1
|
Zhao F, Huang Y, Wei H, Wang M. Ocean acidification alleviated nickel toxicity to a marine copepod under multigenerational scenarios but at a cost with a loss of transcriptome plasticity during recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173585. [PMID: 38810735 DOI: 10.1016/j.scitotenv.2024.173585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Marine ecosystem has been experiencing multiple stressors caused by anthropogenic activities, including ocean acidification (OA) and nickel (Ni) pollution. Here, we examined the individual/combined effects of OA (pCO2 1000 μatm) and Ni (6 μg/L) exposure on a marine copepod Tigriopus japonicus for six generations (F1-F6), followed by one-generation recovery (F7) in clean seawater. Ni accumulation and several important phenotypic traits were measured in each generation. To explore within-generation response and transgenerational plasticity, we analyzed the transcriptome profile for the copepods of F6 and F7. The results showed that Ni exposure compromised the development, reproduction and survival of copepods during F1-F6, but its toxicity effects were alleviated by OA. Thus, under OA and Ni combined exposure, due to their antagonistic interaction, the disruption of Ca2+ homeostasis, and the inhibition of calcium signaling pathway and oxytocin signaling pathway were not found. However, as a cost of acclimatization/adaption potential to long-term OA and Ni combined exposure, there was a loss of transcriptome plasticity during recovery, which limited the resilience of copepods to previously begin environments. Overall, our work fosters a comprehensive understanding of within- and transgenerational effects of climatic stressor and metal pollution on marine biota.
Collapse
Affiliation(s)
- Fankang Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuehan Huang
- School of International Education, Beijing University of Chemical Technology, Beijing 102200, China
| | - Hui Wei
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Santos MA, Carromeu-Santos A, Quina AS, Antunes MA, Kristensen TN, Santos M, Matos M, Fragata I, Simões P. Experimental Evolution in a Warming World: The Omics Era. Mol Biol Evol 2024; 41:msae148. [PMID: 39034684 PMCID: PMC11331425 DOI: 10.1093/molbev/msae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
A comprehensive understanding of the genetic mechanisms that shape species responses to thermal variation is essential for more accurate predictions of the impacts of climate change on biodiversity. Experimental evolution with high-throughput resequencing approaches (evolve and resequence) is a highly effective tool that has been increasingly employed to elucidate the genetic basis of adaptation. The number of thermal evolve and resequence studies is rising, yet there is a dearth of efforts to integrate this new wealth of knowledge. Here, we review this literature showing how these studies have contributed to increase our understanding on the genetic basis of thermal adaptation. We identify two major trends: highly polygenic basis of thermal adaptation and general lack of consistency in candidate targets of selection between studies. These findings indicate that the adaptive responses to specific environments are rather independent. A review of the literature reveals several gaps in the existing research. Firstly, there is a paucity of studies done with organisms of diverse taxa. Secondly, there is a need to apply more dynamic and ecologically relevant thermal environments. Thirdly, there is a lack of studies that integrate genomic changes with changes in life history and behavioral traits. Addressing these issues would allow a more in-depth understanding of the relationship between genotype and phenotype. We highlight key methodological aspects that can address some of the limitations and omissions identified. These include the need for greater standardization of methodologies and the utilization of new technologies focusing on the integration of genomic and phenotypic variation in the context of thermal adaptation.
Collapse
Affiliation(s)
- Marta A Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Marta A Antunes
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Mauro Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Margarida Matos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Nowakowski K, Sługocki Ł. Contrasting responses of Thermocyclops crassus and T. oithonoides (Crustacea, Copepoda) to thermal stress. Sci Rep 2024; 14:7660. [PMID: 38561430 PMCID: PMC10984995 DOI: 10.1038/s41598-024-58230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Thermal tolerance is a critical factor influencing the survival of living organisms. This study focuses on the thermal resistance of copepod species, Thermocyclops crassus (Fischer, 1853) and T. oithonoides (Sars G.O., 1863), with overlapping distribution ranges in Europe. Short-term heat shock experiments were conducted to assess the thermal resistance of these copepods, considering various temperature increments and exposure durations. Additionally, the study explored the influence of heat shock on egg sac shedding, a vital indicator of population dynamics. Results indicate that widely distributed T. crassus exhibits higher thermal tolerance compared to narrowly distributed T. oithonoides, with survival rates varying under different heat shock conditions. Furthermore, T. crassus demonstrated a quicker response in dropping egg sacs in response to thermal stress, suggesting a potential adaptive mechanism for the survival of adults. However, rapid egg sac droppings pose high risks for eggs facing unfavorable conditions. T. crassus, inhabiting environments with greater temperature fluctuations such as the littoral and pelagial zones, exhibited better survival mechanisms compared to T. oithonoides, which predominantly resides in the pelagic zone. The findings have implications for understanding copepod responses to global warming and thermal pollution. This research contributes insights into the adaptive strategies of thermophilic copepod species and their ecological consequences.
Collapse
Affiliation(s)
- Kacper Nowakowski
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Wąska 13, 71-715, Szczecin, Poland
| | - Łukasz Sługocki
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Wąska 13, 71-715, Szczecin, Poland.
- Center of Molecular Biology and Biotechnology, University of Szczecin, Wąska 13, 71-715, Szczecin, Poland.
| |
Collapse
|
4
|
Ashlock L, Darwin C, Crooker J, deMayo J, Dam HG, Pespeni M. Developmental temperature, more than long-term evolution, defines thermal tolerance in an estuarine copepod. Ecol Evol 2024; 14:e10995. [PMID: 38380068 PMCID: PMC10877657 DOI: 10.1002/ece3.10995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Climate change is resulting in increasing ocean temperatures and salinity variability, particularly in estuarine environments. Tolerance of temperature and salinity change interact and thus may impact organismal resilience. Populations can respond to multiple stressors in the short-term (i.e., plasticity) or over longer timescales (i.e., adaptation). However, little is known about the short- or long-term effects of elevated temperature on the tolerance of acute temperature and salinity changes. Here, we characterized the response of the near-shore and estuarine copepod, Acartia tonsa, to temperature and salinity stress. Copepods originated from one of two sets of replicated >40 generation-old temperature-adapted lines: ambient (AM, 18°C) and ocean warming (OW, 22°C). Copepods from these lines were subjected to one and three generations at the reciprocal temperature. Copepods from all treatments were then assessed for differences in acute temperature and salinity tolerance. Development (one generation), three generations, and >40 generations of warming increased thermal tolerance compared to Ambient conditions, with development in OW resulting in equal thermal tolerance to three and >40 generations of OW. Strikingly, developmental OW and >40 generations of OW had no effect on low salinity tolerance relative to ambient. By contrast, when environmental salinity was reduced first, copepods had lower thermal tolerances. These results highlight the critical role for plasticity in the copepod climate response and suggest that salinity variability may reduce copepod tolerance to subsequent warming.
