbored the four genes of resistance to antibiotics (mecA, norA, norB and blaz). Considering the genes of adhesion (cna, clfA, fnbA and fnbB), these genes were present in 25% of the tested isolates. Regarding the adhesive properties, the clinical isolates of S. aureus formed biofilm on polystyrene, and only one strain (S17) produced exopolysaccharides on Congo red agar. All these results contribute to an understanding that the pathogenesis of clinical S. aureus isolates is due to their antibiotic resistance and adhesion to medical material.
Collapse
Affiliation(s)
| | - Tarek Zmantar
- Laboratory of Analysis, Treatment, Valorization of Environmental, and Product Pollutants, Faculty of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail 55476, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
5
|
Saleh MM, Yousef N, Shafik SM, Abbas HA. Attenuating the virulence of the resistant superbug Staphylococcus aureus bacteria isolated from neonatal sepsis by ascorbic acid, dexamethasone, and sodium bicarbonate. BMC Microbiol 2022; 22:268. [PMID: 36348266 PMCID: PMC9644464 DOI: 10.1186/s12866-022-02684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background Infections affecting neonates caused by Staphylococcus aureus are widespread in healthcare facilities; hence, novel strategies are needed to fight this pathogen. In this study, we aimed to investigate the effectiveness of the FDA-approved medications ascorbic acid, dexamethasone, and sodium bicarbonate to reduce the virulence of the resistant Staphylococcus aureus bacteria that causes neonatal sepsis and seek out suitable alternatives to the problem of multi-drug resistance. Methods Tested drugs were assessed phenotypically and genotypically for their effects on virulence factors and virulence-encoding genes in Staphylococcus aureus. Furthermore, drugs were tested in vivo for their ability to reduce Staphylococcus aureus pathogenesis. Results Sub-inhibitory concentrations (1/8 MIC) of ascorbic acid, dexamethasone, and sodium bicarbonate reduced the production of Staphylococcus aureus virulence factors, including biofilm formation, staphyloxanthin, proteases, and hemolysin production, as well as resistance to oxidative stress. At the molecular level, qRT-PCR was used to assess the relative expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes regulating virulence factors production and showed a significant reduction in the relative expression levels of all the tested genes. Conclusions The current findings reveal that ascorbic acid, dexamethasone, and sodium bicarbonate have strong anti-virulence effects against Staphylococcus aureus. Thus, suggesting that they might be used as adjuvants to treat infections caused by Staphylococcus aureus in combination with conventional antimicrobials or as alternative therapies.
Collapse
|
6
|
El-Ganiny AM, Gad AI, El-Sayed MA, Shaldam MA, Abbas HA. The promising anti-virulence activity of candesartan, domperidone, and miconazole on Staphylococcus aureus. Braz J Microbiol 2021; 53:1-18. [PMID: 34773629 DOI: 10.1007/s42770-021-00655-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is a primary cause of hospital and community-acquired infections. With the emergence of multidrug-resistant S. aureus strains, there is a need for new drugs discovery. Due to the poor supply of new antimicrobials, targeting virulence of S. aureus may generate weaker selection for resistant strains, anti-virulence agents disarm the pathogen instead of killing it. In this study, the ability of the FDA-approved drugs domperidone, candesartan, and miconazole as inhibitors of S. aureus virulence was investigated. The effect of tested drugs was evaluated against biofilm formation, lipase, protease, hemolysin, and staphyloxanthin production by using phenotypic and genotypic methods. At sub-inhibitory concentrations, candesartan, domperidone, and miconazole showed a significant inhibition of hemolysin (75.8-96%), staphyloxanthin (81.2-85%), lipase (50-65%), protease (40-64%), and biofilm formation (71.4-90%). Domperidone and candesartan have similar activity and were more powerful than miconazole against S. aureus virulence. The hemolysins and lipase inhibition were the greatest under the domperidone effect. Candesartan showed a remarkable reduction in staphyloxanthin production. The highest inhibitory effect of proteolytic activity was obtained with domperidone and candesartan. Biofilm was significantly reduced by miconazole. Expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes were significantly reduced under candesartan (68.98-82.7%), domperidone (62.6-77.2%), and miconazole (32.96-52.6%) at sub-MIC concentrations. Candesartan showed the highest inhibition activity against crtM, sigB, sarA, agrA, hla, and icaA expression followed by domperidone then miconazole. Domperidone showed the highest downregulation activity against fnbA gene. In conclusion, candesartan, domperidone, and miconazole could serve as anti-virulence agents for attenuation of S. aureus pathogenicity.
