1
|
Garrido E, Boege K, Domínguez CA, Fornoni J. Priming by Insects: Differential Effects of Sympatric and Allopatric Priming upon Plant Performance and Tolerance to Herbivory. PLANTS (BASEL, SWITZERLAND) 2022; 11:3567. [PMID: 36559679 PMCID: PMC9784990 DOI: 10.3390/plants11243567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Plants have evolved multiple mechanisms to defend themselves from their multiple herbivores. Thus, being able to recognise among them and respond accordingly is fundamental for plant survival and reproduction. Defence priming prepares the plant to better or more rapidly respond to future damage; however, while it is considered an adaptive trait, to date, no studies have evaluated the extent and specificity of the priming recognition. To estimate the costs, benefits and specificity of priming, we used a highly specialist plant-insect system (Datura stramonium-Lema daturaphila) and performed a reciprocal transplant experiment with two populations where a priming stimulus (sympatric vs. allopatric) and a damage treatment (sympatric) were applied. We found no evidence of a fitness cost of priming, given that primed plants without damage showed no reduction in fitness. In contrast, our treatments affected the probability of bud abortion. That is, when damaged plants received no priming or the priming came from an allopatric insect, the likelihood of aborting the first bud was 1.9 times greater compared to plants being primed by their sympatric insect. We also found that damaged plants primed with an allopatric insect produced 14% fewer seeds compared to plants receiving a sympatric priming stimulus. Tolerance to herbivore damage was also the lowest when plants received the priming stimulus from an allopatric insect. Overall, these results suggest that, in our study system, plants recognise their local insect population reducing the negative effect of damage through a tolerance response.
Collapse
|
2
|
Tronson E, Kaplan I, Enders L. Characterizing rhizosphere microbial communities associated with tolerance to aboveground herbivory in wild and domesticated tomatoes. Front Microbiol 2022; 13:981987. [PMID: 36187948 PMCID: PMC9515613 DOI: 10.3389/fmicb.2022.981987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Root-associated microbial communities are well known for their ability to prime and augment plant defenses that reduce herbivore survival or alter behavior (i.e., resistance). In contrast, the role root microbes play in plant tolerance to herbivory, an evolutionarily sustainable alternative to resistance, is overlooked. In this study, we aimed to expand our limited understanding of what role rhizosphere microbial communities play in supporting tolerance to insect damage. Using domesticated tomatoes and their wild ancestors (Solanum spp.), we first documented how tobacco hornworm (Manduca sexta) herbivory impacted tomato fruit production in order to quantify plant tolerance. We then characterized the bacterial and fungal rhizosphere communities harbored by high and low tolerance plants. Wild tomatoes excelled at tolerating hornworm herbivory, experiencing no significant yield loss despite 50% leaf area removal. Their domesticated counterparts, on the other hand, suffered 26% yield losses under hornworm herbivory, indicating low tolerance. Ontogeny (i.e., mid- vs. late-season sampling) explained the most variation in rhizosphere community structure, with tomato line, tolerance, and domestication status also shaping rhizosphere communities. Fungal and bacterial community traits that associated with the high tolerance line include (1) high species richness, (2) relatively stable community composition under herbivory, and (3) the relative abundance of taxa belonging to Stenotrophomonas, Sphingobacterium, and Sphingomonas. Characterizing tolerance-associating microbiomes may open new avenues through which plant defenses are amended in pest management, such as plant breeding efforts that enhance crop recruitment of beneficial microbiomes.
