1
|
Liao S, Lu Y, He Q, Chi Y. Insights into Genomic Characteristics and Biogenic Amine Degradation Potential and Mechanisms: A Strain of Pediococcus acidilactici Sourced from Doubanjiang. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20622-20632. [PMID: 39225480 DOI: 10.1021/acs.jafc.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The control of excess biogenic amines (BAs) is crucial for the sustainable development of fermented foods. This study aimed to screen endogenous functional strains in Doubanjiang with the capacity to degrade BAs and to elucidate their application potential. Pediococcus acidilactici L-9 (PA), which was confirmed as a safe strain by phenotypic and genotypic analyses, exhibited an efficient degradation ability on BAs, particularly regarding tyramine. Notably, the degradation of tyramine was maintained at 24.03-50.60% at different temperatures (20-40 °C), pH values (4.0-9.0), and NaCl concentrations (3-18%, w/v). Additionally, genomic data revealed the presence of the laccase-coding gene, which was demonstrated to play a pivotal role in BA degradation by heterologous expression. Further, molecular docking results indicated that the degradation of BA by laccase is closely linked to the electron transfer pathway formed by the substrate and key amino acid residues. Finally, the degradation of tyramine by PA remained within the range of 8.19-64.19% under the simulated system with 6-12% salinity. This study provided valuable insights into the safety of PA and its potential degradation capacity on BAs, particularly in mitigating tyramine accumulation, which could improve the quality of Doubanjiang and other fermented foods.
Collapse
Affiliation(s)
- Shenglan Liao
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yunhao Lu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qiang He
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
2
|
Yamamori Y, Shirai R, Ohkura K, Nagamune H, Tomoyasu T, Tabata A. Streptolysin S induces proinflammatory cytokine expression in calcium ion-influx-dependent manner. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100265. [PMID: 39211836 PMCID: PMC11359966 DOI: 10.1016/j.crmicr.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Anginosus group streptococci (AGS) are opportunistic pathogens that reside in the human oral cavity. The β-hemolytic strains of Streptococcus anginosus subsp. anginosus (SAA) produce streptolysin S (SLS), a streptococcal peptide hemolysin. In recent clinical scenarios, AGS, including this species, have frequently been isolated from infections and disorders beyond those in the oral cavity. Consequently, investigating this situation will reveal the potential pathogenicity of AGS to ectopic infections in humans. However, the precise mechanism underlying the cellular response induced by secreted SLS and its relevance to the pathogenicity of AGS strains remain largely unknown. This study aims to elucidate the mechanism underlying the host cellular response of the human acute monocytic leukemia cell line THP-1 to secreted SLS. In THP-1 cells incubated with the culture supernatant of β-hemolytic SAA containing SLS as the sole cytotoxic factor, increased Ca2+ influx and elevated expression of proinflammatory cytokines were observed. Significantly reduced expression of SLS-dependent upregulated cytokine genes under Ca2+-chelating conditions suggests that Ca2+ influx triggers SLS-dependent cellular responses. Furthermore, SLS-dependent enhanced expression of IL-8 was also implicated in the activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. The findings presented in this study are crucial for a comprehensive understanding of the real pathogenicity of SLS-producing β-hemolytic AGS in the latest clinical situations.