Collapse
Affiliation(s)
- Lauren Ashlock
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - Chelsea Darwin
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - Jessica Crooker
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - James deMayo
- Department of Marine SciencesUniversity of ConnecticutGrotonConnecticutUSA
| | - Hans G. Dam
- Department of Marine SciencesUniversity of ConnecticutGrotonConnecticutUSA
| | - Melissa Pespeni
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
5
|
Tobias Z, Solow A, Tepolt C. Geography and developmental plasticity shape post-larval thermal tolerance in the golden star tunicate, Botryllus schlosseri. J Therm Biol 2024; 119:103763. [PMID: 38071896 DOI: 10.1016/j.jtherbio.2023.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 02/25/2024]
Abstract
Local adaptation and phenotypic plasticity play key roles in mediating organisms' ability to respond to spatiotemporal variation in temperature. These two processes often act together to generate latitudinal or elevational clines in acute temperature tolerance. Phenotypic plasticity is also subject to local adaptation, with the expectation that populations inhabiting more variable environments should exhibit greater phenotypic plasticity of thermal tolerance. Here we examine the potential for local adaptation and developmental plasticity of thermal tolerance in the widespread invasive tunicate Botryllus schlosseri. By comparing five populations across a thermal gradient spanning 4.4° of latitude in the northwest Atlantic, we demonstrate that warmer populations south of the Gulf of Maine exhibit significantly increased (∼0.2 °C) post-larval temperature tolerance relative to the colder populations within it. We also show that B. schlosseri post-larvae possess a high degree of developmental plasticity for this trait, shifting their median temperature of survival (LT50) upwards by as much as 0.18 °C per 1 °C increase in environmental temperature. Lastly, we found that populations vary in their degrees of developmental plasticity, with populations that experience more pronounced short-term temperature variability exhibiting greater developmental plasticity, suggesting the local adaptation of developmental plasticity. By comparing the thermal tolerance of populations across space and through time, we demonstrate how geography and developmental plasticity have shaped thermal tolerance in B. schlosseri. These results help inform our understanding of how species are able to adjust their thermal physiology in new environments, including those encountered during invasion and under increasingly novel climate conditions.
Collapse
Affiliation(s)
- Zachary Tobias
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Andrew Solow
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Carolyn Tepolt
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
6
|
Szukala A, Bertel C, Frajman B, Schönswetter P, Paun O. Parallel adaptation to lower altitudes is associated with enhanced plasticity in Heliosperma pusillum (Caryophyllaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1619-1632. [PMID: 37277969 PMCID: PMC10952512 DOI: 10.1111/tpj.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
High levels of phenotypic plasticity are thought to be inherently costly in stable or extreme environments, but enhanced plasticity may evolve as a response to new environments and foster novel phenotypes. Heliosperma pusillum forms glabrous alpine and pubescent montane ecotypes that diverged recurrently and polytopically (parallel evolution) and can serve as evolutionary replicates. The specific alpine and montane localities are characterized by distinct temperature conditions, available moisture, and light. Noteworthy, the ecotypes show a home-site fitness advantage in reciprocal transplantations. To disentangle the relative contribution of constitutive versus plastic gene expression to altitudinal divergence, we analyze the transcriptomic profiles of two parallely evolved ecotype pairs, grown in reciprocal transplantations at native altitudinal sites. In this incipient stage of divergence, only a minor proportion of genes appear constitutively differentially expressed between the ecotypes in both pairs, regardless of the growing environment. Both derived, montane populations bear comparatively higher plasticity of gene expression than the alpine populations. Genes that change expression plastically or constitutively underlie similar ecologically relevant pathways, related to response to drought and trichome formation. Other relevant processes, such as photosynthesis, rely mainly on plastic changes. The enhanced plasticity consistently observed in the montane ecotype likely evolved as a response to the newly colonized, drier, and warmer niche. We report a striking parallelism of directional changes in gene expression plasticity. Thus, plasticity appears to be a key mechanism shaping the initial stages of phenotypic evolution, likely fostering adaptation to novel environments.
Collapse
Affiliation(s)
- Aglaia Szukala
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
- Austrian Federal Research Centre for Forests (BFW)Unit of Ecological GeneticsSeckendorff‐Gudent‐Weg 8A‐1131ViennaAustria
| | - Clara Bertel
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - Božo Frajman
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| |
Collapse
|
7
|
Healy TM, Burton RS. Loss of mitochondrial performance at high temperatures is correlated with upper thermal tolerance among populations of an intertidal copepod. Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110836. [PMID: 36801253 DOI: 10.1016/j.cbpb.2023.110836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Environmental temperatures have pervasive effects on the performance and tolerance of ectothermic organisms, and thermal tolerance limits likely play key roles underlying biogeographic ranges and responses to environmental change. Mitochondria are central to metabolic processes in eukaryotic cells, and these metabolic functions are thermally sensitive; however, potential relationships between mitochondrial function, thermal tolerance limits and local thermal adaptation in general remain unresolved. Loss of ATP synthesis capacity at high temperatures has recently been suggested as a mechanistic link between mitochondrial function and upper thermal tolerance limits. Here we use a common-garden experiment with seven locally adapted populations of intertidal copepods (Tigriopus californicus), spanning approximately 21.5° latitude, to assess genetically based variation in the thermal performance curves of maximal ATP synthesis rates in isolated mitochondria. These thermal performance curves displayed substantial variation among populations with higher ATP synthesis rates at lower temperatures (20-25 °C) in northern populations than in southern populations. In contrast, mitochondria from southern populations maintained ATP synthesis rates at higher temperatures than the temperatures that caused loss of ATP synthesis capacity in mitochondria from northern populations. Additionally, there was a tight correlation between the thermal limits of ATP synthesis and previously determined variation in upper thermal tolerance limits among populations. This suggests that mitochondria may play an important role in latitudinal thermal adaptation in T. californicus, and supports the hypothesis that loss of mitochondrial performance at high temperatures is linked to whole-organism thermal tolerance limits in this ectotherm.
Collapse
Affiliation(s)
- Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA, USA.
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA, USA
| |
Collapse
|
8
|
Experimental evolution reveals the synergistic genomic mechanisms of adaptation to ocean warming and acidification in a marine copepod. Proc Natl Acad Sci U S A 2022; 119:e2201521119. [PMID: 36095205 PMCID: PMC9499500 DOI: 10.1073/pnas.2201521119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Metazoan adaptation to global change relies on selection of standing genetic variation. Determining the extent to which this variation exists in natural populations, particularly for responses to simultaneous stressors, is essential to make accurate predictions for persistence in future conditions. Here, we identified the genetic variation enabling the copepod Acartia tonsa to adapt to experimental ocean warming, acidification, and combined ocean warming and acidification (OWA) over 25 generations of continual selection. Replicate populations showed a consistent polygenic response to each condition, targeting an array of adaptive mechanisms including cellular homeostasis, development, and stress response. We used a genome-wide covariance approach to partition the allelic changes into three categories: selection, drift and replicate-specific selection, and laboratory adaptation responses. The majority of allele frequency change in warming (57%) and OWA (63%) was driven by shared selection pressures across replicates, but this effect was weaker under acidification alone (20%). OWA and warming shared 37% of their response to selection but OWA and acidification shared just 1%, indicating that warming is the dominant driver of selection in OWA. Despite the dominance of warming, the interaction with acidification was still critical as the OWA selection response was highly synergistic with 47% of the allelic selection response unique from either individual treatment. These results disentangle how genomic targets of selection differ between single and multiple stressors and demonstrate the complexity that nonadditive multiple stressors will contribute to predictions of adaptation to complex environmental shifts caused by global change.