Collapse
|
3
|
Lima AF, Bernal J, Venâncio MGS, de Souza BHS, Carvalho GA. Comparative Tolerance Levels of Maize Landraces and a Hybrid to Natural Infestation of Fall Armyworm. INSECTS 2022; 13:insects13070651. [PMID: 35886827 PMCID: PMC9316814 DOI: 10.3390/insects13070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Exploiting the tolerance of plants against herbivorous insects is a viable pest management alternative, especially where conventional controls are ineffective. For example, due to the inefficacy of currently adopted practices, new strategies and methods are needed for Spodoptera frugiperda management in maize. This study evaluated the tolerance levels of maize landraces and a conventional hybrid under natural infestation of S. frugiperda. We found promising sources of tolerance among the landraces, evident as tolerance indices that varied across the landraces and hybrid we evaluated. Abstract Insect pests such as Spodoptera frugiperda cause significant losses to maize (Zea mays mays). Control of S. frugiperda is difficult, but the use of insect resistant cultivars, including tolerant cultivars, is a promising alternative, and landraces are a potential source of insect resistance. This study investigated tolerance to S. frugiperda in five Brazilian landraces, Amarelão, Aztequinha, Branco Antigo, Palha Roxa, and São Pedro, in relation to one conventional (non-Bt) hybrid, BM207, under field conditions. We assessed tolerance as the ratio of insecticide-free to insecticide-protected plants for plant height, stem diameter, and leaf chlorophyll content at two plant stages. Tolerance ratios varied across the maize genotypes, but inconsistently across plant variables, and cluster analysis revealed three groups based on tolerance ratios. A first group contained genotypes similarly tolerant to S. frugiperda, BM207, Palha Roxa, São Pedro, and Aztequinha, while the second and third groups each contained single genotypes, Amarelão, and Branco Antigo, which were considered not tolerant. Overall, the landraces Palha Roxa, São Pedro, and Aztequinha compared favorably to BM207 in terms of tolerance, and therefore may be valuable for management of this pest, and as germplasm sources to improve tolerance in other cultivars.
Collapse
Affiliation(s)
- Andreísa Fabri Lima
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
| | - Julio Bernal
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA
- Correspondence: (J.B.); (B.H.S.d.S.)
| | - Maria Gabriela Silva Venâncio
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
| | - Bruno Henrique Sardinha de Souza
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
- Correspondence: (J.B.); (B.H.S.d.S.)
| | - Geraldo Andrade Carvalho
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
| |
Collapse
|
4
|
Enders L, Begcy K. Unconventional routes to developing insect-resistant crops. MOLECULAR PLANT 2021; 14:1439-1453. [PMID: 34217871 DOI: 10.1016/j.molp.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Concerns over widespread use of insecticides and heightened insect pest virulence under climate change continue to fuel the need for environmentally safe and sustainable control strategies. However, to develop such strategies, a better understanding of the molecular basis of plant-pest interactions is still needed. Despite decades of research investigating plant-insect interactions, few examples exist where underlying molecular mechanisms are well characterized, and even rarer are cases where this knowledge has been successfully applied to manage harmful agricultural pests. Consequently, the field appears to be static, urgently needing shifts in approaches to identify novel mechanisms by which insects colonize plants and plants avoid insect pressure. In this perspective, we outline necessary steps for advancing holistic methodologies that capture complex plant-insect molecular interactions. We highlight novel and underexploited approaches in plant-insect interaction research as essential routes to translate knowledge of underlying molecular mechanisms into durable pest control strategies, including embracing microbial partnerships, identifying what makes a plant an unsuitable host, capitalizing on tolerance of insect damage, and learning from cases where crop domestication and agronomic practices enhance pest virulence.
Collapse
Affiliation(s)
- Laramy Enders
- Purdue University, Department of Entomology, West Lafayette, IN 47907, USA.
| | - Kevin Begcy
- University of Florida, Environmental Horticulture Department, Gainesville, FL 32611, USA.
| |
Collapse
|
5
|
Hauri KC, Glassmire AE, Wetzel WC. Chemical diversity rather than cultivar diversity predicts natural enemy control of herbivore pests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02289. [PMID: 33423331 DOI: 10.1002/eap.2289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Cultivar mixtures have been studied for decades as a means for pest suppression. The literature, however, shows a large variability in outcomes, suggesting that we are unable to create mixtures that consistently suppress insect pests and attract natural enemies. A key gap in our understanding of how cultivar mixtures influence pest control is that few studies have examined the plant traits or mechanisms by which cultivar diversity affects pests and their interactions with natural enemies. The diversity of plant chemistry in a cultivar mixture is one trait dimension that is likely influential for insect ecology because chemical traits alter how predators and herbivores forage and interact. To understand how plant chemical diversity influences herbivores and their interactions with predators, we fully crossed predator presence or absence with monocultures, bicultures, and tricultures of three chemotypes of tomato that differed in odor diversity (terpenes) or surface chemistry (acyl sugars) in a caged field experiment. We found that the direct effects of plant chemotype diversity on herbivore performance were strongest in bicultures and depended on herbivore sex, and these effects typically acted through growth rather than survival. The effects of chemotype diversity on top-down pest suppression by natural enemies differed between classes of chemical diversity. Odor diversity (terpenes) interfered with the ability of predators to hunt effectively, whereas diversity in surface chemistry (acyl sugars) did not. Our results suggest that phytochemical diversity can contribute to pest suppression in agroecosystems, but that implementing it will require engineering cultivar mixtures using trait-based approaches that account for the biology of the pests and natural enemies in the system.