Collapse
Affiliation(s)
- Yugo Yamamori
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
| | - Rina Shirai
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie 513-8670, Japan
| | - Hideaki Nagamune
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
| | - Toshifumi Tomoyasu
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
| | - Atsushi Tabata
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-cho, Tokushima, Tokushima 770-8513, Japan
| |
Collapse
|
3
|
Guo R, Xu M, Yang K, Gao T, Zhu J, Liu W, Yuan F, Liu Z, Li C, Wu Q, Nawaz S, Zhou D, Tian Y. Isolation, identification and characteristics of Bibersteinia trehalosi from goat. Microb Pathog 2024; 191:106678. [PMID: 38718954 DOI: 10.1016/j.micpath.2024.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
A conditionally pathogenic bacterium called Bibersteinia trehalosi inhabits the upper respiratory tract of ruminants and is becoming a significant cause of pneumonia, especially in goats. In this study, we identified a gram-negative bacteria strain isolated from dead goat's lungs, which was named M01. By integrating the outcomes of its morphological and biochemical characterization with the investigation of the 16S rRNA gene sequence analysis, the isolate was identified as B. trehalosi. Based on antibiotic susceptibility tests, the isolate was shown to be resistant to β-lactams, tetracyclines, and amphenicols. Its genome was discovered to comprise 2115 encoded genes and a circular chromosome measuring 2,345,568 bp using whole genome sequencing. Annotation of the VFBD database revealed that isolate M01 had four virulence genes encoding three virulence factors. The CARD database revealed that its genome has two antibiotic-resistance genes. Based on pathogenicity testing, isolate M01 was highly pathogenic to mice, primarily causing pneumonia, with an LD50 of 1.31 × 107 CFU/ml. Moreover, histopathology showed loss of alveolar structure and infiltration of lung inflammatory cells. Hence, the current study could provide sufficient information for prevention and control strategies for future epidemics of B. trehalosi in goat species.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Jiajia Zhu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China.
| |
Collapse
|
4
|
Yamada T, Yamamori Y, Matsuda N, Nagamune H, Ohkura K, Tomoyasu T, Tabata A. Streptolysin S induces pronounced calcium-ion influx-dependent expression of immediate early genes encoding transcription factors. Sci Rep 2023; 13:13720. [PMID: 37608082 PMCID: PMC10444759 DOI: 10.1038/s41598-023-40981-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023] Open
Abstract
Anginosus group streptococci (AGS) are opportunistic human pathogens of the oral cavity. The β-hemolytic subgroup of Streptococcus anginosus subsp. anginosus secretes streptolysin S (SLS) and exhibits not only hemolytic activity but also cytotoxicity toward cultured human cell lines. However, the detailed mechanism of action of SLS and the cellular responses of host cells have not yet been fully clarified. To determine the pathogenic potential of SLS-producing β-hemolytic S. anginosus subsp. anginosus, the SLS-dependent response induced in the human oral squamous cell carcinoma HSC-2 cells was investigated to determine the pathogenic potential of SLS-producing β-hemolytic S. anginosus subsp. anginosus. This study revealed that the Ca2+ influx and the expression of immediate early genes (IEGs) encoding transcription factors such as early growth responses (EGRs) and activator protein-1 (AP-1) were greatly increased in HSC-2 cells incubated with the culture supernatant of SLS-producing β-hemolytic S. anginosus subsp. anginosus. Moreover, this SLS-dependent increase in expression was significantly suppressed by Ca2+ chelation, except for jun. These results suggest that SLS caused Ca2+ influx into the cells following greatly enhanced expression of IEG-encoding transcription factors. The results of this study may help in understanding the pathogenicity of SLS-producing AGS.
Collapse
Affiliation(s)
- Takuya Yamada
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
| | - Yugo Yamamori
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Nanami Matsuda
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Hideaki Nagamune
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-Cho, Suzuka, Mie, 513-8670, Japan
| | - Toshifumi Tomoyasu
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Atsushi Tabata
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan.
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan.
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan.
| |
Collapse
|
5
|
Ogawa M, Shizukuishi S, Akeda Y, Ohnishi M. Molecular mechanism of Streptococcus pneumoniae-targeting xenophagy recognition and evasion: Reinterpretation of pneumococci as intracellular bacteria. Microbiol Immunol 2023; 67:224-227. [PMID: 36872456 DOI: 10.1111/1348-0421.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Streptococcus pneumoniae is a major, encapsulated Gram-positive pathogen that causes diseases including community-acquired pneumonia, meningitis, and sepsis. This pathogen colonizes the nasopharyngeal epithelia asymptomatically but can often migrate to sterile tissues and cause life-threatening invasive infections (invasive pneumococcal disease). Although multivalent pneumococcal polysaccharides and conjugate vaccines are available and effective, they also have major shortcomings with respect to the emergence of vaccine-resistant serotypes. Therefore, alternative therapeutic approaches are needed, and the molecular analysis of host-pathogen interactions and their applications to pharmaceutical development and clinical practice has recently received increased attention. In this review, we introduce pneumococcal surface virulence factors involved in pathogenicity and highlight recent advances in our understanding of host autophagy recognition mechanisms against intracellular S. pneumoniae and pneumococcal evasion from autophagy.