Collapse
|
9
|
Wang J, Cheng ZY, Dong YW. Demographic, physiological, and genetic factors linked to the poleward range expansion of the snail Nerita yoldii along the shoreline of China. Mol Ecol 2022; 31:4510-4526. [PMID: 35822322 DOI: 10.1111/mec.16610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022]
Abstract
Species range shift is one of the most significant consequences of climate change in the Anthropocene. A comprehensive study, including demographic, physiological, and genetic factors linked to poleward range expansion, is crucial for understanding how the expanding population occupies the new habitat. In the present study, we investigated the demographic, physiological, and genetic features of the intertidal gastropod Nerita yoldii, which has extended its northern limit by ~200 km over the former biogeographic break of the Yangtze River Estuary during recent decades. The neutral SNPs data showed that the new marginal populations formed a distinct cluster established by a few founders. Demographic modelling analysis revealed that the new marginal populations experienced a strong genetic bottleneck followed by recent demographic expansion. Successful expansion that overcame the founder effect might be attributed to its high capacity of rapid population growth and multiple introductions. According to the non-neutral SNPs under diversifying selection, there were high levels of heterozygosity in the new marginal populations, which might be beneficial for adapting to the novel thermal conditions. The common garden experiment showed that the new marginal populations have evolved divergent transcriptomic and physiological responses to heat stress, allowing them to occupy and survive in the novel environment. Lower transcriptional plasticity was observed in the new marginal populations. These results suggest a new biogeographic pattern of N. yoldii has formed with the occurrence of demographic, physiologic, and genetic changes, and emphasize the roles of adaptation of marginal populations during range expansion.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, PR China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Zhi-Yuan Cheng
- State Key Laboratory of Marine Environmental Science, College of Marine and Earth Sciences, Xiamen University, Xiamen, PR China
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, PR China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
10
|
Yilmaz AR, Yoder A, Diamond SE, Martin RA. Adaptation to urban heat islands enhances thermal performance following development under chronic thermal stress, but not benign conditions in the terrestrial isopod Oniscus asellus. Physiol Biochem Zool 2022; 95:302-316. [DOI: 10.1086/720333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Brennan RS, deMayo JA, Dam HG, Finiguerra MB, Baumann H, Pespeni MH. Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod. Nat Commun 2022; 13:1147. [PMID: 35241657 PMCID: PMC8894427 DOI: 10.1038/s41467-022-28742-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
Adaptive evolution and phenotypic plasticity will fuel resilience in the geologically unprecedented warming and acidification of the earth’s oceans, however, we have much to learn about the interactions and costs of these mechanisms of resilience. Here, using 20 generations of experimental evolution followed by three generations of reciprocal transplants, we investigated the relationship between adaptation and plasticity in the marine copepod, Acartia tonsa, in future global change conditions (high temperature and high CO2). We found parallel adaptation to global change conditions in genes related to stress response, gene expression regulation, actin regulation, developmental processes, and energy production. However, reciprocal transplantation showed that adaptation resulted in a loss of transcriptional plasticity, reduced fecundity, and reduced population growth when global change-adapted animals were returned to ambient conditions or reared in low food conditions. However, after three successive transplant generations, global change-adapted animals were able to match the ambient-adaptive transcriptional profile. Concurrent changes in allele frequencies and erosion of nucleotide diversity suggest that this recovery occurred via adaptation back to ancestral conditions. These results demonstrate that while plasticity facilitated initial survival in global change conditions, it eroded after 20 generations as populations adapted, limiting resilience to new stressors and previously benign environments. Rapid adaptation will facilitate species resilience under global climate change, but its effects on plasticity are less commonly investigated. This study shows that 20 generations of experimental adaptation in a marine copepod drives a rapid loss of plasticity that carries costs and might have impacts on future resilience to environmental change.
Collapse
Affiliation(s)
- Reid S Brennan
- Department of Biology, University of Vermont, Burlington, VT, USA. .,Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - James A deMayo
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.,Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Michael B Finiguerra
- Department of Ecology and Evolutionary Biology, University of Connecticut, Groton, CT, USA
| | - Hannes Baumann
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | | |
Collapse
|
12
|
Denny MW, Dowd WW. Elevated Salinity Rapidly Confers Cross-Tolerance to High Temperature in a Splash-Pool Copepod. Integr Org Biol 2022; 4:obac037. [PMID: 36003414 PMCID: PMC9394168 DOI: 10.1093/iob/obac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accurate forecasting of organismal responses to climate change requires a deep mechanistic understanding of how physiology responds to present-day variation in the physical environment. However, the road to physiological enlightenment is fraught with complications: predictable environmental fluctuations of any single factor are often accompanied by substantial stochastic variation and rare extreme events, and several factors may interact to affect physiology. Lacking sufficient knowledge of temporal patterns of co-variation in multiple environmental stressors, biologists struggle to design and implement realistic and relevant laboratory experiments. In this study, we directly address these issues, using measurements of the thermal tolerance of freshly collected animals and long-term field records of environmental conditions to explore how the splash-pool copepod Tigriopus californicus adjusts its physiology as its environment changes. Salinity and daily maximum temperature-two dominant environmental stressors experienced by T. californicus-are extraordinarily variable and unpredictable more than 2-3 days in advance. However, they substantially co-vary such that when temperature is high salinity is also likely to be high. Copepods appear to take advantage of this correlation: median lethal temperature of field-collected copepods increases by 7.5°C over a roughly 120 parts-per-thousand range of ambient salinity. Complementary laboratory experiments show that exposure to a single sublethal thermal event or to an abrupt shift in salinity also elicits rapid augmentation of heat tolerance via physiological plasticity, although the effect of salinity dwarfs that of temperature. These results suggest that T. californicus's physiology keeps pace with the rapid, unpredictable fluctuations of its hypervariable physical environment by responding to the cues provided by recent sublethal stress and, more importantly, by leveraging the mechanistic cross-talk between responses to salinity and heat stress.