Collapse
Affiliation(s)
- Kayleigh C Hauri
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, 49060, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
6
|
Chavana J, Singh S, Vazquez A, Christoffersen B, Racelis A, Kariyat RR. Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits. Sci Rep 2021; 11:6634. [PMID: 33758235 PMCID: PMC7988165 DOI: 10.1038/s41598-021-85789-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
The role of disturbance in accelerating weed growth is well understood. While most studies have focused on soil mediated disturbance, mowing can also impact weed traits. Using silverleaf nightshade (Solanum elaeagnifolium), a noxious and invasive weed, through a series of field, laboratory, and greenhouse experiments, we asked whether continuous mowing influences growth and plant defense traits, expressed via different avenues, and whether they cascade into offspring. We found that mowed plants produced significantly less number of fruits, and less number of total seeds per plant, but had higher seed mass, and germinated more and faster. When three herbivores were allowed to feed, tobacco hornworm (Manduca sexta) caterpillars, gained more mass on seedlings from unmowed plants, while cow pea aphid (Aphis craccivora), a generalist, established better on mowed seedlings; however, leaf trichome density was higher on unmowed seedlings, suggesting possible negative cross talk in defense traits. Texas potato beetle (Leptinotarsa texana), a co-evolved specialist on S. elaeagnifolium, did not show any differential feeding effects. We also found that specific root length, an indicator of nutrient acquisition, was significantly higher in first generation seedlings from mowed plants. Taken together, we show that mowing is a selective pressure that enhances some fitness and defense traits and can contribute to producing superweeds.
Collapse
Affiliation(s)
- Jesus Chavana
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Sukhman Singh
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Alejandro Vazquez
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Bradley Christoffersen
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Alexis Racelis
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
- School of Earth, Environmental and Marine Sciences, Edinburg, TX, 78539, USA
| | - Rupesh R Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA.
- School of Earth, Environmental and Marine Sciences, Edinburg, TX, 78539, USA.
| |
Collapse
|
7
|
Kundu A, Mishra S, Vadassery J. Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. PLANTA 2018; 248:981-997. [PMID: 29987372 DOI: 10.1007/s00425-018-2953-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/04/2018] [Indexed: 05/27/2023]
Abstract
Metabolite profiling, biochemical assays, and transcript analysis revealed differential modulation of specific induced defense responses in local, older, and younger systemic leaves in Solanum lycopersicum upon Spodoptera litura herbivory. Plants reconfigure their metabolome upon herbivory to induce production of defense metabolites involved in both direct and indirect defenses against insect herbivores. Herbivory mediated leaf-to-leaf systemic induction pattern of primary and non-volatile secondary metabolites is not well studied in tomato. Here, we show that, in cultivated tomato Solanum lycopersicum herbivory by generalist insect, Spodoptera litura results in differential alteration of primary metabolites, majorly sugars and amino acids and specific secondary metabolites in local, younger, and older systemic leaves. Cluster analysis of 55 metabolites identified by GC-MS showed correlation between local and younger systemic leaves. Re-allocation of primary metabolites like glucose and amino acids from the local to systemic leaf was observed. Secondary metabolites chlorogenic acid, caffeic acid, and catechin were significantly induced during herbivory in systemic leaves. Among specific secondary metabolites, chlorogenic acid and catechin significantly inhibits S. litura larval growth in all stages. Local leaf exhibited increased lignin accumulation upon herbivory. Differential alteration of induced defense responses like reactive oxygen species, polyphenol oxidase activity, proteinase inhibitor, cell wall metabolites, and lignin accumulation was observed in systemic leaves. The metabolite alteration also resulted in increased defense in systemic leaves. Thus, comparative analysis of metabolites in local and systemic leaves of tomato revealed a constant re-allocation of primary metabolites to systemic leaves and differential induction of secondary metabolites and induced defenses upon herbivory.