Collapse
Affiliation(s)
- Amira M El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amany I Gad
- Microbiology and Immunology Department, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| | - Mona A El-Sayed
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Moataz A Shaldam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Hisham A Abbas
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
7
|
Cao J, Zheng Y. iTRAQ-based quantitative proteomic analysis of the antimicrobial mechanism of lactobionic acid against Staphylococcus aureus. Food Funct 2021; 12:1349-1360. [PMID: 33448275 DOI: 10.1039/d0fo02491k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a common pathogenic microorganism that causes foodborne diseases. Lactobionic acid (LBA) is a natural polyhydroxy acid widely used in the food industry. To understand the antibacterial action of LBA against S. aureus better and identify 274 differentially expressed proteins upon LBA treatment, an isobaric tag was used for relative and absolute quantification-based quantitative proteomics. Combined with ultrastructural observations, results suggested that LBA inhibited S. aureus by disrupting cell wall and membrane integrity, regulating adenosine triphosphate binding cassette transporter expression, affecting cellular energy metabolism, attenuating S. aureus virulence and reducing infection, and decreasing the levels of proteins involved in stress and starvation responses. Quantitative real-time polymerase chain reaction analysis was used to validate the proteomic data. The results provide new insights into the inhibitory effects of LBA on S. aureus and suggest that LBA application may be a promising method to ensure food and pharmaceutical product safety.
Collapse
Affiliation(s)
- Jiarong Cao
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110161, P.R. China.
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110161, P.R. China.
| |
Collapse
|
8
|
Genotypic and Phenotypic Characterization of Staphylococcus aureus Isolates from the Respiratory Tract in Mechanically-Ventilated Patients. Toxins (Basel) 2021; 13:toxins13020122. [PMID: 33562023 PMCID: PMC7915691 DOI: 10.3390/toxins13020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a commensal and frequent colonizer of the upper respiratory tract. When mechanical ventilation disrupts natural defenses, S. aureus is frequently isolated from the lower airways, but distinguishing between colonization and infection is difficult. The objectives of this study were (1) to investigate the bacterial genome sequence in consecutive isolates in order to identify changes related to the pathological adaptation to the lower respiratory tract and (2) to explore the relationship between specific phenotypic and genotypic features with the patient’s study group, persistence of the clinical isolate and clinical outcome. A set of 94 clinical isolates were selected and corresponded to 34 patients that were classified as having pneumonia (10), tracheobronchitis (11) and bronchial colonization (13). Clinical strains were phenotypically characterized by conventional identification and susceptibility testing methods. Isolates underwent whole genome sequencing using Illumina HiSeq4000. Genotypic characterization was performed with an in-house pipeline (BacterialTyper). Genomic variation arising within-host was determined by comparing mapped sequences and de novo assemblies. Virulence factors important in staphylococcal colonization and infection were characterized using previously established functional assays. (1) Toxin production was assessed using a THP-1 cytotoxicity assay, which reports on the gross cytotoxicity of individual isolates. In addition, we investigated the expression of the major virulence factor, alpha-toxin (Hla) by Western blot. (2) Adhesion to the important extracellular matrix molecule, fibronectin, was determined using a standardized microtitre plate assay. Finally, invasion experiments using THP-1 and A539 cell lines and selected clinical strains were also performed. Repeated isolation of S. aureus from endotracheal aspirate usually reflects persistence of the same strain. Within-host variation is detectable in this setting, but it shows no evidence of pathological adaptation related to virulence, resistance or niche adaptations. Cytotoxicity was variable among isolates with 14 strains showing no