Collapse
Affiliation(s)
| | - W Wesley Dowd
- School of Biological Sciences, Washington State University, 100 Dairy Road, Eastlick G81, Pullman, WA99164, USA
| |
Collapse
|
13
|
Buckley LB, Kingsolver JG. Evolution of Thermal Sensitivity in Changing and Variable Climates. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011521-102856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evolutionary adaptation to temperature and climate depends on both the extent to which organisms experience spatial and temporal environmental variation (exposure) and how responsive they are to the environmental variation (sensitivity). Theoretical models and experiments suggesting substantial potential for thermal adaptation have largely omitted realistic environmental variation. Environmental variation can drive fluctuations in selection that slow adaptive evolution. We review how carefully filtering environmental conditions based on how organisms experience their environment and further considering organismal sensitivity can improve predictions of thermal adaptation. We contrast taxa differing in exposure and sensitivity. Plasticity can increase the rate of evolutionary adaptation in taxa exposed to pronounced environmental variation. However, forms of plasticity that severely limit exposure, such as behavioral thermoregulation and phenological shifts, can hinder thermal adaptation. Despite examples of rapid thermal adaptation, experimental studies often reveal evolutionary constraints. Further investigating these constraints and issues of timescale and thermal history are needed to predict evolutionary adaptation and, consequently, population persistence in changing and variable environments.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, Washington 98195‐1800, USA
| | - Joel G. Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
14
|
Barley JM, Cheng BS, Sasaki M, Gignoux-Wolfsohn S, Hays CG, Putnam AB, Sheth S, Villeneuve AR, Kelly M. Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off. Proc Biol Sci 2021; 288:20210765. [PMID: 34493077 PMCID: PMC8424342 DOI: 10.1098/rspb.2021.0765] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Many species face extinction risks owing to climate change, and there is an urgent need to identify which species' populations will be most vulnerable. Plasticity in heat tolerance, which includes acclimation or hardening, occurs when prior exposure to a warmer temperature changes an organism's upper thermal limit. The capacity for thermal acclimation could provide protection against warming, but prior work has found few generalizable patterns to explain variation in this trait. Here, we report the results of, to our knowledge, the first meta-analysis to examine within-species variation in thermal plasticity, using results from 20 studies (19 species) that quantified thermal acclimation capacities across 78 populations. We used meta-regression to evaluate two leading hypotheses. The climate variability hypothesis predicts that populations from more thermally variable habitats will have greater plasticity, while the trade-off hypothesis predicts that populations with the lowest heat tolerance will have the greatest plasticity. Our analysis indicates strong support for the trade-off hypothesis because populations with greater thermal tolerance had reduced plasticity. These results advance our understanding of variation in populations' susceptibility to climate change and imply that populations with the highest thermal tolerance may have limited phenotypic plasticity to adjust to ongoing climate warming.
Collapse
Affiliation(s)
- Jordanna M. Barley
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Brian S. Cheng
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | | | - Cynthia G. Hays
- Department of Biology, Keene State College, Keene, NH 03435, USA
| | - Alysha B. Putnam
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Seema Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Andrew R. Villeneuve
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Morgan Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
15
|
Li A, Li L, Zhang Z, Li S, Wang W, Guo X, Zhang G. Noncoding variation and transcriptional plasticity promote thermal adaptation in oysters by altering energy metabolism. Mol Biol Evol 2021; 38:5144-5155. [PMID: 34390581 PMCID: PMC8557435 DOI: 10.1093/molbev/msab241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genetic variation and phenotypic plasticity are both important to adaptive evolution. However, how they act together on particular traits remains poorly understood. Here, we integrated phenotypic, genomic, and transcriptomic data from two allopatric but closely related congeneric oyster species, Crassostrea angulata from southern/warm environments and Crassostrea gigas from northern/cold environments, to investigate the roles of genetic divergence and plasticity in thermal adaptation. Reciprocal transplantation experiments showed that both species had higher fitness in their native habitats than in nonnative environments, indicating strong adaptive divergence. The southern species evolved higher transcriptional plasticity, and the plasticity was adaptive, suggesting that increased plasticity is important for thermal adaptation to warm climates. Genome-wide comparisons between the two species revealed that genes under selection tended to respond to environmental changes and showed higher sequence divergence in noncoding regions. All genes under selection and related to energy metabolism exhibited habitat-specific expression with genes involved in ATP production and lipid catabolism highly expressed in warm/southern habitats, and genes involved in ATP consumption and lipid synthesis were highly expressed in cold/northern habitats. The gene for acyl-CoA desaturase, a key enzyme for lipid synthesis, showed strong selective sweep in the upstream noncoding region and lower transcription in the southern species. These results were further supported by the lower free fatty acid (FFA) but higher ATP content in southern species and habitat, pointing to significance of ATP/FFA trade-off. Our findings provide evidence that noncoding variation and transcriptional plasticity play important roles in shaping energy metabolism for thermal adaptation in oysters.
Collapse
Affiliation(s)
- Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ziyan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shiming Li
- BGI Genomics, BGI-Shenzhen, China Shenzhen.,BGI-Argo Seed Service (Wuhan) Co., Ltd, Wuhan, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, USA
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
16
|
Kelly MW, Griffiths JS. Selection Experiments in the Sea: What Can Experimental Evolution Tell Us About How Marine Life Will Respond to Climate Change? THE BIOLOGICAL BULLETIN 2021; 241:30-42. [PMID: 34436966 DOI: 10.1086/715109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractRapid evolution may provide a buffer against extinction risk for some species threatened by climate change; however, the capacity to evolve rapidly enough to keep pace with changing environments is unknown for most taxa. The ecosystem-level consequences of climate adaptation are likely to be the largest in marine ecosystems, where short-lived phytoplankton with large effective population sizes make up the bulk of primary production. However, there are substantial challenges to predicting climate-driven evolution in marine systems, including multiple simultaneous axes of change and considerable heterogeneity in rates of change, as well as the biphasic life cycles of many marine metazoans, which expose different life stages to disparate sources of selection. A critical tool for addressing these challenges is experimental evolution, where populations of organisms are directly exposed to controlled sources of selection to test evolutionary responses. We review the use of experimental evolution to test the capacity to adapt to climate change stressors in marine species. The application of experimental evolution in this context has grown dramatically in the past decade, shedding light on the capacity for evolution, associated trade-offs, and the genetic architecture of stress-tolerance traits. Our goal is to highlight the utility of this approach for investigating potential responses to climate change and point a way forward for future studies.
Collapse
|
17
|
Sasaki MC, Dam HG. Negative relationship between thermal tolerance and plasticity in tolerance emerges during experimental evolution in a widespread marine invertebrate. Evol Appl 2021; 14:2114-2123. [PMID: 34429752 PMCID: PMC8372069 DOI: 10.1111/eva.13270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/20/2021] [Indexed: 12/19/2022] Open
Abstract
Whether populations can adapt to predicted climate change conditions, and how rapidly, are critical questions for the management of natural systems. Experimental evolution has become an important tool to answer these questions. In order to provide useful, realistic insights into the adaptive response of populations to climate change, there needs to be careful consideration of how genetic differentiation and phenotypic plasticity interact to generate observed phenotypic changes. We exposed three populations of the widespread copepod Acartia tonsa (Crustacea) to chronic, sublethal temperature selection for 15 generations. We generated thermal survivorship curves at regular intervals both during and after this period of selection to track the evolution of thermal tolerance. Using reciprocal transplants between ambient and warming conditions, we also tracked changes in the strength of phenotypic plasticity in thermal tolerance. We observed significant increases in thermal tolerance in the Warming lineages, while plasticity in thermal tolerance was strongly reduced. We suggest these changes are driven by a negative relationship between thermal tolerance and plasticity in thermal tolerance. Our results indicate that adaptation to warming through an increase in thermal tolerance might not reduce vulnerability to climate change if the increase comes at the expense of tolerance plasticity. These results illustrate the importance of considering changes in both a trait of interest and the trait plasticity during experimental evolution.