Collapse
Affiliation(s)
- Anish Kundu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box 10531, New Delhi, 110067, India
| | - Shruti Mishra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box 10531, New Delhi, 110067, India
| | - Jyothilakshmi Vadassery
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box 10531, New Delhi, 110067, India.
| |
Collapse
|
8
|
Cuny MAC, Gendry J, Hernández-Cumplido J, Benrey B. Changes in plant growth and seed production in wild lima bean in response to herbivory are attenuated by parasitoids. Oecologia 2018; 187:447-457. [DOI: 10.1007/s00442-018-4119-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/18/2018] [Indexed: 11/30/2022]
|
9
|
Orians CM, Gomez S, Korpita T. Does mycorrhizal status alter herbivore-induced changes in whole-plant resource partitioning? AOB PLANTS 2018; 10:plx071. [PMID: 29340134 PMCID: PMC5761529 DOI: 10.1093/aobpla/plx071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Both mycorrhizae and herbivore damage cause rapid changes in source-sink dynamics within a plant. Mycorrhizae create long-term sinks for carbon within the roots while damage by leaf-chewing herbivores causes temporary whole-plant shifts in carbon and nitrogen allocation. Thus, induced responses to herbivory might depend on the presence or absence of mycorrhizae. We examined the effects of mycorrhizal presence on induced resource partitioning in tomato (Solanum lycopersicon) in response to cues from a specialist herbivore Manduca sexta. Differences in plant size, growth and in the concentrations of carbon-based (soluble sugars and starch) and nitrogen-based (protein and total nitrogen) resources in three tissue types (apex, stem and roots) were quantified. Both mycorrhizae and simulated herbivory altered the concentrations of carbon- and nitrogen-based resources. Mycorrhizae promoted plant growth, altered sugar and starch levels. Simulated herbivory resulted in lower concentrations of most resources (sugar, starch and protein) in the rapidly growing apex tissue, while causing an increase in stem protein. There was only one interactive effect; the effects of simulated herbivory were much stronger on the sugar concentration in the apex of non-mycorrhizal plants. This clearly demonstrates that both mycorrhizal colonization and herbivore cues cause shifts in carbon- and nitrogen-based resources and further shows there is little interference by mycorrhizae on the direction and magnitude of plant responses to herbivory. Overall, our results suggest that herbivore cues, regardless of mycorrhizal status, reduce allocation to the growing apex while inducing protein storage in the stem, a possible mechanism that could increase the tolerance of plants to damage.
Collapse
Affiliation(s)
- Colin M Orians
- Department of Biology, Tufts University, Medford, MA, USA
| | - Sara Gomez
- Department of Biology, Tufts University, Medford, MA, USA
| | | |
Collapse
|
10
|
Basu S, Varsani S, Louis J. Altering Plant Defenses: Herbivore-Associated Molecular Patterns and Effector Arsenal of Chewing Herbivores. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:13-21. [PMID: 28840787 DOI: 10.1094/mpmi-07-17-0183-fi] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chewing herbivores, such as caterpillars and beetles, while feeding on the host plant, cause extensive tissue damage and release a wide array of cues to alter plant defenses. Consequently, the cues can have both beneficial and detrimental impacts on the chewing herbivores. Herbivore-associated molecular patterns (HAMPs) are molecules produced by herbivorous insects that aid them to elicit plant defenses leading to impairment of insect growth, while effectors suppress plant defenses and contribute to increased susceptibility to subsequent feeding by chewing herbivores. Besides secretions that originate from glands (e.g., saliva) and fore- and midgut regions (e.g., oral secretions) of chewing herbivores, recent studies have shown that insect frass and herbivore-associated endosymbionts also play a critical role in modulating plant defenses. In this review, we provide an update on a growing body of literature that discusses the chewing insect HAMPs and effectors and the mechanisms by which they modulate host defenses. Novel "omic" approaches and availability of new tools will help researchers to move forward this discipline by identifying and characterizing novel insect HAMPs and effectors and how these herbivore-associated cues are perceived by host plant receptors.