cytotoxicity, with these latter presenting an unaltered Fn binding capacity. No changes on cytotoxicity were reported when comparing study groups. Fn binding capacity was reported for almost all strains, with the exception of two strains that presented the lowest values. Strains isolated from patients with pneumonia presented a lower capacity of adhesion in comparison to those isolated during tracheobronchitis (p = 0.002). Hla was detected in 71 strains (75.5%), with most of the producer strains in pneumonia and bronchial colonization group (p = 0.06). In our cohort, Hla expression (presence or absence) in sequential isolates was usually preserved (70%) although in seven cases the expression varied over time. No relationship was found between low cytotoxicity and intracellular persistence in invasion experiments. In our study population, persistent S. aureus isolation from airways in ventilated patients does not reflect pathological adaptation. There is an important diversity of sequence types. Cytotoxicity is variable among strains, but no association with study groups was found, whereas isolates from patients with pneumonia had lower adhesion capability. Favorable clinical outcome correlated with increased bacterial adhesion in vitro. Most of the strains isolated from the lower airways were Hla producers and no correlation with an adverse outcome was reported. The identification of microbial factors that contribute to virulence is relevant to optimize patient management during lower respiratory tract infections.
Collapse
|
9
|
Abstract
Staphylococcus aureus (S. aureus) is the most common pathogen causing infections from skin to systemic infections. The success of S. aureus infections can partially be attributed to its antibiotic resistance and to its ability to form biofilm. An increasing prevalence of methicillin-resistant S. aureus (MRSA) becomes a global public health problem in recent decades. Here, the effects of tea catechin extracts on the growth and biofilm formation of three MRSA strains were investigated. The results revealed that tea catechin extracts potently suppressed MRSA growth, and the minimal inhibitory concentration of tea catechin extracts against these MRSA strains was 0.1 g/L. Then, tea catechin extracts inhibited biofilm formation of these strains in a dose-dependent manner measured with a colorimetric method, and the inhibitory effect was also demonstrated by scanning electron microscopy assay. Moreover, adhesin genes biofilm-associated protein (bap), bone sialoprotein-binding protein (bbp), collagen-binding protein (cna), clumping factors A (clfA), fibronectin binding protein A and B (fnbA and fnbB), and intercellular adhesion gene BC (icaBC) were scanned, and the results shown that fnbA and icaBC were present in these three strains. Furthermore, tea catechin extracts depressed fnbA and icaBC expression in the strains. Therefore, inhibition of biofilm formation by tea catechin extracts probably was associated with downregulation of fnbA and icaBC expression in these strains.
Collapse
|
10
|
Smith JT, Amador S, McGonagle CJ, Needle D, Gibson R, Andam CP. Population genomics of Staphylococcus pseudintermedius in companion animals in the United States. Commun Biol 2020; 3:282. [PMID: 32503984 PMCID: PMC7275049 DOI: 10.1038/s42003-020-1009-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus pseudintermedius is a commensal bacterium and a major opportunistic pathogen of dogs. The emergence of methicillin-resistant S. pseudintermedius (MRSP) is also becoming a serious concern. We carried out a population genomics study of 130 clinical S. pseudintermedius isolates from dogs and cats in the New England region of the United States. Results revealed the co-circulation of phylogenetically diverse lineages that have access to a large pool of accessory genes. Many MRSP and multidrug-resistant clones have emerged through multiple independent, horizontal acquisition of resistance determinants and frequent genetic exchange that disseminate DNA to the broader population. When compared to a Texas population, we found evidence of clonal expansion of MRSP lineages that have disseminated over large distances. These findings provide unprecedented insight into the diversification of a common cutaneous colonizer of man's oldest companion animal and the widespread circulation of multiple high-risk resistant clones.