Collapse
Affiliation(s)
| | - Hans G. Dam
- Department of Marine SciencesUniversity of ConnecticutGrotonCTUSA
| |
Collapse
|
18
|
deMayo JA, Girod A, Sasaki MC, Dam HG. Adaptation to simultaneous warming and acidification carries a thermal tolerance cost in a marine copepod. Biol Lett 2021; 17:20210071. [PMID: 34256577 PMCID: PMC8278047 DOI: 10.1098/rsbl.2021.0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
The ocean is undergoing warming and acidification. Thermal tolerance is affected both by evolutionary adaptation and developmental plasticity. Yet, thermal tolerance in animals adapted to simultaneous warming and acidification is unknown. We experimentally evolved the ubiquitous copepod Acartia tonsa to future combined ocean warming and acidification conditions (OWA approx. 22°C, 2000 µatm CO2) and then compared its thermal tolerance relative to ambient conditions (AM approx. 18°C, 400 µatm CO2). The OWA and AM treatments were reciprocally transplanted after 65 generations to assess effects of developmental conditions on thermal tolerance and potential costs of adaptation. Treatments transplanted from OWA to AM conditions were assessed at the F1 and F9 generations following transplant. Adaptation to warming and acidification, paradoxically, reduces both thermal tolerance and phenotypic plasticity. These costs of adaptation to combined warming and acidification may limit future population resilience.
Collapse
Affiliation(s)
- James A. deMayo
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340-6048, USA
| | - Amanda Girod
- Department of Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Matthew C. Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340-6048, USA
| | - Hans G. Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340-6048, USA
| |
Collapse
|
19
|
Griffiths JS, Kawji Y, Kelly MW. An Experimental Test of Adaptive Introgression in Locally Adapted Populations of Splash Pool Copepods. Mol Biol Evol 2021; 38:1306-1316. [PMID: 33306808 PMCID: PMC8042754 DOI: 10.1093/molbev/msaa289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
As species struggle to keep pace with the rapidly warming climate, adaptive introgression of beneficial alleles from closely related species or populations provides a possible avenue for rapid adaptation. We investigate the potential for adaptive introgression in the copepod, Tigriopus californicus, by hybridizing two populations with divergent heat tolerance limits. We subjected hybrids to strong heat selection for 15 generations followed by whole-genome resequencing. Utilizing a hybridize evolve and resequence (HER) technique, we can identify loci responding to heat selection via a change in allele frequency. We successfully increased the heat tolerance (measured as LT50) in selected lines, which was coupled with higher frequencies of alleles from the southern (heat tolerant) population. These repeatable changes in allele frequencies occurred on all 12 chromosomes across all independent selected lines, providing evidence that heat tolerance is polygenic. These loci contained genes with lower protein-coding sequence divergence than the genome-wide average, indicating that these loci are highly conserved between the two populations. In addition, these loci were enriched in genes that changed expression patterns between selected and control lines in response to a nonlethal heat shock. Therefore, we hypothesize that the mechanism of heat tolerance divergence is explained by differential gene expression of highly conserved genes. The HER approach offers a unique solution to identifying genetic variants contributing to polygenic traits, especially variants that might be missed through other population genomic approaches.
Collapse
Affiliation(s)
- Joanna S Griffiths
- Department of Environmental Toxicology, University of California, Davis, Davis, CA
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| | - Yasmeen Kawji
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
20
|
Diminished growth and vitality in juvenile Hydractinia echinata under anticipated future temperature and variable nutrient conditions. Sci Rep 2021; 11:7483. [PMID: 33820912 PMCID: PMC8021570 DOI: 10.1038/s41598-021-86918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Abstract
In a warming climate, rising seawater temperatures and declining primary and secondary production will drastically affect growth and fitness of marine invertebrates in the northern Atlantic Ocean. To study the ecological performance of juvenile hydroids Hydractinia echinata we exposed them to current and predicted water temperatures which reflect the conditions in the inter- and subtidal in combination with changing food availability (high and low) in laboratory experiments. Here we show, that the interplay between temperature stress and diminished nutrition affected growth and vitality of juvenile hydroids more than either factor alone, while high food availability mitigated their stress responses. Our numerical growth model indicated that the growth of juvenile hydroids at temperatures beyond their optimum is a saturation function of energy availability. We demonstrated that the combined effects of environmental stressors should be taken into consideration when evaluating consequences of climate change. Interactive effects of ocean warming, decreasing resource availability and increasing organismal energy demand may have major impacts on biodiversity and ecosystem function.
Collapse
|
21
|
Trudnowska E, Balazy K, Stoń‐Egiert J, Smolina I, Brown T, Gluchowska M. In a comfort zone and beyond-Ecological plasticity of key marine mediators. Ecol Evol 2020; 10:14067-14081. [PMID: 33391702 PMCID: PMC7771121 DOI: 10.1002/ece3.6997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/03/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023] Open
Abstract
Copepods of the genus Calanus are the key components of zooplankton. Understanding their response to a changing climate is crucial to predict the functioning of future warmer high-latitude ecosystems. Although specific Calanus species are morphologically very similar, they have different life strategies and roles in ecosystems. In this study, C. finmarchicus and C. glacialis were thoroughly studied with regard to their plasticity in morphology and ecology both in their preferred original water mass (Atlantic vs. Arctic side of the Polar Front) and in suboptimal conditions (due to, e.g., temperature, turbidity, and competition in Hornsund fjord). Our observations show that "at the same place and time," both species can reach different sizes, take on different pigmentation, be in different states of population development, utilize different reproductive versus lipid accumulation strategies, and thrive on different foods. Size was proven to be a very mutable morphological trait, especially with regard to reduced length of C. glacialis. Both species exhibited pronounced red pigmentation when inhabiting their preferred water mass. In other domains, C. finmarchicus individuals tended to be paler than C. glacialis individuals. Gonad maturation and population development indicated mixed reproductive strategies, although a surprisingly similar population age structure of the two co-occurring species in the fjord was observed. Lipid accumulation was high and not species-specific, and its variability was due to diet differences of the populations. According to the stable isotope composition, both species had a more herbivorous diatom-based diet in their original water masses. While the diet of C. glacialis was rather consistent among the domains studied, C. finmarchicus exhibited much higher variability in its feeding history (based on lipid composition). Our results show that the plasticity of both Calanus species is indeed impressive and may be regulated differently, depending on whether they live in their "comfort zone" or beyond it.
Collapse
Affiliation(s)
| | - Kaja Balazy
- Institute of Oceanology Polish Academy of SciencesSopotPoland
| | | | | | - Thomas Brown
- The Scottish Association for Marine ScienceObanUK
| | | |
Collapse
|
22
|
van Heerwaarden B, Kellermann V. Does Plasticity Trade Off With Basal Heat Tolerance? Trends Ecol Evol 2020; 35:874-885. [DOI: 10.1016/j.tree.2020.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022]
|
23
|
Dinh KV, Dinh HT, Pham HT, Selck H, Truong KN. Development of metal adaptation in a tropical marine zooplankton. Sci Rep 2020; 10:10212. [PMID: 32576953 PMCID: PMC7311422 DOI: 10.1038/s41598-020-67096-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tropical marine ecosystems are highly vulnerable to pollution and climate change. It is relatively unknown how tropical species may develop an increased tolerance to these stressors and the cost of adaptations. We addressed these issues by exposing a keystone tropical marine copepod, Pseudodiaptomus annandalei, to copper (Cu) for 7 generations (F1–F7) during three treatments: control, Cu and pCu (the recovery treatment). In F7, we tested the “contaminant-induced climate change sensitivity” hypothesis (TICS) by exposing copepods to Cu and extreme temperature. We tracked fitness and productivity of all generations. In F1, Cu did not affect survival and grazing but decreased nauplii production. In F2-F4, male survival, grazing, and nauplii production were lower in Cu, but recovered in pCu, indicating transgenerational plasticity. Strikingly, in F5-F6 nauplii production of Cu-exposed females increased, and did not recover in pCu. The earlier result suggests an increased Cu tolerance while the latter result revealed its cost. In F7, extreme temperature resulted in more pronounced reductions in grazing, and nauplii production of Cu or pCu than in control, supporting TICS. The results suggest that widespread pollution in tropical regions may result in high vulnerability of species in these regions to climate change.