Collapse
Affiliation(s)
| | | | - Joe Louis
- 1 Department of Entomology; and
- 2 Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
11
|
Insect herbivory may cause changes in the visual properties of leaves and affect the camouflage of herbivores to avian predators. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2326-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Machado RAR, Zhou W, Ferrieri AP, Arce CCM, Baldwin IT, Xu S, Erb M. Species-specific regulation of herbivory-induced defoliation tolerance is associated with jasmonate inducibility. Ecol Evol 2017; 7:3703-3712. [PMID: 28616167 PMCID: PMC5468159 DOI: 10.1002/ece3.2953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 01/26/2023] Open
Abstract
Induced changes in root carbohydrate pools are commonly assumed to determine plant defoliation tolerance to herbivores. However, the regulation and species specificity of these two traits are not well understood. We determined herbivory‐induced changes in root carbohydrates and defoliation tolerance in seven different solanaceous plant species and correlated the induced changes in root carbohydrates and defoliation tolerance with jasmonate inducibility. Across species, we observed strong species‐specific variation for all measured traits. Closer inspection revealed that the different species fell into two distinct groups: Species with a strong induced jasmonic acid (JA) burst suffered from a reduction in root carbohydrate pools and reduced defoliation tolerance, while species with a weak induced JA burst maintained root carbohydrate pools and tolerated defoliation. Induced JA levels predicted carbohydrate and regrowth responses better than jasmonoyl‐L‐isoleucine (JA‐Ile) levels. Our study shows that induced JA signaling, root carbohydrate responses, and defoliation tolerance are closely linked, but highly species specific, even among closely related species. We propose that defoliation tolerance may evolve rapidly via changes in the plant's defense signaling network.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group Max Planck Institute for Chemical Ecology Jena Germany.,Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany.,Institute of Plant Sciences University of Bern Bern Switzerland
| | - Wenwu Zhou
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Abigail P Ferrieri
- Root-Herbivore Interactions Group Max Planck Institute for Chemical Ecology Jena Germany.,Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Carla C M Arce
- Departamento de Entomologia Universidade Federal de Viçosa Viçosa (MG) Brazil
| | - Ian T Baldwin
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Shuqing Xu
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Matthias Erb
- Institute of Plant Sciences University of Bern Bern Switzerland
| |
Collapse
|
13
|
Carrillo J, Siemann E. A native plant competitor mediates the impact of above- and belowground damage on an invasive tree. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:2060-2071. [PMID: 27755734 DOI: 10.1002/eap.1359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 06/06/2023]
Abstract
Plant competition may mediate the impacts of herbivory on invasive plant species through effects on plant growth and defense. This may predictably depend on whether herbivory occurs above or below ground and on relative plant competitive ability. We simulated the potential impact of above- or belowground damage by biocontrol agents on the growth of a woody invader (Chinese tallow tree, Triadica sebifera) through artificial herbivory, with or without competition with a native grass, little bluestem (Schizachyrium scoparium). We measured two defense responses of Triadica through quantifying constitutive and induced extrafloral nectar production and tolerance of above- and belowground damage (root and shoot biomass regrowth). We examined genetic variation in plant growth and defense across native (China) and invasive (United States) Triadica populations. Without competition, aboveground damage had a greater impact than belowground damage on Triadica performance, whereas with competition and above- and belowground damage impacted Triadica similarly. Whole plant tolerance to damage below ground was negatively associated with tolerance to grass competitors indicating tradeoffs in the ability to tolerate herbivory vs. compete. Competition reduced investment in defensive extrafloral nectar (EFN) production. Aboveground damage inhibited rather than induced EFN production while belowground plant damage did not impact aboveground nectar production. We found some support for the evolution of increased competitive ability hypothesis for invasive plants as United States plants were larger than native China plants and were more plastic in their response to biotic stressors than China plants (they altered their root to shoot ratios dependent on herbivory and competition treatments). Our results indicate that habitat type and the presence of competitors may be a larger determinant of herbivory impact than feeding mode and suggest that integrated pest management strategies including competitive dynamics of recipient communities should be incorporated into biological control agent evaluation at earlier stages.