Collapse
Affiliation(s)
- Joshua T Smith
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Sharlene Amador
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Colin J McGonagle
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, 03824, USA
| | - Robert Gibson
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, 03824, USA
| | - Cheryl P Andam
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA.
| |
Collapse
|
11
|
Fursova K, Sorokin A, Sokolov S, Dzhelyadin T, Shulcheva I, Shchannikova M, Nikanova D, Artem'eva O, Zinovieva N, Brovko F. Virulence Factors and Phylogeny of Staphylococcus aureus Associated With Bovine Mastitis in Russia Based on Genome Sequences. Front Vet Sci 2020; 7:135. [PMID: 32270001 PMCID: PMC7111254 DOI: 10.3389/fvets.2020.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/24/2020] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is a causative agent of different infectious processes, food poisoning, and autoimmune disorders. The horizontal transfer of pathogenic strains can occur from animal to human under both house and farm conditions, and the spread of strains with antibiotic resistance is an existing problem. In addition to the spread of antibiotic-resistant strains in clinics, this problem also exists in veterinary medicine. It is especially important to monitor antibiotic resistance on farms where antibiotics are the standard treatment of animals, which may trigger the spread of antibiotic-resistant strains among animals and to the human population, and these strains can also be distributed in milk products produced by these farms (milk, cheese, and butter). In this work, we investigated 21 S. aureus isolates using whole-genome sequence analysis and tried to establish a relationship between these isolates with the development of bovine mastitis in seven regions of Western Russia. An S. aureus virulence profile was identified. We identified two groups of S. aureus associated with subclinical mastitis, namely, the enterotoxin-positive and enterotoxin-negative groups. The most prevalent factor associated with bovine mastitis in Russia was cytotoxins, including hemolysins and leukocidins. Multidrug resistance strains were investigated, and antibiotic resistance genes were identified. We identified S. aureus ST 97 type as the most common type in the regions in Western Russia. To the best of our knowledge, this is the first in-depth study of a range S. aureus isolates originating from cattle infections in Russia.
Collapse
Affiliation(s)
- Ksenia Fursova
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Russia
| | - Anatoly Sorokin
- Laboratory of Cell Genome Functioning Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Sergey Sokolov
- Laboratory of Plasmid Biology, G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, Russia
| | - Timur Dzhelyadin
- Laboratory of Cell Genome Functioning Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Irina Shulcheva
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Russia
| | - Margarita Shchannikova
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Russia
| | - Daria Nikanova
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Moscow, Russia
| | - Olga Artem'eva
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Moscow, Russia
| | - Natalia Zinovieva
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Moscow, Russia
| | - Fedor Brovko
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Russia.,Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Moscow, Russia
| |
Collapse
|
12
|
Abstract
Staphylococcus aureus has been recognised as one of the important zoonotic pathogens. However, knowledge about the epidemiology and genetic characteristics of S. aureus in rabbits was limited. The aim of this study was to determine the characteristics of 281 S. aureus isolated from dead rabbits of nine rabbit farms in Fujian Province, China. All the isolates were characterised by multi-locus sequencing typing, detection of virulence factors and antimicrobial susceptibility test. The results showed that the 281 isolates were grouped into two sequence types, ST121 (13.52%, 38/281) and ST398 (86.48%, 243/281). Surprisingly, the ST121 strains were only recovered from the lung samples from one of the nine rabbit farms studied. In the 281 isolates, the virulence genes of nuc, hla, hlb, clfA, clfB and fnbpA were positive, whereas the sea, seb, tsst, eta and etb genes were negative. Notably, the 38 ST121 isolates carried the pvl gene. All the 281 isolates were methicillin-susceptible S. aureus, and the isolates were susceptible to most of the used antibiotics, except for streptomycin, kanamycin, azithromycin and penicillin, and the resistance rates of which were 23.84%, 19.57%, 16.01% and 11.03%, respectively. This study first described the epidemiology and characteristics of S. aureus in rabbits in Fujian Province, which will help in tracking the evolution of epidemic strains and preventing the rabbit-human transmission events.