Collapse
Affiliation(s)
- Khuong V Dinh
- School of Biological Sciences, Washington State University, Pullman, WA, USA. .,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark. .,Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Vietnam.
| | - Hanh T Dinh
- Northern National Broodstock Center for Mariculture, Research Institute for Aquaculture No 1, Xuan Dam Commune, Cat Ba, Hai Phong, Vietnam
| | - Hong T Pham
- Department of Environmental Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Kiem N Truong
- Department of Ecology, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam.
| |
Collapse
|
24
|
Kelly M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180176. [PMID: 30966963 DOI: 10.1098/rstb.2018.0176] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Theory suggests that evolutionary changes in phenotypic plasticity could either hinder or facilitate evolutionary rescue in a changing climate. Nevertheless, the actual role of evolving plasticity in the responses of natural populations to climate change remains unresolved. Direct observations of evolutionary change in nature are rare, making it difficult to assess the relative contributions of changes in trait means versus changes in plasticity to climate change responses. To address this gap, this review explores several proxies that can be used to understand evolving plasticity in the context of climate change, including space for time substitutions, experimental evolution and tests for genomic divergence at environmentally responsive loci. Comparisons among populations indicate a prominent role for divergence in environmentally responsive traits in local adaptation to climatic gradients. Moreover, genomic comparisons among such populations have identified pervasive divergence in the regulatory regions of environmentally responsive loci. Taken together, these lines of evidence suggest that divergence in plasticity plays a prominent role in adaptation to climatic gradients over space, indicating that evolving plasticity is also likely to play a key role in adaptive responses to climate change through time. This suggests that genetic variation in plastic responses to the environment (G × E) might be an important predictor of species' vulnerabilities to climate-driven decline or extinction. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Morgan Kelly
- Biological Sciences, Louisiana State University , Baton Rouge, LA 70808 , USA
| |
Collapse
|
25
|
Dillon ME, Lozier JD. Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. CURRENT OPINION IN INSECT SCIENCE 2019; 36:131-139. [PMID: 31698151 DOI: 10.1016/j.cois.2019.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Advances in tools to gather environmental, phenotypic, and molecular data have accelerated our ability to detect abiotic drivers of variation across the genome-to-phenome spectrum in model and non-model insects. However, differences in the spatial and temporal resolution of these data sets may create gaps in our understanding of linkages between environment, genotype, and phenotype that yield missed or misleading results about adaptive variation. In this review we highlight sources of variability that might impact studies of phenotypic and 'omic environmental adaptation, challenges to collecting data at relevant scales, and possible solutions that link intensive fine-scale reductionist studies of mechanisms to large-scale biogeographic patterns.
Collapse
Affiliation(s)
- Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, The University of Wyoming, Laramie, Wyoming 82071, USA.
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
26
|
Healy TM, Bock AK, Burton RS. Variation in developmental temperature alters adulthood plasticity of thermal tolerance in Tigriopus californicus. ACTA ACUST UNITED AC 2019; 222:jeb.213405. [PMID: 31597734 DOI: 10.1242/jeb.213405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
In response to environmental change, organisms rely on both genetic adaptation and phenotypic plasticity to adjust key traits that are necessary for survival and reproduction. Given the accelerating rate of climate change, plasticity may be particularly important. For organisms in warming aquatic habitats, upper thermal tolerance is likely to be a key trait, and many organisms express plasticity in this trait in response to developmental or adulthood temperatures. Although plasticity at one life stage may influence plasticity at another life stage, relatively little is known about this possibility for thermal tolerance. Here, we used locally adapted populations of the copepod Tigriopus californicus to investigate these potential effects in an intertidal ectotherm. We found that low latitude populations had greater critical thermal maxima (CTmax) than high latitude populations, and variation in developmental temperature altered CTmax plasticity in adults. After development at 25°C, CTmax was plastic in adults, whereas no adulthood plasticity in this trait was observed after development at 20°C. This pattern was identical across four populations, suggesting that local thermal adaptation has not shaped this effect among these populations. Differences in the capacities to maintain ATP synthesis rates and to induce heat shock proteins at high temperatures, two likely mechanisms of local adaptation in this species, were consistent with changes in CTmax owing to phenotypic plasticity, which suggests that there is likely mechanistic overlap between the effects of plasticity and adaptation. Together, these results indicate that developmental effects may have substantial impacts on upper thermal tolerance plasticity in adult ectotherms.
Collapse
Affiliation(s)
- Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093-0202, USA
| | - Antonia K Bock
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093-0202, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093-0202, USA
| |
Collapse
|
27
|
Enriquez-Urzelai U, Kearney MR, Nicieza AG, Tingley R. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. GLOBAL CHANGE BIOLOGY 2019; 25:2633-2647. [PMID: 31050846 DOI: 10.1111/gcb.14673] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Insights into the causal mechanisms that limit species distributions are likely to improve our ability to anticipate species range shifts in response to climate change. For species with complex life histories, a mechanistic understanding of how climate affects different lifecycle stages may be crucial for making accurate forecasts. Here, we use mechanistic niche modeling (NicheMapR) to derive "proximate" (mechanistic) variables for tadpole, juvenile, and adult Rana temporaria. We modeled the hydroperiod, and maximum and minimum temperatures of shallow (30 cm) ponds, as well as activity windows for juveniles and adults. We then used those ("proximate") variables in correlative ecological niche models (Maxent) to assess their role in limiting the species' current distribution, and to investigate the potential effects of climate change on R. temporaria across Europe. We further compared the results with a model based on commonly used macroclimatic ("distal") layers (i.e., bioclimatic layers from WorldClim). The maximum temperature of the warmest month (a macroclimatic variable) and maximum pond temperatures (a mechanistic variable) were the most important range-limiting factors, and maximum temperature thresholds were consistent with the observed upper thermal limit of R. temporaria tadpoles. We found that range shift forecasts in central Europe are far more pessimistic when using distal macroclimatic variables, compared to projections based on proximate mechanistic variables. However, both approaches predicted extensive decreases in climatic suitability in southern Europe, which harbors a significant fraction of the species' genetic diversity. We show how mechanistic modeling provides ways to depict gridded layers that directly reflect the microenvironments experienced by organisms at continental scales, and to reconstruct those predictors without extrapolation under novel future conditions. Furthermore, incorporating those predictors in correlative ecological niche models can help shed light on range-limiting processes, and can have substantial impacts on predictions of climate-induced range shifts.