Collapse
Affiliation(s)
- Juli Carrillo
- Department of Entomology, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
14
|
Koch KG, Chapman K, Louis J, Heng-Moss T, Sarath G. Plant Tolerance: A Unique Approach to Control Hemipteran Pests. FRONTIERS IN PLANT SCIENCE 2016; 7:1363. [PMID: 27679643 PMCID: PMC5020058 DOI: 10.3389/fpls.2016.01363] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/29/2016] [Indexed: 05/20/2023]
Abstract
Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.
Collapse
Affiliation(s)
- Kyle G. Koch
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Kaitlin Chapman
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
- Department of Biochemistry, University of Nebraska–Lincoln, LincolnNE, USA
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Gautam Sarath
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
- Grain, Forage, and Bioenergy Research Unit, United States Department of Agriculture – Agricultural Research Service, LincolnNE, USA
| |
Collapse
|
15
|
Renault S, Wolfe S, Markham J, Avila-Sakar G. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant. AOB PLANTS 2016; 8:plw028. [PMID: 27169610 PMCID: PMC4940500 DOI: 10.1093/aobpla/plw028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/13/2016] [Indexed: 05/10/2023]
Abstract
Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance.
Collapse
Affiliation(s)
- Sylvie Renault
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Scott Wolfe
- Department of Biology, University of Winnipeg, 599 Portage Ave, Winnipeg, Manitoba R3B 2G3, Canada
| | - John Markham
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Germán Avila-Sakar
- Department of Biology, University of Winnipeg, 599 Portage Ave, Winnipeg, Manitoba R3B 2G3, Canada
| |
Collapse
|
16
|
Barton KE. Low tolerance to simulated herbivory in Hawaiian seedlings despite induced changes in photosynthesis and biomass allocation. ANNALS OF BOTANY 2016; 117:1053-62. [PMID: 27056973 PMCID: PMC4866310 DOI: 10.1093/aob/mcw021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/16/2015] [Accepted: 12/18/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Seedling herbivory is an important factor underlying plant community diversity and structure. While considerable research has characterized seedling defence in terms of resistance, very little is known about seedling tolerance of herbivory. Moreover, few studies have attempted to identify mechanisms of tolerance across a range of plant species. METHODS Seedling tolerance of simulated herbivory was tested in a diverse pool of ten Hawaiian plant species, including several lobeliad species (family Campanulaceae), a grass, a herb and common woody trees and shrubs. Tolerance was measured as the relative survival and growth of damaged plants receiving 50 % defoliation with simultaneous jasmonic acid application compared with undamaged control plants, assessed 1·5 and 5 weeks after damage. Putative mechanisms of tolerance were measured, including photosynthetic parameters, light use efficiency, and biomass allocation reflecting growth priorities, and analysed using species-level regression analyses on tolerance indices. KEY RESULTS No species fully tolerated 50 % defoliation at either harvest date, and simulated herbivory significantly reduced shoot as well as root biomass. Lobeliad species had particularly low tolerance. Species varied considerably in size, biomass allocation parameters and their constitutive (pre-damage) and induced (post-damage) photosynthetic parameters. However, only constitutive levels of non-photochemical quenching were significantly related to tolerance, indicating that species with more efficient light use (and less heat dissipation) are better at tolerating damage than species with high levels of heat dissipation. CONCLUSIONS Native Hawaiian plants expressed low tolerance to a conservative level of simulated herbivory. Root growth decreased in response to damage, but this was not associated with greater tolerance, suggesting this response may be due to allocation constraints following defoliation and not due to adaptive plasticity. Conservation of native island plants threatened by invasive herbivores should prioritize protection for seedlings for improved regeneration and the persistence of native plants in disturbed habitats.