Collapse
|
13
|
Liu J, Yang G, Gao X, Zhang Z, Liu Y, Liu Q, Chatel JM, Jiang Y, Wang C. Recombinant invasive Lactobacillus plantarum expressing fibronectin binding protein A induce specific humoral immune response by stimulating differentiation of dendritic cells. Benef Microbes 2019; 10:589-604. [PMID: 31088293 DOI: 10.3920/bm2018.0157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recombinant lactic acid bacteria (LAB), especially Lactococcus lactis, have been genetically engineered to express heterogeneous invasion proteins, such as the fibronectin binding protein A (FnBPA) from Staphylococcus aureus, to increase the invasion ability of the host strains, indicating a promising approach for DNA vaccine delivery. The presence of FnBPA has been also shown to be an adjuvant for co-delivered antigens, however, the underlying mechanisms are still not clear. To explore the above underlying mechanisms, in this study, we constructed a novel Lactobacillus plantarum strain with surface displayed FnBPA, which could significantly improve the adhesion and invasion ratios of L. plantarum strain on a porcine intestinal epithelial cell line (IPEC-J2) about two-fold compared with the empty vector. At the same time, the presence of FnBPA significantly stimulated the differentiation of bone marrow-derived dendritic cells (DCs) and increased the secretion of interleukin (IL)-6 and mRNA level of IL-6 gene, which were proved by flow cytometry, enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription PCR (qRT-PCR). With regard to in vivo study, the presence of FnBPA significantly stimulated the differentiation of DCs in the Peyer's patch (PP) and the percentages of IL-4+ and IL-17A+ T helper (Th) cells of splenocytes in flow cytometry assay. In consistent with these results, the levels of IL-4 and IL-17A in serum as measured via ELISA also increased in mice treated with FnBPA+ L. plantarum. Finally, the FnBPA strain increased the production of B220+ B cells in mesenteric lymph node (MLN) and PP and the levels of FnBPA-specific IgG and sIgA antibodies, indicating the its possible application in vaccine field. This study demonstrated that the invasive L. plantarum with surface displayed FnBPA could modulate host immune response by stimulating the differentiation of DCs and Th cells which could possibly be responsive for the adjuvant effects of FnBPA.
Collapse
Affiliation(s)
- J Liu
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - G Yang
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - X Gao
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - Z Zhang
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - Y Liu
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - Q Liu
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - J-M Chatel
- 2 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Y Jiang
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - C Wang
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| |
Collapse
|
14
|
Characterization of Host and Bacterial Contributions to Lung Barrier Dysfunction Following Co-infection with 2009 Pandemic Influenza and Methicillin Resistant Staphylococcus aureus. Viruses 2019; 11:v11020116. [PMID: 30699912 PMCID: PMC6409999 DOI: 10.3390/v11020116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses are a threat to global public health resulting in ~500,000 deaths each year. Despite an intensive vaccination program, influenza infections remain a recurrent, yet unsolved public health problem. Secondary bacterial infections frequently complicate influenza infections during seasonal outbreaks and pandemics, resulting in increased morbidity and mortality. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is frequently associated with these co-infections, including the 2009 influenza pandemic. Damage to alveolar epithelium is a major contributor to severe influenza-bacterial co-infections and can result in gas exchange abnormalities, fluid leakage, and respiratory insufficiency. These deleterious manifestations likely involve both pathogen- and host-mediated mechanisms. However, there is a paucity of information regarding the mechanisms (pathogen- and/or host-mediated) underlying influenza-bacterial co-infection pathogenesis. To address this, we characterized the contributions of viral-, bacterial-, and host-mediated factors to the altered structure and function of alveolar epithelial cells during co-infection with a focus on the 2009 pandemic influenza (pdm2009) and MRSA. Here, we characterized pdm2009 and MRSA replication kinetics, temporal host kinome responses, modulation of MRSA virulence factors, and disruption of alveolar barrier integrity in response to pdm2009-MRSA co-infection. Our results suggest that alveolar barrier disruption during co-infection is mediated primarily through host response dysregulation, resulting in loss of alveolar barrier integrity.