Collapse
Affiliation(s)
- Urtzi Enriquez-Urzelai
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo UO, Oviedo, Spain
- UMIB: Unidad Mixta de Investigación en Biodiversidad (UO-CSIC-PA), Mieres, Spain
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| | - Alfredo G Nicieza
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo UO, Oviedo, Spain
- UMIB: Unidad Mixta de Investigación en Biodiversidad (UO-CSIC-PA), Mieres, Spain
| | - Reid Tingley
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
28
|
Li N, Arief N, Edmands S. Effects of oxidative stress on sex-specific gene expression in the copepod Tigriopus californicus revealed by single individual RNA-seq. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100608. [PMID: 31325755 DOI: 10.1016/j.cbd.2019.100608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress reflects the imbalance of pro-oxidants and antioxidants. Prolonged oxidative stress can induce cellular damage, diseases and aging, and the effects may be sex-specific. Tigriopus californicus has recently been proposed as an alternative model system for sex-specific studies due to the absence of sex chromosomes. In this study, we used comparative transcriptomic analyses to assess sex-specific transcriptional responses to oxidative stress. Male and female individuals were maintained separately in one of three treatments: 1) control conditions with an algae diet, 2) pro-oxidant (H2O2) conditions with an algae diet or 3) decreased antioxidant conditions (reduced carotenoids due to a yeast diet). Single individual RNA-seq was then conducted for twenty-four libraries using Ligation Mediated RNA sequencing (LM-Seq). Variance in gene expression was partitioned into 62.3% between sexes, 26.85% among individuals and 10.85% among treatments. Within each of the three treatments, expression was biased toward females. However, compared to the control treatment, males in both pro-oxidant and decreased antioxidant treatments differentially expressed more genes while females differentially expressed fewer genes but with a greater magnitude of fold change. As the first study of copepods to apply single individual RNA-seq, the findings will contribute to a better understanding of transcriptomic variation among individuals as well as sex-specific response mechanisms to oxidative stress in the absence of sex chromosomes.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | - Natasha Arief
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| |
Collapse
|
29
|
Tarrant AM, Nilsson B, Hansen BW. Molecular physiology of copepods - from biomarkers to transcriptomes and back again. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:230-247. [DOI: 10.1016/j.cbd.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
|
30
|
Jones HR, Johnson KM, Kelly MW. Synergistic Effects of Temperature and Salinity on the Gene Expression and Physiology of Crassostrea virginica. Integr Comp Biol 2019; 59:306-319. [DOI: 10.1093/icb/icz035] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
The eastern oyster, Crassostrea virginica, forms reefs that provide critical services to the surrounding ecosystem. These reefs are at risk from climate change, in part because altered rainfall patterns may amplify local fluctuations in salinity, impacting oyster recruitment, survival, and growth. As in other marine organisms, warming water temperatures might interact with these changes in salinity to synergistically influence oyster physiology. In this study, we used comparative transcriptomics, measurements of physiology, and a field assessment to investigate what phenotypic changes C. virginica uses to cope with combined temperature and salinity stress in the Gulf of Mexico. Oysters from a historically low salinity site (Sister Lake, LA) were exposed to fully crossed temperature (20°C and 30°C) and salinity (25, 15, and 7 PSU) treatments. Using comparative transcriptomics on oyster gill tissue, we identified a greater number of genes that were differentially expressed (DE) in response to low salinity at warmer temperatures. Functional enrichment analysis showed low overlap between genes DE in response to thermal stress compared with hypoosmotic stress and identified enrichment for gene ontologies associated with cell adhesion, transmembrane transport, and microtubule-based process. Experiments also showed that oysters changed their physiology at elevated temperatures and lowered salinity, with significantly increased respiration rates between 20°C and 30°C. However, despite the higher energetic demands, oysters did not increase their feeding rate. To investigate transcriptional differences between populations in situ, we collected gill tissue from three locations and two time points across the Louisiana Gulf coast and used quantitative PCR to measure the expression levels of seven target genes. We found an upregulation of genes that function in osmolyte transport, oxidative stress mediation, apoptosis, and protein synthesis at our low salinity site and sampling time point. In summary, oysters altered their phenotype more in response to low salinity at higher temperatures as evidenced by a higher number of DE genes during laboratory exposure, increased respiration (higher energetic demands), and in situ differential expression by season and location. These synergistic effects of hypoosmotic stress and increased temperature suggest that climate change will exacerbate the negative effects of low salinity exposure on eastern oysters.
Collapse
Affiliation(s)
- H R Jones
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - K M Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
31
|
Harada AE, Burton RS. Ecologically Relevant Temperature Ramping Rates Enhance the Protective Heat Shock Response in an Intertidal Ectotherm. Physiol Biochem Zool 2019; 92:152-162. [DOI: 10.1086/702339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Graham AM, Barreto FS. Novel microRNAs are associated with population divergence in transcriptional response to thermal stress in an intertidal copepod. Mol Ecol 2018; 28:584-599. [PMID: 30548575 DOI: 10.1111/mec.14973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
Abstract
The role of gene expression in adaptation to differing thermal environments has been assayed extensively. Yet, in most natural systems, analyses of gene expression reveal only one level of the complexity of regulatory machineries. MicroRNAs (miRNAs) are small noncoding RNAs which are key components of many gene regulatory networks, and they play important roles in a variety of cellular pathways by modulating post-transcriptional quantities of mRNA available for protein synthesis. The characterization of miRNA loci and their regulatory dynamics in nonmodel systems are still largely understudied. In this study, we examine the role of miRNAs in response to high thermal stress in the intertidal copepod Tigriopus californicus. Allopatric populations of this species show varying levels of local adaptation with respect to thermal regimes, and previous studies showed divergence in gene expression between populations from very different thermal environments. We examined the transcriptional response to temperature stress in two populations separated by only 8 km by utilizing RNA-seq to quantify both mRNA and miRNA levels. Using the currently available genome sequence, we first describe the repertoire of miRNAs in T. californicus and assess the degree to which transcriptional response to temperature stress is governed by miRNA activity. The two populations showed large differences in the number of genes involved, the magnitude of change in commonly used genes and in the number of miRNAs involved in transcriptional modulation during stress. Our results suggest that an increased level of regulatory network complexity may underlie improved survivorship under thermal stress in one of the populations.