Collapse
Affiliation(s)
- Michinaga Ogawa
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayaka Shizukuishi
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Chubu Regional Public Health Center, Okinawa, Japan
| |
Collapse
|
6
|
Yokohata S, Ohkura K, Nagamune H, Tomoyasu T, Tabata A. Human serum albumin stabilizes streptolysin S activity secreted in the extracellular milieu by streptolysin S-producing streptococci. Microbiol Immunol 2023; 67:58-68. [PMID: 36478453 DOI: 10.1111/1348-0421.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Anginosus group streptococci (AGS) are opportunistic pathogens of the human oral cavity; however, their pathogenicity has not been discussed in detail. Oral streptococci live in the gingival sulcus, from where they can easily translocate into the bloodstream due to periodontal diseases and dental treatment and cause hazardous effects on the host through their virulence factors. Streptolysin S (SLS), a pathogenic factor produced by β-hemolytic species/strains belonging to AGS, plays an important role in damaging host cells. Therefore, we investigated the SLS-dependent cytotoxicity of β-hemolytic Streptococcus anginosus subsp. anginosus (SAA), focusing on different growth conditions such as in the bloodstream. Consequently, SLS-dependent hemolytic activity/cytotoxicity in the culture supernatant of β-hemolytic SAA was stabilized by blood components, particularly human serum albumin (HSA). The present study suggests that the secreted SLS, not only from β-hemolytic SAA, but also from other SLS-producing streptococci, is stabilized by HSA. As HSA is the most abundant protein in human plasma, the results of this study provide new insights into the risk of SLS-producing streptococci which can translocate into the bloodstream.
Collapse
Affiliation(s)
- Shuto Yokohata
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Hideaki Nagamune
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, Tokushima, Japan.,Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshifumi Tomoyasu
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, Tokushima, Japan.,Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Atsushi Tabata
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, Tokushima, Japan.,Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
7
|
The Cell Wall Deacetylases Spy1094 and Spy1370 Contribute to Streptococcus pyogenes Virulence. Microorganisms 2023; 11:microorganisms11020305. [PMID: 36838272 PMCID: PMC9966966 DOI: 10.3390/microorganisms11020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a strictly human pathogen that causes a wide range of diseases, including skin and soft tissue infections, toxic shock syndrome and acute rheumatic fever. We have recently reported that Spy1094 and Spy1370 of S. pyogenes serotype M1 are N-acetylglucosamine (GlcNAc) deacetylases. We have generated spy1094 and spy1370 gene deletion mutants in S. pyogenes and gain-of-function mutants in Lactococcus lactis. Similar to other cell wall deacetylases, our results show that Spy1094 and Spy1370 confer lysozyme-resistance. Furthermore, deletion of the genes decreased S. pyogenes virulence in a human whole blood killing assay and a Galleria mellonella (Greater wax moth) larvae infection model. Expression of the two genes in L. lactis resulted in increased lysozyme resistance and survival in whole human blood, and reduced survival of infected G. mellonella larvae. Deletion of the spy1370, but not the spy1094 gene, decreased resistance to the cationic antimicrobial peptide cecropin B, whereas both enzymes increased biofilm formation, probably resulting from the increase in positive charges due to deacetylation of the cell wall. In conclusion, Spy1094 and Spy1370 are important S. pyogenes virulence factors and might represent attractive targets for the development of antibacterial agents.