Collapse
|
15
|
Ajayi C, Åberg E, Askarian F, Sollid JUE, Johannessen M, Hanssen AM. Genetic variability in the sdrD gene in Staphylococcus aureus from healthy nasal carriers. BMC Microbiol 2018; 18:34. [PMID: 29661152 PMCID: PMC5902956 DOI: 10.1186/s12866-018-1179-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Staphylococcus aureus cell wall anchored Serine Aspartate repeat containing protein D (SdrD) is a member of the microbial surface component recognising adhesive matrix molecules (MSCRAMMs). It is involved in the bacterial adhesion and virulence. However the extent of genetic variation in S. aureus sdrD gene within isolates from healthy carriers are not known. The aim of this study was to evaluate allelic variation of the sdrD gene among S. aureus from healthy nasal carriers. Results The sdrD A region from 48 S. aureus isolates from healthy carriers were analysed and classified into seven variants. Variations in the sdrD A region were concentrated in the N2 and N3 subdomains. Sequence analysis of the entire sdrD gene of representative isolates revealed variations in the SD repeat and the EF motifs of the B repeat. In silico structural modelling indicates that there are no differences in the SdrD structure of the 7 variants. Variable amino acid residues mapped onto the 3D structure revealed that the variations are surface located, exist within the groove between the N2-N3 subdomains and distributed mainly on the N3 subdomain. Comparison of adhesion to keratinocytes in an in vitro cell adhesion assay, using NCTC 8325–4∆sdrD strains expressing the various sdrD gene variants, indicated a significant difference between only two complements while others showed no major difference in their adhesion. Conclusions This study provides evidence of sequence variations across the different domains of SdrD from S. aureus isolated from healthy nasal carriers. Proper understanding of these variations is necessary in the study of S. aureus pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12866-018-1179-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clement Ajayi
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Espen Åberg
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Fatemeh Askarian
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Johanna U E Sollid
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Mona Johannessen
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Anne-Merethe Hanssen
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
16
|
Åvall-Jääskeläinen S, Taponen S, Kant R, Paulin L, Blom J, Palva A, Koort J. Comparative genome analysis of 24 bovine-associated Staphylococcus isolates with special focus on the putative virulence genes. PeerJ 2018; 6:e4560. [PMID: 29610707 PMCID: PMC5880176 DOI: 10.7717/peerj.4560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Non-aureus staphylococci (NAS) are most commonly isolated from subclinical mastitis. Different NAS species may, however, have diverse effects on the inflammatory response in the udder. We determined the genome sequences of 20 staphylococcal isolates from clinical or subclinical bovine mastitis, belonging to the NAS species Staphylococcus agnetis, S. chromogenes, and S. simulans, and focused on the putative virulence factor genes present in the genomes. For comparison we used our previously published genome sequences of four S. aureus isolates from bovine mastitis. The pan-genome and core genomes of the non-aureus isolates were characterized. After that, putative virulence factor orthologues were searched in silico. We compared the presence of putative virulence factors in the NAS species and S. aureus and evaluated the potential association between bacterial genotype and type of mastitis (clinical vs. subclinical). The NAS isolates had much less virulence gene orthologues than the S. aureus isolates. One third of the virulence genes were detected only in S. aureus. About 100 virulence genes were present in all S. aureus isolates, compared to about 40 to 50 in each NAS isolate. S. simulans differed the most. Several of the virulence genes detected among NAS were harbored only by S. simulans, but it also lacked a number of genes present both in S. agnetis and S. chromogenes. The type of mastitis was not associated with any specific virulence gene profile. It seems that the virulence gene profiles or cumulative number of different virulence genes are not directly associated with the type of mastitis (clinical or subclinical), indicating that host derived factors such as the immune status play a pivotal role in the manifestation of mastitis.
Collapse
Affiliation(s)
- Silja Åvall-Jääskeläinen
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Suvi Taponen
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig Universität Gießen, Gießen, Germany
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Joanna Koort
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|