Collapse
Affiliation(s)
- Allie M Graham
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
33
|
HUEY RB, BUCKLEY LB, DU W. Biological buffers and the impacts of climate change. Integr Zool 2018; 13:349-354. [DOI: 10.1111/1749-4877.12321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Weiguo DU
- Institute of Zoology, Chinese Academy of Sciences; China
| |
Collapse
|
34
|
DeBiasse MB, Kawji Y, Kelly MW. Phenotypic and transcriptomic responses to salinity stress across genetically and geographically divergent Tigriopus californicus populations. Mol Ecol 2018; 27:1621-1632. [PMID: 29509986 DOI: 10.1111/mec.14547] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Species inhabiting the North American west coast intertidal must tolerate an extremely variable environment, with large fluctuations in both temperature and salinity. Uncovering the mechanisms for this tolerance is key to understanding species' persistence. We tested for differences in salinity tolerance between populations of Tigriopus californicus copepods from locations in northern (Bodega Reserve) and southern (San Diego) California known to differ in temperature, precipitation and humidity. We also tested for differences between populations in their transcriptomic responses to salinity. Although these two populations have ~20% mtDNA sequence divergence and differ strongly in other phenotypic traits, we observed similarities in their phenotypic and transcriptomic responses to low and high salinity stress. Salinity significantly affected respiration rate (increased under low salinity and reduced under high salinity), but we found no significant effect of population on respiration or a population by salinity interaction. Under high salinity, there was no population difference in knock-down response, but northern copepods had a smaller knock-down under low salinity stress, corroborating previous results for T. californicus. Northern and southern populations had a similar transcriptomic response to salinity based on a principle components analysis, although differential gene expression under high salinity stress was three times lower in the northern population compared to the southern population. Transcripts differentially regulated under salinity stress were enriched for "amino acid transport" and "ion transport" annotation categories, supporting previous work demonstrating that the accumulation of free amino acids is important for osmotic regulation in T. californicus.
Collapse
Affiliation(s)
- Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Yasmeen Kawji
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
35
|
Lockwood BL, Julick CR, Montooth KL. Maternal loading of a small heat shock protein increases embryo thermal tolerance in Drosophila melanogaster. J Exp Biol 2017; 220:4492-4501. [PMID: 29097593 PMCID: PMC5769566 DOI: 10.1242/jeb.164848] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
Abstract
Maternal investment is likely to have direct effects on offspring survival. In oviparous animals whose embryos are exposed to the external environment, maternal provisioning of molecular factors like mRNAs and proteins may help embryos cope with sudden changes in the environment. Here, we sought to modify the maternal mRNA contribution to offspring embryos and test for maternal effects on acute thermal tolerance in early embryos of Drosophila melanogaster We drove in vivo overexpression of a small heat shock protein gene (Hsp23) in female ovaries and measured the effects of acute thermal stress on offspring embryonic survival and larval development. We report that overexpression of the Hsp23 gene in female ovaries produced offspring embryos with increased thermal tolerance. We also found that brief heat stress in the early embryonic stage (0-1 h old) caused decreased larval performance later in life (5-10 days old), as indexed by pupation height. Maternal overexpression of Hsp23 protected embryos against this heat-induced defect in larval performance. Our data demonstrate that transient products of single genes have large and lasting effects on whole-organism environmental tolerance. Further, our results suggest that maternal effects have a profound impact on offspring survival in the context of thermal variability.
Collapse
Affiliation(s)
- Brent L Lockwood
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Cole R Julick
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
36
|
Chandler VK, Wares JP. RNA expression and disease tolerance are associated with a "keystone mutation" in the ochre sea star Pisaster ochraceus. PeerJ 2017; 5:e3696. [PMID: 28828278 PMCID: PMC5562136 DOI: 10.7717/peerj.3696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
An overdominant mutation in an intron of the elongation factor 1-α (EF1A) gene in the sea star Pisaster ochraceus has shown itself to mediate tolerance to "sea star wasting disease", a pandemic that has significantly reduced sea star populations on the Pacific coast of North America. Here we use RNA sequencing of healthy individuals to identify differences in constitutive expression of gene regions that may help explain this tolerance phenotype. Our results show that individuals carrying this mutation have lower expression at a large contingent of gene regions. Individuals without this mutation also appear to have a greater cellular response to temperature stress, which has been implicated in the outbreak of sea star wasting disease. Given the ecological significance of P. ochraceus, these results may be useful in predicting the evolutionary and demographic future for Pacific intertidal communities.
Collapse
Affiliation(s)
- V. Katelyn Chandler
- Department of Genetics, University of Georgia, Athens, GA, United States of America
| | - John P. Wares
- Department of Genetics, University of Georgia, Athens, GA, United States of America
- Odum School of Ecology, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
37
|
Siljestam M, Östman Ö. The combined effects of temporal autocorrelation and the costs of plasticity on the evolution of plasticity. J Evol Biol 2017; 30:1361-1371. [PMID: 28485061 DOI: 10.1111/jeb.13114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
Adaptive phenotypic plasticity is an important source of intraspecific variation, and for many plastic traits, the costs or factors limiting plasticity seem cryptic. However, there are several different factors that may constrain the evolution of plasticity, but few models have considered costs and limiting factors simultaneously. Here we use a simulation model to investigate how the optimal level of plasticity in a population depends on a fixed maintenance fitness cost for plasticity or an incremental fitness cost for producing a plastic response in combination with environmental unpredictability (environmental fluctuation speed) limiting plasticity. Our model identifies two mechanisms that act, almost separately, to constrain the evolution of plasticity: (i) the fitness cost of plasticity scaled by the nonplastic environmental tolerance, and (ii) the environmental fluctuation speed scaled by the rate of phenotypic change. That is, the evolution of plasticity is constrained by the high cost of plasticity in combination with high tolerance for environmental variation, or fast environmental changes in combination with slow plastic response. Qualitatively similar results are found when maintenance and incremental fitness costs of plasticity are incorporated, although a larger degree of plasticity is selected for with an incremental cost. Our model highlights that it is important to consider direct fitness costs and phenotypic limitations in relation to nonplastic environmental tolerance and environmental fluctuations, respectively, to understand what constrains the evolution of phenotypic plasticity.
Collapse
Affiliation(s)
- M Siljestam
- Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden
| | - Ö Östman
- Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Kelly MW, DeBiasse MB, Villela VA, Roberts HL, Cecola CF. Adaptation to climate change: trade-offs among responses to multiple stressors in an intertidal crustacean. Evol Appl 2016; 9:1147-1155. [PMID: 27695522 PMCID: PMC5039327 DOI: 10.1111/eva.12394] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/12/2016] [Indexed: 01/06/2023] Open
Abstract
Trade-offs may influence both physiological and evolutionary responses to co-occurring stressors, but their effects on both plastic and adaptive responses to climate change are poorly understood. To test for genetic and physiological trade-offs incurred in tolerating multiple stressors, we hybridized two populations of the intertidal copepod Tigriopus californicus that were divergent for both heat and salinity tolerance. Starting in the F2 generation, we selected for increased tolerance of heat, low salinity, and high salinity in replicate lines. After five generations of selection, heat-selected lines had greater heat tolerance but lower fecundity, indicating an energetic cost to tolerance. Lines selected for increased salinity tolerance did not show evidence of adaptation to their respective environments; however, hypo-osmotic selection lines showed substantial loss of tolerance to hyperosmotic stress. Neither of the salinity selection regimes resulted in diminished heat tolerance at ambient salinity; however, simultaneous exposure to heat and hypo-osmotic stress led to decreased heat tolerance, implying a physiological trade-off in tolerance to the two stressors. When we quantified the transcriptomic response to heat and salinity stress via RNA sequencing, we observed little overlap in the stress responses, suggesting the observed synergistic effects of heat and salinity stress were driven by competing energetic demands, rather than shared stress response pathways.
Collapse
Affiliation(s)
- Morgan W Kelly
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Melissa B DeBiasse
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Vidal A Villela
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Hope L Roberts
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Colleen F Cecola
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| |
Collapse
|