Collapse
Affiliation(s)
- Kasey E Barton
- Department of Botany, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
17
|
Kaplan I, Carrillo J, Garvey M, Ode PJ. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. CURRENT OPINION IN INSECT SCIENCE 2016; 14:112-119. [PMID: 27436656 DOI: 10.1016/j.cois.2016.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023]
Abstract
In occupying an intermediate trophic position, herbivorous insects serve a vital link between plants at the base of the food chain and parasitoids at the top. Although these herbivore-mediated indirect plant-parasitoid interactions are well-documented, new studies have uncovered previously undescribed mechanisms that are fundamentally changing how we view tri-trophic relationships. In this review we highlight recent advances in this field focusing on both plant-driven and parasitoid-driven outcomes that flow up and down the trophic web, respectively. From the bottom-up, plant metabolites can impact parasitoid success by altering host immune function; however, few have considered the potential effects of other plant defense strategies such as tolerance on parasitoid ecology and behavior. From the top-down, parasitoids have long been considered plant bodyguards, but in reality the consequences of parasitism for herbivory rates and induction of plant defensive chemistry are far more complicated with cascading effects on community-level interactions.
Collapse
Affiliation(s)
- Ian Kaplan
- Department of Entomology, Purdue University, United States.
| | - Juli Carrillo
- Department of Entomology, Purdue University, United States
| | - Michael Garvey
- Department of Entomology, Purdue University, United States
| | - Paul J Ode
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, United States
| |
Collapse
|
18
|
Robert CAM, Ferrieri RA, Schirmer S, Babst BA, Schueller MJ, Machado RAR, Arce CCM, Hibbard BE, Gershenzon J, Turlings TCJ, Erb M. Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms. PLANT, CELL & ENVIRONMENT 2014; 37:2613-22. [PMID: 24762051 DOI: 10.1111/pce.12359] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 05/26/2023]
Abstract
Upon attack by leaf herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated induced resource allocation in maize plants that are infested by the larvae Western corn rootworm Diabrotica virgifera virgifera. Using radioactive (11) CO(2), we demonstrate that root-attacked maize plants allocate more new (11) C carbon from source leaves to stems, but not to roots. Reduced meristematic activity and reduced invertase activity in attacked maize root systems are identified as possible drivers of this shoot reallocation response. The increased allocation of photoassimilates to stems is shown to be associated with a marked thickening of these tissues and increased growth of stem-borne crown roots. A strong quantitative correlation between stem thickness and root regrowth across different watering levels suggests that retaining photoassimilates in the shoots may help root-attacked plants to compensate for the loss of belowground tissues. Taken together, our results indicate that induced tolerance may be an important strategy of plants to withstand belowground attack. Furthermore, root herbivore-induced carbon reallocation needs to be taken into account when studying plant-mediated interactions between herbivores.
Collapse
Affiliation(s)
- Christelle A M Robert
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany; Departments of 2Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Campbell SA, Halitschke R, Thaler JS, Kessler A. Plant mating systems affect adaptive plasticity in response to herbivory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:481-490. [PMID: 24580720 DOI: 10.1111/tpj.12492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
The fitness consequences of mating system variation (e.g. inbreeding) have been studied for at least 200 years, yet the ecological consequences of this variation remain poorly understood. Most plants are capable of inbreeding, and also exhibit a remarkable suite of adaptive phenotypic responses to ecological stresses such as herbivory. We tested the consequences of experimental inbreeding on phenotypic plasticity in resistance and growth (tolerance) traits in Solanum carolinense (Solanaceae). Inbreeding reduced the ability of plants to up-regulate resistance traits following damage. Moreover, inbreeding disrupted growth trait responses to damage, indicating the presence of deleterious mutations at loci regulating growth under stress. Production of the phytohormones abscisic and indole acetic acid, and wounding-induced up-regulation of the defence signalling phytohormone jasmonic acid were all significantly reduced under inbreeding, indicating a phytohormonal basis for inbreeding effects on growth and defence trait regulation. We conclude that the plasticity of induced responses is negatively affected by inbreeding, with implications for fragmented populations facing mate limitation and stress as a consequence of environmental change.
Collapse
Affiliation(s)
- Stuart A Campbell
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | |
Collapse
|