Collapse
|
8
|
Tabata A, Matsumoto A, Fujimoto A, Ohkura K, Ikeda T, Oda H, Yokohata S, Kobayashi M, Tomoyasu T, Takao A, Ohkuni H, Nagamune H. Dual functions of discoidinolysin, a cholesterol-dependent cytolysin with N-terminal discoidin domain produced from Streptococcus mitis strain Nm-76. J Oral Microbiol 2022; 14:2105013. [PMID: 35937899 PMCID: PMC9351568 DOI: 10.1080/20002297.2022.2105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Some strains of Streptococcus mitis exhibit β-hemolysis due to the β-hemolytic activity of cholesterol-dependent cytolysin (CDC). Recently, a gene encoding an atypical lectinolysin-related CDC was found in S. mitis strain Nm-76. However, the product of this gene remains uncharacterized. We aimed to characterize this atypical CDC and its molecular functions and contribution to the pathogenicity of S. mitis strain Nm-76. Methods Phylogenetic analysis of the CDC gene was conducted based on the web-deposited information. The molecular characteristics of CDC were investigated using a gene-deletion mutant strain and recombinant proteins expressed in Escherichia coli. Results The gene encoding CDC found in Nm-76 and its homolog are distributed among many S. mitis strains. This CDC is phylogenetically different from other previously characterized CDCs, such as S. mitis-derived human platelet aggregation factor (Sm-hPAF)/lectinolysin and mitilysin. Because this CDC possesses an additional N-terminal domain, including a discoidin motif, it was termed discoidinolysin (DLY). In addition to the preferential lysis of human cells, DLY displayed N-terminal domain-dependent facilitation of human erythrocyte aggregation and intercellular associations between human cells. Conclusion DLY functions as a hemolysin/cytolysin and erythrocyte aggregation/intercellular association molecule. This dual-function DLY could be an additional virulence factor in S. mitis.
Collapse
Affiliation(s)
- Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Airi Matsumoto
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ai Fujimoto
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Takuya Ikeda
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Hiroki Oda
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Shuto Yokohata
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Miho Kobayashi
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Toshifumi Tomoyasu
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Ayuko Takao
- Department of Oral Microbiology, School of Dental Medicine, Tsurumi University, Kanagawa, Japan
| | - Hisashi Ohkuni
- Research Institute, Health Science Research Institute East Japan Co., Ltd., Saitama, Japan
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
9
|
Sasagawa K, Domon H, Sakagami R, Hirayama S, Maekawa T, Isono T, Hiyoshi T, Tamura H, Takizawa F, Fukushima Y, Tabeta K, Terao Y. Matcha Green Tea Exhibits Bactericidal Activity against Streptococcus pneumoniae and Inhibits Functional Pneumolysin. Antibiotics (Basel) 2021; 10:antibiotics10121550. [PMID: 34943762 PMCID: PMC8698834 DOI: 10.3390/antibiotics10121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is a causative pathogen of several human infectious diseases including community-acquired pneumonia. Pneumolysin (PLY), a pore-forming toxin, plays an important role in the pathogenesis of pneumococcal pneumonia. In recent years, the use of traditional natural substances for prevention has drawn attention because of the increasing antibacterial drug resistance of S. pneumoniae. According to some studies, green tea exhibits antibacterial and antitoxin activities. The polyphenols, namely the catechins epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), and epicatechin (EC) are largely responsible for these activities. Although matcha green tea provides more polyphenols than green tea infusions, its relationship with pneumococcal pneumonia remains unclear. In this study, we found that treatment with 20 mg/mL matcha supernatant exhibited significant antibacterial activity against S. pneumoniae regardless of antimicrobial resistance. In addition, the matcha supernatant suppressed PLY-mediated hemolysis and cytolysis by inhibiting PLY oligomerization. Moreover, the matcha supernatant and catechins inhibited PLY-mediated neutrophil death and the release of neutrophil elastase. These findings suggest that matcha green tea reduces the virulence of S. pneumoniae in vitro and may be a promising agent for the treatment of pneumococcal infections.
Collapse
Affiliation(s)
- Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Rina Sakagami
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Yoichi Fukushima
- Nestlé Japan Ltd., Wellness Communications, Tokyo 140-0002, Japan;
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Correspondence: ; Tel.: +81-25-227-2838
| |
Collapse
|